
FourQ: four-dimensional decompositions on a Q-curve
over the Mersenne prime

Craig Costello and Patrick Longa

Microsoft Research, USA
{craigco,plonga}@microsoft.com

Abstract. We introduce FourQ, a high-security, high-performance elliptic curve that targets the 128­
bit security level. At the highest level, cryptographic scalar multiplications on FourQ can use a four-
dimensional Gallant-Lambert-Vanstone decomposition to minimize the total number of elliptic curve
group operations. At the group arithmetic level, FourQ admits the use of extended twisted Edwards
coordinates and can therefore exploit the fastest known elliptic curve addition formulas over large char­
acteristic fields. Finally, at the finite field level, arithmetic is performed modulo the extremely fast
Mersenne prime p = 2127 − 1. We show that this powerful combination facilitates scalar multiplications
that are significantly faster than all prior works. On Intel’s Ivy Bridge and Sandy Bridge architectures,
our software computes a variable-base scalar multiplication in 73,000 cycles and 76,000 cycles, respec­
tively; and, on the same platforms, our software computes a Diffie-Hellman shared secret in 119,000
cycles and 126,000 cycles, respectively.

1 Introduction

2	 2This paper introduces a new, complete twisted Edwards [4] curve E(F 2) : − x + y2 = 1 + dx2y ,p

where p is the Mersenne prime p = 2127 − 1, and d is a non-square in F 2 . This curve, dubbed p

“FourQ”, comes from Smith’s Q-curve construction [48], and is thus equipped with an endomorphism
ψ related to the p-power Frobenius map. In addition, it has complex multiplication (CM) by the
order of discriminant D = −40, meaning it comes equipped with another efficiently computable,
low-degree endomorphism φ.

We built an elliptic curve cryptography (ECC) library that works inside the cryptographic
subgroup E(F 2)[N], where N is a 246-bit prime. The endomorphisms ψ and φ do not give any p

practical speedup to Pollard’s rho algorithm [42], which means the best known attack against the t
elliptic curve discrete logarithm problem (ECDLP) on E(F 2)[N] requires around πN/4 ∼ 2122.5

p

group operations on average. Thus, the cryptographic security of E (see §2.3 for more details) is
closely comparable to other curves that target the 128-bit security level, e.g., [19, 35, 8, 5].

Our choice of curve and the accompanying library offer a range of advantages over existing
curves and implementations:

–	 Speed: FourQ’s library computes scalar multiplications faster than all known software
implementations of curve-based cryptographic primitives. It uses the endomorphisms ψ and
φ to accelerate scalar multiplications via four-dimensional Gallant-Lambert-Vanstone (GLV)­
style [20] decompositions. Four-dimensional decompositions have been used before [35, 8, 24],
but not over the Mersenne prime1; this choice of field is significantly faster than any neighboring
fields and several works have studied its arithmetic [19, 35, 13]. The combination of extremely
fast modular reductions and four-dimensional scalar decompositions makes for highly efficient

1	 p stands alone as the only Mersenne prime suitable for high-security curves over quadratic extension fields. The
next largest Mersenne prime is 2521 − 1, which is suitable only for prime field curves targeting the 256-bit level.

mailto:craigco,plonga}@microsoft.com

scalar multiplications on E . Furthermore, we can exploit the fastest known addition formulas
for elliptic curves over large characteristic fields [30], which are also complete on E since the
above d is non-square [30, §3]. In Section 2, we explain why four-dimensional decomposi­
tions and this special underlying field were not previously partnered at the 128-bit security level.

–	 Simplicity and concrete correctness: Simplicity is a ma jor priority in this work and in the
development of our software; in some cases we sacrifice speed enhancements in order to design
a more simple and compact algorithm (cf. §4.2 and Remark 7).
On input of any point P ∈ E (F 2)[N], validated as in Appendix A if necessary, and any integer p

scalar m ∈ [0, 2256), our software does the following (strictly in constant-time and without
exception):
1. Computes φ(P), ψ(P) and ψ(φ(P)) using exactly2 68M, 27S and 49.5A – see Section 3.
2. Decomposes m (e.g., in less than 200 Sandy Bridge cycles) into a multiscalar (a1, a2, a3, a4) ∈

Z4 such that each ai is positive and at most 64 bits – see Section 4.
3. Recodes the multiscalar (e.g., in less than 800 Sandy Bridge cycles) to ensure a simple and

constant-time main loop – see Section 5.
4. Computes a lookup table of 8 elements using exactly 7 complete additions, before executing

the main loop using exactly 64 complete twisted Edwards double-and-add operations, and
finally outputting [m]P = [a1]P + [a2]φ(P) + [a3]ψ(P) + [a4]ψφ(P) – see Section 5.

This paper details each of the above steps explicitly, culminating in the full routine presented
in Algorithm 2. Several prior works exploiting scalar decompositions have potential points
of failure (cf. [29, §7], and §4.2), but crucially, and for the first time in the setting of four-
dimensional decompositions, we accompany our routine with a robust proof of correctness –
see Theorem 1.

–	 Cryptographic versatility: FourQ is intended to be used in the same way, i.e., using the
same model, same coordinates and same explicit formulas, irrespective of the cryptographic
protocol or nature of the intended scalar multiplication. This is in contrast to other scalar
multiplication routines that are useful in some settings, but not others: for example, the
Montgomery [38, 3] and Kummer ladders [21, 8, 5] can be used in Diffie-Hellman-like schemes,
but not in Schnorr-like signatures. In contrast, FourQ supports fast variable-base and fast
fixed-base scalar multiplications, both of which use twisted Edwards coordinates; this serves
as a basis for fast (ephemeral) DH and fast Schnorr-like signatures. The presence of a single,
complete addition law gives implementers the ability to easily wrap higher-level software and
protocols around the FourQ’s library exactly as is.

–	 Public availability: Prior works exploiting four-dimensional decompositions have either made
code available that did not attempt to run in constant-time [8, 24], or not published code that did
run in constant-time [35, 16]. Our library dispels any myths concerning the “complications” of
making endomorphism-accelerated implementations run in constant-time [5, §1.2]. This software
is compact, simple to read, and easy to audit. Our aim is to make it easy for subsequent
implementers to replicate the routine and, if desired, develop specialized code that is tailored
to specific platforms for further performance gains. We will be publishing the FourQ library in

2	 Here, and throughout, I, M, S and A are used to denote the respective costs of inversions, multiplications, squarings
and additions in Fp2 . We note that Frobenius operations amount to conjugations in Fp, which are tallied as 0.5A.

2

the next few weeks and will provide a link to the code in an updated version of this paper. This
will include the full high-performance FourQ library (written in C and x64 assembly), as well
as Magma scripts that can be used to verify the proofs of all claims and the claimed operation
counts.

When the NIST curves [39] were standardized in 1999, many of the landmark discoveries in
ECC (e.g., [20, 15, 19, 48]) were yet to be made. FourQ and its accompanying library represent
the culmination of several of the best known ECC optimizations to date: it pulls together the
extremely fast Mersenne prime, the fastest known large characteristic addition formulas [30], and
the highest degree of scalar decompositions (there is currently no known way of achieving higher
dimensional decompositions without exposing the ECDLP to attacks that are asymptotically much
faster than Pollard rho). Subsequently, for generic scalar multiplications, FourQ performs around
four to five times faster than the original NISTp256 curve [23], between two and three times faster
than curves that are currently under consideration as NIST alternatives, e.g., Curve25519 [3], and is
also significantly faster than all of the other curves used to set previous speed records (see Section 6
for the comparisons).

It is our belief that the demand for high-performance cryptography warrants the state-of-the­
art in ECC to be part of the standardization discussion: this paper ultimately demonstrates the
performance gains that are possible if such a curve were to be considered alongside the “conservative”
choices.

2 The Curve: FourQ

This section describes the new curve that is used in our implementation. Since we draw on Smith’s
construction [46, 48], we adopt his notation and terminology for the most part. We present the curve
parameters in §2.1, shed some light on how the curve was found in §2.2, and discuss its cryptographic
security in §2.3. Both §2.2 and §2.3 discuss that E is essentially one-of-a-kind, illustrating that there
were no degrees of freedom in the choice of curve – see Remark 2.

2.1 A complete twisted Edwards curve

We will work over the quadratic extension field

Fp2 := Fp(i) , where p := 2127 − 1 and i2 = −1.

We define E to be the twisted Edwards [4] curve

2 2E/F 2 : − x + y 2 = 1 + dx2 y , (1)p

where

d := 125317048443780598345676279555970305165 · i + 4205857648805777768770.

The set of Fp2 -rational points satisfying the affine model for E above forms a group: the neutral
element is OE = (0, 1) and the inverse of a point (x, y) is (−x, y). The fastest set of explicit formulas
for the addition law on E are due to Hisil, Wong, Carter and Dawson [30]: they use extended twisted
Edwards coordinates to represent the affine point (x, y) on E by any pro jective tuple of the form

3

(X : Y : Z : T) for which Z = X Y /Z . Since d is not a square in F= 0, x = X/Z , y = Y /Z and T 2 ,p

this set of formulas is also complete on E (see [4]), meaning that they will work without exception
for all points in E(F 2).p

The trace tE of the p2-power Frobenius endomorphism πE of E is

tE = 136368062447564341573735631776713817674,

which reveals that

#E(Fp2) = p 2 + 1 − tE = 23 · 72 · N , (2)

where N is a 246-bit prime. The cryptographic group we work with in this paper is E(F 2)[N].p

2.2 Where did this curve come from?

The curve E above comes from the family of Q-curves of degree 2 – originally defined by
Hasegawa [27] – that were recently used as one of the example families in Smith’s general con­
struction of Q-curve endomorphisms [46, 48]. For Δ a square-free integer, this family is defined over √
Q(Δ) and is parameterized by s ∈ Q as

√ √
2Ẽ2,Δ,s : y = x 3 − 6(5 − 3s Δ)x + 8(7 − 9s Δ). (3)

√
By definition [46, Def. 1], curves from this family are 2-isogenous (over Q(Δ, −2)) to their Galois √
conjugates σẼ2,Δ,s. Smith reduces Ẽ2,Δ,s and σẼ2,Δ,s modulo primes p that are inert in Q(Δ) to
produce the curves E2,Δ,s and σE2,Δ,s defined over F 2 . He then composes the induced 2-isogeny p

from E2,Δ,s to σE2,Δ,s with the p-power Frobenius map from σE2,Δ,s back to E2,Δ,s, which produces
an efficiently computable degree 2p endomorphism ψ on E2,Δ,s.

Recall that in this paper we fix p = 2127 − 1 for efficiency reasons. For this particular prime p
and this family of Q-curves, Smith’s construction gives rise to precisely p non-isomorphic curves
corresponding to each possible choice of s ∈ Fp [48, Prop. 1]. Varying s allows us to readily
find curves belonging to this family with strong cryptographic group orders, each of which comes
equipped with the endomorphism ψ that facilitates a two-dimensional scalar decomposition.

Seeking a four-dimensional (rather than two-dimensional) scalar decomposition on E2,Δ,s re­
stricts us to a very small subset of possible s values. This is because we require the existence of
another efficiently computable endomorphism on E2,Δ,s, namely the low-degree GLV endomorphism √
φ on those instances of E2,Δ,s that possess CM over Q(Δ). In [48, §9], Smith explains why there
are only a handful of s values in any particular Q-curve family that correspond to a curve with CM,
before cataloging all such instances in the families of Q-curves of degrees 2, 3, 5 and 7. In particular,
up to isogeny and over any prime p, there are merely 13 values of s such that E2,Δ,s has CM over √
Q(Δ). As is remarked in [48, §9], this scarcity of CM curves makes it highly unlikely that we
will find a secure instance of a low-degree Q-curve family with CM over any fixed prime p. This is
the reason why other authors with a “greed for speed” at the 128-bit security level have previously
sacrificed the fast Mersenne prime p = 2127 − 1 in favor of a four-dimensional decomposition [35,
8, 24]; one can always search through the small handfull of exceptional CM curves over many sub­
optimal primes until a cryptographically secure instance is found. However, in the specific case of
p = 2127 − 1, we actually get extremely lucky: our search through Smith’s tables of exceptional
Q-curves with CM [48, Thm. 6] found one particular instance over F 2 with a prime subgroup of p

4

246-bits, namely E2,Δ,s with s = ±4 and Δ = 5. As is detailed in [48, §3], the specification of 9
Δ = 5 here does not dictate how we form the extension field F 2 over Fp; all quadratic extension p√ √
fields of Fp are isomorphic, so we can take s Δ = √±

4 5 in (3) while still taking the reduction of 9
Ẽ2,5,± 4 modulo p to be E2,5,± 4 /Fp2 with Fp2 := Fp(−1). To simplify notation, from hereon we fix

9 9

ẼW := Ẽ2,5,± 4 and define EW as the reduction of ẼW modulo p, given as
9

√ √
2EW/F 2 : y = x 3 − (30 − 8 5)x + (56 − 32 5), (4)p

√
where the choice of the root 5 in Fp2 will be fixed in Section 3. We note that the short Weierstrass
curve EW is not isomorphic to our twisted Edwards curve E , but rather to a twisted Edwards curve
Ê that is F 2 -isogenous to E . The reason we work with E rather than Ê is because the curve constant p

d on E is non-square in F 2 , which is not the case for the curve constant d̂ on Ê ; as we mentioned p

above, d being a non-square ensures that the fastest known addition formulas are also complete on
E . The isogenies between E and Ê are made explicit as follows.

2 2Proposition 1. Let Ê/K and E/K be the twisted Edwards curves defined by Ê/K : − x + y =
2 21 + dx̂2y and E/K : − x + y2 = 1 + dx2y2. If d = −(1 + 1/d̂), then the map

2xy x2 − y2 + 2
τ : E → Ê , (x, y) → t ,

2 − x2(x2 + y2) d̂ y

is a 4-isogeny, the dual of which is t
ˆ 2 − x22xy d yˆτ̂ : E → E , (x, y) → , .

2x2 − y2 + 2 y2 + x

Proof. We derive τ and τ̂ using the 2-isogenies ψ and ψ̂ from [1, Theorem 3.2], together with
the isomorphisms σ1σ2 and σ2σ1 in [1, Equations 15-16]. The isogeny τ is the composition of
ψ : E → L−d, of σ2σ1 : L−d → L1/(1+d), and of ψ : L1/(1+d) → ˆ = ψσ2σ1ψ in Hom(E , E).ˆ E , i.e., τ ˆ ˆ

ˆ ˆThe isogeny τ̂ is the composition of ψ : E → L , of σ1σ2 : L− ̂ → L , and of ψ : L1+1/d̂ → E ,−d̂ d 1+1/d̂

i.e., τ̂ = ˆ E , E). It follows that both τ and ˆψσ1σ2ψ in Hom(̂ τ are 4-isogenies. It is easily verified
that τ τ̂ corresponds to multiplication by 4 in End(E), so τ̂ is indeed the dual of τ [18, Theorem
9.6.21]. D

We note at once that if d̂ is a square in K, then τ and τ̂ are defined over K. Fortunately,
while the twisted Edwards curve Ê corresponding to EW/F 2 has a square constant d̂, our chosen p

isogenous curve E has the non-square constant d = −(1 + 1/d̂). Our implementation will work solely
in twisted Edwards coordinates on E , but we will pass back and forth through EW (via Ê) when
deriving explicit formulas for the endomorphisms φ and ψ in Section 3. We note that Hamburg
used 4-isogenies (also derived from [1]) to a similar effect in [26].

Remark 1. Aficionados should rest assured that we tried several other possibilities to achieve a
non-square d before resorting to an isogeny (which ends up adding around 10 multiplications to
each endomorphism – see Table 1). This included looking at the a = −1 twisted Edwards model
corresponding to different choices of roots and corresponding to the Galois conjugate Eσ of EW,W
which is 2-isogenous to EW by definition; none of these options give rise to a non-square d. We note
that using these isogenies once-off in each endomorphism computation is still much faster than
using a slower, complete addition on Ê .

5

2.3 The cryptographic security of FourQ

Pollard’s rho algorithm [42] is the best known way to solve the ECDLP in E(F 2)[N]. An optimized pt
version of this attack which uses the negation map [52] will require around πN/4 ∼ 2122.5 group
operations on average. We note that, unlike some of the typical GLV [20] or GLS [19] endomorphisms
that can be used to speed up Pollard’s rho algorithm [14], both ψ and φ on E do not facilitate
any known advantage; neither of these endomorphisms have a small orbit and they are both more
expensive to compute than an amortized addition. Thus, the known complexity of the ECDLP on E
is comparable to various other curves used in the speed-record literature; optimized implementations
of Pollard rho against any of the fastest curves in [3, 19, 35, 8, 16, 13, 40] would require between 2124.8

and 2125.8 group operations on average. Ideally, we would prefer not to have the factor 72 dividing
#E(F 2), but the resulting (∼ 2.8 bit) security degradation is a small price to pay for having the p

fastest field at the 128-bit level in conjunction with a four-dimensional scalar decomposition. As
discussed in Remark 2 below, it was a long shot to try and find such a cryptographically secure
Q-curve with CM over Fp2 in Smith’s tables in the first place, let alone one that also had the
necessary torsion to support a twisted Edwards model.

Since E(Fp2) has rational 2-torsion, it is easy to write down the corresponding abelian surface
over Fp whose Jacobian is isogenous to the Weil restriction of E – see [45, Lemma 2.1 and Lemma
3.1]. But since the best known algorithm to solve the discrete logarithm problem on such abelian
surfaces is again Pollard’s rho algorithm, the Weil descent philosophy (cf. [22]) does not pose a
threat here. Furthermore, the embedding degree of E with respect to N is (N − 1)/2, making it
infeasible to reduce the ECDLP into a finite field [37, 17].

We note that the largest prime factor dividing the group order of E ’s quadratic twist is 158
bits, but twist-security [3] is not an issue in this work: firstly, our software always validates input
points (such validation is essentially free), and secondly, x-coordinate-only arithmetic (which is
where twist-security makes sense) on E is not competitive with a four-dimensional decomposition
that uses both coordinates.

In contrast to most currently standardized curves, the proposed curve is both defined over a
quadratic extension field and has a small discriminant; one notable exception is secp256k1 in the
SEC standard [12], which is used in the Bitcoin protocol and also has small discriminant. However,
it is important to note that there is no better-than-generic attack known to date that can exploit
either of these two properties on E . In fact, with respect to ECDLP difficulty, Koblitz, Koblitz and
Menezes [31, §11] point out that slower, large discriminant curves, like NISTp256 and Curve25519,
may turn out to be less conservative than specially chosen curves with small discriminant.

Remark 2. It should be noted that there were no degrees of freedom in choosing the curve E .
Demanding the field Fp2 (with p = 2127 − 1) alongside a four-dimensional decomposition reveals
that, of all the exceptional Q-curves with CM tabulated in [48, Thm. 6], the 246-bit prime subgroup
makes E the only known curve that comes close to the target 128-bit security level. Over this field,
the second strongest curve found in all of Smith’s tables had a 215-bit prime subgroup. To find
another strong curve supporting four-dimensional decompositions over this field would, to our
knowledge, require increasing the degree of the Q-curve family beyond d = 7, for which explicit
constructions are currently limited [27, 48]. The discussion in §2.2 also shows why four-dimensional
decompositions and our specially chosen underlying field have not been previously partnered at the
128-bit security level. Prior to [46], partnering the Galbraith-Lin-Scott (GLS) endomorphism [19]
with a GLV endomorphism was the only known way to achieve such decompositions on elliptic

6

curves over large characteristic fields, and a secure curve facilitating GLV+GLS had only been
found over suboptimal primes [19]. One consequence of Smith’s (generalized GLS) construction [46]
is that it increased the search space of curves that facilitate four-dimensional decompositions (over
any fixed field).

3 The Endomorphisms ψ and φ

In this section we derive explicit formulas for the two endomorphisms on E . In what follows we use √ √ √ √
ci,j,k,l to denote the constant i + j 2 + k 5 + l 2 5 in F 2 , which is fixed by setting p

√ √
2 := 264 and 5 := 87392807087336976318005368820707244464 · i.

For both ψ and φ, we start by deriving the explicit formulas on the short Weierstrass model
EW. As discussed in the previous section, we will pass back and forth between E and EW via the
twisted Edwards curve Ê that is 4-isogenous to E over F 2 . The maps between E and Ê are given p

in Proposition 1, and we take the maps δ : EW → Ê and δ−1 ˆ: E → EW from [48, §5] (tailored to our
Ê) as

γ(x − 4) x − 4 − c0,2,0,1 c0,2,0,1(y + 1) c0,2,0,1(y + 1)γ
δ : (x, y) → , , and δ−1 : (x, y) → + 4, ,

y x − 4 + c0,2,0,1 1 − y x(1 − y)

where γ2 = c−12,−4,0,−2. The choice of the square root γ ∈ F 2 becomes irrelevant in the composi­p

tions below.

3.1 Explicit formulas for ψ

There is almost no work to be done in deriving ψ on E , since this is Smith’s Q-curve endomorphism
corresponding to the degree-2 family to which EW belongs. We start with ψW : EW → EW, taken
from [48, §5], as

x c9,0,4,0
p y 1 c9,0,4,0

p

ψW : (x, y) → − − , √ − + .
2 x − 4 i 2 2 (x − 4)2

With ψW as above, we define ψ : E → E as the composition ψ = ˆ In optimizing the τ δψWδ
−1τ .

explicit formulas for this composition, there is practically nothing to be gained by simplifying
the full composition in the function field F 2 (E). However, it is advantageous to optimize explicit p

formulas for the inner composition (δψWδ
−1) in the function field F 2 (Ê). In fact, for both ψ and φ,p

optimized explicit formulas for this inner composition are faster than the respective endomorphisms
ψW and φW, and are therefore much faster than computing the respective compositions individually.

Simplifying the composition δψWδ
−1 in the function field F 2 (Ê) yieldsp

2ixp · c−2,3,−1,0 c−9,−6,4,3 − (xp)2

(δψWδ
−1) : E → ˆ Ê , (x, y) → , .

yp · ((xp)2 · c−140,99,0,0 + c−76,57,−36,24) c−9,−6,4,3 + (xp)2

Note that each of the p-power Frobenius operations above amount to one Fp negation. As
mentioned above, we compute the endomorphism ψ = τ̂(δψWδ

−1)τ on E by computing τ and τ̂
separately; see Section 3.4 for the operation counts.

7

3.2 Deriving explicit formulas for φ

We now derive the second endomorphism φ that arises from E admitting CM by the order of
discriminant D = −40. We start by pointing out that there is actually multiple routes that could
be taken in defining and deriving φ. The route we took in a preliminary version of this article was
to use Stark’s algorithm [49] (see also [11]). On input of the two curve constants in (4) and an √
integral basis {1, β } for the ring of integers in Q(D), Stark’s algorithm outputs two polynomials
f(x) and g(x) defining the endomorphism φW : ẼW → ẼW as

'f(x) f(x)
φ : (x, y) → , cy ,

g(x) g(x)

√
for a constant c in Q(D). The degrees of f(x) and g(x) are N(β) and N(β) − 1, where N(·) is the √ √ √

1norm function from Q(D) down to Q. In our case, since β = −40 = −10 defines an interal 2
basis, the degrees of f and g were 10 and 9 respectively, and the resulting endomorphism φW on√
EW(F 2)[N] corresponded to scalar multiplication by −10 (mod N).p

The second possibility, which we use in this paper, produces an endomorphism of lower degree.
This option was revealed to us in correspondence with Ben Smith, who pointed out that Q-curves
with CM can also be produced as the intersection of families of Q-curves, and that our curve E is
not only a degree-2 Q-curve, but is also a degree-5 Q-curve. Thus, the second endomorphism φ can
instead be derived by first following the treatment in [48, §7] to derive φW as a 5-isogeny on EW,
which we do below. √

Working in Q(5)[x], the 5-division polynomial (cf. [18, Def. 9.8.4]) of ẼW factors as f(x)g(x),√ √
where f(x) = x2 + 4 5 · x + (18 − 4/5 5) and g(x) (which is of degree 10) are irreducible. The
polynomial f(x) defines the kernel of a 5-isogeny φσ ẼW → Ẽσ . We use this kernel to compute φσ

W : W W
via Vélu’s formulae [51] (see also [32, §2.4]), reduce modulo p, and then compose with Frobenius
πp : Eσ → EW to give φW : EW → EW, (x, y) → (xφW , yφW), where W

 √ √ √ √ √ p
5 4 3 2 x + 8 5x + (40 5 + 260)x + (720 5 + 640)x + (656 5 + 4340)x + (1920 5 + 960)

xφW = √ √ 2 ,
5 (x2 + 4 5x − 1/5(4 5 − 90) √ √ √ √ √ p2 4 3−y · x + (4 5 − 8)x − (12 5 − 26) · x + (8 5 + 8)x + 28x 2 − (48 5 + 112)x − 32 5 − 124

yφW = √ √ √ 3 ,
5(x2 + 4 5x − 1/5(4 5 − 90))

As was the case with ψ in §3.1, it is advantageous to optimize formulas in F 2 (Ê) for the p

composition (δψWδ
−1), which gives (δψWδ

−1) : ˆ E , (x, y) → (xφ, yφ), where E → ˆ

p
c9,−6,4,−3 · x · (y2 − c7,5,3,2 · y + c21,15,10,7) · (y + c7,5,3,2 · y + c21,15,10,7)2

xφ = ,
(y2 + c3,2,1,1 · y + c3,3,2,1) · (y2 − c3,2,1,1 · y + c3,3,2,1)

p

c15,10,6,4 · (5y4 + c120,90,60,40 · y2 + c175,120,74,54)

yφ = .

5y · (y4 + c240,170,108,76 · y2 + c3055,2160,1366,966)

Again, we use this to compute the full endomorphism ψ = τ̂(δψWδ
−1)τ on E by computing τ and

τ̂ separately; see Section 3.4 for the operation counts.

8

3.3 Eigenvalues

The eigenvalues of the two endomorphisms ψ and φ play a key role in developing scalar decompo­
sitions. In this subsection we write them in terms of the curve parameters.

From [48, Thm. 2], and given that we used a 4-isogeny τ and its dual to pass back and forth to
EW, the eigenvalues of ψ on E(F 2)[N] arep

p + 1
λψ := 4 · (mod N) (5)

r
and λ ' := −λψ (mod N), where r is an integer satisfying ψ

2r 2 = 2p + tE . (6)

To derive the eigenvalues for φ, we make use of the CM equation for E , which (since E has CM by
the order of discriminant D = −40) is

240V 2 = 4p 2 − tE , (7)

for some integer V . We fix r and V to be the positive integers satisfying (6) and (7):

V := 49293975489306344711751403123270296814; r := 15437785290780909242.

Proposition 2. The eigenvalues of φ on E(Fp2)[N] are
3(p − 1)r

λφ := 4 · (mod N) (8)
(p + 1)2V

and λ ' φ := −λφ (mod N).

Proof. The endomorphism φW ∈ End(EW) has minimal polynomial PφW (T) = T 2 + 5, so we 2first show that (p − 1)r3/((p + 1)2V) ≡ −5 mod N . To do this we rewrite (7) as −5 = (t2 −E
4p2)/(8V 2) = (tE − 2p)r2/(4V 2), which follows from (6). Since tE ≡ p2 + 1 mod N , we have −5 ≡
(p−1)2r2/(4V 2) mod N , and using [48, Thm. 2] to replace the 4 on the denominator by ((p+ 1)/r)4

gives that the eigenvalue of φW is (p − 1)r3/((p + 1)2V). Finally, the factor 4 in (8) comes from
φ = ˆ τ .τ δφWδ−1τ where δ and δ−1 are isomorphisms and τ is a 4-isogeny with dual ˆ D

3.4 Section summary

Table 1 summarizes the isogenies derived in this section, together with their exact operation counts.
The reason that multiples of 0.5 appear in the additions column is that we count Frobenius op­
erations (which amount to a negation in Fp) as half an addition in F 2 . Four-dimensional scalar p

decompositions on E require the computation of φ(P), of ψ(P), and of the composition ψ(φ(P));
the ordering here is important since ψ is much faster than φ, meaning we actually compute φ
once and ψ twice. We note that all sets of explicit formulas were derived assuming the inputs were
pro jective points (X : Y : Z) corresponding to a point (X/Z, Y /Z) in the domain of the isogeny.

'Similarly, all explicit formulas output the point (X : Y ' : Z ') corresponding to (X ' /Z ' , Y ' /Z ') in
the codomain, and in the special cases when the codomain is E (i.e., for τ̂ , φ, ψ and −ψφ), we also

' 'output the coordinate T (or a related variant) corresponding to T = X ' Y ' /Z ', which facilitates
faster subsequent group law formulas on E – see §5.2.

Table 1 reveals that, on input of a pro jective point in E(F 2)[N], the total cost of the three maps p

φ, ψ and ψφ is 68M + 27S + 49.5A. Computing the maps using these explicit formulas requires the
storage of 16 constants in F 2 , and at any stage of the endomorphism computations, requires the p

storage of at most 7 temporary variable.

9

Table 1. Summary of isogenies used in the derivation of the three endomorphisms φ, ψ and φψ on E , together with
the cost of their explicit formulas. Here M, S and A respectively denote the costs of one multiplication, one squaring
and one addition in Fp2 .

isogeny domain &
codomain

degree no. fixed
constants

no. temp
variables M

cost
S A

τ
τ̂

(δφWδ
−1)

(δψWδ
−1)

E → Ê
Ê → E
Ê → Ê
Ê → Ê

4
4
5p
2p

1
1
10
4

2
2
7
2

5
5
20
9

3
3
5
2

5
4

11.5
5.5

φ
ψ
ψφ

E → E
80p
32p

2560p

11
5
-

7
2
7

30
19
19

11
8
8

20.5
14.5
14.5

total cost (φ, ψ, ψφ) 16 7 68 27 49.5

4 Optimal Scalar Decompositions

Let λψ and λφ be as as fixed in (5) and (8). In this section we show how to compute, for any
integer scalar m ∈ Z, a corresponding 4-dimensional multiscalar (a1, a2, a3, a4) ∈ Z4 such that
m ≡ a1 + a2λφ +a3λψ +a4λφλψ (mod N), such that 0 ≤ ai < 264 − 1 for i = 1, 2, 3, 4, and such that
a1 is odd (which facilitates faster scalar recodings and multiplications – see Section 5). An excellent
reference for general scalar decompositions in the context of elliptic curve cryptography is Smith’s
article [47], where it is shown how to write down short lattice bases for scalar decompositions
directly from the curve parameters. Here we show how to further reduce such short bases into bases
that are, in the context of multiscalar multiplications, optimal.

4.1 Babai rounding and optimal bases

Following [47, §1], we define the lattice of zero decompositions as

L := � (z1, z2, z3, z4) ∈ Z4 | z1 + z2λφ + z3λψ + z4λφλψ ≡ 0 (mod N)�,

so that the set of decompositions for m ∈ Z/N Z is the lattice coset (m, 0, 0, 0) + L. For a given basis
B = (b1, b2, b3, b4) of L, and on input of any m ∈ Z, the Babai rounding technique [2] computes 4(α1, α2, α3, α4) ∈ Q4 as the unique solution to (m, 0, 0, 0) = αibi, and subsequently computes i=1
the multiscalar

44
(a1, a2, a3, a4) = (m, 0, 0, 0) −)αil · bi.

i=1

It follows that (a1, a2, a3, a4) − (m, 0, 0, 0) ∈ L, so m ≡ a1 + a2λφ + a3λψ + a4λφλψ (mod N).
Since −1/2 ≤ x −)xl ≤ 1/2, this technique finds the unique element in (m, 0, 0, 0) + L that lies
inside the parallelepiped3 defined by P(B) = {Bx | x ∈ [−1/2, 1/2)4}, i.e., Babai rounding maps Z
onto P(B) ∩ Z4. For a given m, the length of the corresponding multiscalar multiplication is then
determined by the infinity norm, || · ||∞, of the corresponding element (a1, a2, a3, a4) in P(B) ∩ Z4 .

Since our scalar multiplications must run in time independent of m, the speed of the multiscalar
exponentiations will depend on the worst case, i.e., on the maximal infinity norm taken across all
elements in P(B)∩Z4. Or, equivalently, the speed of routine will depend on the width of the smallest

3 This is a translate (by − 1
2 (

i
4
=1 bi)) of the fundamental parallelepiped, which is defined using x ∈ [0, 1)4 .

10

� �

4-cube whose convex body contains P(B) ∩ Z4 . This width depends only on the choice of B, so this
gives us a natural way of finding a basis that is optimal for our purposes. We make this concrete
in the following definition, which is stated for an arbitrary lattice of dimension n. Definition 1
simplifies the situation by looking for the smallest n-cube containing P(B), rather than P(B) ∩ Zn ,
but our candidate bases will always be orthogonal enough such that the conditions are equivalent
in practice.

Definition 1 (Babai-optimal bases). We say that a basis B of a lattice L ∈ Rn is Babai-optimal
if the width of the smallest n-cube containing the parallelepiped P(B) is minimal across all bases
for L.

We note immediately that taking the n successive minima under || · ||c, for any £ ∈ {1, 2, . . . , ∞},
will not be Babai-optimal in general. Indeed, for our specific lattice L, neither the || · ||2-reduced
basis (output from LLL [33]) or the || · ||∞-reduced basis (in the sense of Lovász and Scarf [36]) are
Babai-optimal.

For very low dimensions, such as those used in ECC scalar decompositions, we can find a Babai­
optimal basis via straightforward enumeration as follows. Starting with any reasonably small basis
B ' = (b ' 1, . . . , b '), like the ones in [47], we compute the width, w(B '), of the smallest n-cube whosen

nconvex body contains P(B '); by the definition of P, this is w(B ') = max1≤j≤n { |b ' [j]|}. Wei=1 i
then enumerate the set S of all vectors v ∈ L such that ||v||∞ ≤ w(B '); any vector not in S
cannot be in a basis whose width is smaller than B ' . We can then test all possible bases B, that
are formed as combinations of n linearly independent vectors in S, and choose one corresponding
to the minimal value of w(B).

Proposition 3. A Babai optimal basis for our zero decomposition lattice L is given by B :=
(b1, b2, b3, b4), where

224 · b1 := (16(−60α + 13r − 10), 4(−10α − 3r + 12) , 4(−15α + 5r − 13) , −13α − 6r + 3) ,

8 · b2 := (32(5α − r) , −8 , 8 , 2α + r) ,

224 · b3 := (16(80α − 15r + 18) , 4(18α − 3r − 16) , 4(−15α − 9r + 15) , 15α + 8r + 3α) ,

448 · b4 := (16(−360α + 77r + 42), 4(42α + 17r + 72), 4(85α − 21r − 77), (−77α − 36r − 17)) ,

for V and r as fixed in Section 3, and (since V ≡ 0 mod r) where α := V/r ∈ Z.

Proof. Straightforward but lengthy calculations using (2), (5), (6), (7) and (8) reveal that b1, b2,
b3 and b4 are all in L. Another direct calculation reveals that the determinant of b1, b2, b3, b4

is 100V 4 + 20r2(r2 + 2)V 2 + r4(r2 − 2)2 /(1568r4), which simplifies to N under (2), (6) and (7),
so B is a basis for L. o show that B is Babai-optimal, we set B ' = B and compute w(B ') =b TT

4 max1≤j≤4 |b ' i[j]| , which (at j = 1) is w(B ') = (245α + 120r + 17)/448. Enumeration underi=1

|| · ||∞ yields exactly 128 vectors (up to sign) in S = {v ∈ L | ||v||∞ ≤ w(B ')}; none of the rank 4
bases formed from S have a width smaller than B. D

The size of the set S in the above proof depends on the quality of the initial basis B ' . For the
proof it suffices to start with the Babai-optimal basis B itself, but in practice we will usually start
with a basis that is not optimal according to Definition 1. In our case we computed the basis in
Proposition 3 by first writing down a short basis using Smith’s methodology [47]. We input this into
the LLL algorithm [33] to obtain an LLL-reduced basis (b1, b2, b1 + b4, b3); these are also the four

11

successive minima under || · ||2. We then input this basis into the algorithm Lovász and Scarf [36];
this forced the requisite changes to output a basis consisting of the four successive minima under
|| · ||∞, namely (b1, b1 + b4, b2, b1 + b3). Using this as our input B ' into the enumeration gave a
set S of size 282, which we exhaustively searched to find B.

Remark 3. In practice, when the dimension of the lattice L is very small, a more bovine approach
to enumerating under || · ||∞ is to instead enumerate under || · ||2 by using the simple fact that, √
for any v ∈ L, ||v||2 ≤ n · ||v||∞ (to see this, maximize the 2-norm of v with respect to a fixed
infinity norm). For example, Magma’s [10] ShortVectors(L, n · γ2) command will enumerate the √
set of all vectors of 2-norm up n · |γ|; any vectors with a larger 2-norm than this will necessarily
have an larger infinity norm than |γ|.

We now describe the simple scalar decomposition that uses Babai rounding on the optimal basis
above. Note that, since V and r are fixed, the four α̂i values below are fixed integer constants.

Proposition 4. For a given integer m, and the basis B := (b1, b2, b3, b4) in Proposition 3, let
(a1, a2, a3, a4) be the multiscalar defined as

44
(a1, a2, a3, a4) = (m, 0, 0, 0) −)αil · bi,

i=1

where αi = α̂i · m/N , with

36272r · α̂1 = 540V 3 + 10r(27r − 4)V 2 + 6r 2(9r 2 − 2r + 18)V + r 3(27r + 4)(r 2 − 2),
325088r · α̂2 = 1020V 3 + 10r(47r − 8)V 2 + 2r 2(51r 2 + 26r + 102)V + r 3(47r + 8)(r 2 − 2),
325088r · α̂3 = 220V 3 + 10r(11r + 16)V 2 + 2r 2(11r 2 − 46r + 22)V + r 3(11r − 16)(r 2 − 2),
31792r · α̂4 = 60V 3 + 30r 2V 2 + 2r 2(3r 2 + 2r + 6)V + 3r 4(r 2 − 2).

Then m ≡ a1 + a2λφ + a3λψ + a4λψφ (mod N) and |a1|, |a2|, |a3|, |a4| < 262 .

4Proof. The tuple (α1, α2, α3, α4) ∈ Q4 is the unique solution to (m, 0, 0, 0) = αibi, so m ≡i=1
a1 + a2λφ + a3λψ + a4λφλψ (mod N). The bounds on the ai follow from all 16 corners of the
parallelepiped P(B) having all four coordinates of absolute value less than 262 . D

4.2 Handling round-off errors

αiThe decomposition described in Proposition 4 requires the computation of four roundings) ˆ · ml,N
where m is the input scalar and the four α̂i and N are fixed curve constants. Following [9, §4.2], one
efficient way of performing these roundings is to choose a power of 2 greater than the denominator

αi αiN , say µ, and precompute the fixed curve constants £i =) ˆ · µl, so that) ˆ · ml can be computed N N

at runtime as) ci ·m J, and the division by µ can be computed as a simple shift. µ
It is correctly noted in [9, §4.2] that computing the rounding in this way means the answer can

be out by 1 in some cases, but it is further said that “ in practice this does not affect the size of the
multiscalars”. While this assertion may have been true in [9], in general this will not be the case,
particularly when we wish to bound the size of the multiscalars as tightly as possible. We address
this issue on E starting with the following lemma.

12

Lemma 1. Let α̂ be any integer, and let m, N and µ be positive integers with m < µ. Then
ˆ ˆ mαm αµ − ·
N N µ

is either 0 or 1.

Proof. We use x − 1/2 ≤)xl ≤ x + 1/2 and x − 1 <)xJ ≤ x to see that the above value is greater
than −1/2 − m/(2µ) and less than 3/2 + m/(2µ). Since m < µ, the value therefore lies strictly
between -1 and 2 and the result follows from it being an integer. D

Lemma 1 says that, so long as we choose µ to be greater than the maximum size of our input
αiscalars m, our fast method of approximating) ˆ · ml will either give the correct answer, or it will N

αi
be) ˆ · ml − 1. It is easy to see that larger choices of µ decrease the probability of a rounding error. N
2246For example, on 10 million random decompositions of integers between 0 and N with µ = ,

roughly 2.2 million trials gave at least one error in the αi; when µ = 2247, roughly 1.7 million trials
gave at least one error; when µ = 2256, 4333 trials gave an error; and, taking µ = 2269 was the first
power of two that gave no errors.

Prior works have seemingly addressed this problem by taking µ to be large enough so that the
chance of roundoff errors are very (perhaps even exponentially) small. However, no matter how
large µ is chosen, the existence of a permissible scalar whose decomposition gives a roundoff error
is still a possibility4, and this could violate constant-time promises.

In this work, and in light of Theorem 1, we instead choose to sacrifice some speed by guaran­
teeing that roundoff errors are always accounted for. Rather than assuming that (a1, a2, a3, a4) =

4 (αi −)αil)bi, we account for the approximation α̃i to)αil (described in Lemma 1) by allowing i=1

4	 44 4
(a1, a2, a3, a4) = (αi − α̃i) bi = (αi − ()αil − Ei)) bi,

i=1 i=1

for all sixteen combinations arising from Ei ∈ {0, 1}, for i = 1, 2, 3, 4. This means that all integers
less than µ will decompose to a multiscalar in Z4 whose coordinates lie inside the parallelepiped
PE(B) := {Bx | x ∈ [−1/2, 3/2)4}. Theorem 1 permits scalars as any 256-bit strings, so we fix
µ := 2256 from here on, which also means that division by µ will correspond to a shift of machine
words. The edges of PE(B) are twice as long as those of P(B), so the number of points in PE(B)∩Z4

is vol(PE) = 16N . We note that, even though the number of permissible scalars far exceeds 16N , the
decomposition that maps integers in [0, µ) to multiscalars in PE(B) ∩ Z4 is certainly no longer onto;
almost all of the µ scalars will map into P(B) ∩ Z4, since the chance of roundoff errors that take
us into PE(B) − P (B) is small. Plainly, the width of smallest 4-cube containing PE(B) is also twice
that of the 4-cube containing P(B), so (in the sense of Definition 1) our basis is still Babai-optimal.
Nevertheless, the bounds in Proposition 4 no longer apply, which is one of the issues addressed in
the next subsection.

4.3 All-positive multiscalars

Many points in PE(B) ∩ Z4 have coordinates that are far greater than 262 in absolute value, and in
addition, the ma jority of them will have coordinates that are both positive and negative. Dealing
4	 This is not technically true: so long as the set of permissible scalars is finite, there will always be a µ large enough

to round all scalar decompositions accurately, but finding or proving this is, to our knowledge, very difficult.

13

with such signed multiscalars can require an additional iteration in the main loop of the scalar
multiplication, so in this subsection we use an offset vector in L to find a translate of PE(B) that
contains points whose four coordinates are always positive. We note that this does not save the
additional iteration mentioned above, but (at no cost) it does simplify the scalar recoding, such that
we do not have to deal with multiscalars that can have negative coordinates. Such offset vectors
were used in two dimensions in [13, §4].

From the proof of Proposition 3, we have that the width of the smallest 4-cube containing PE(B)
is 2·(245α+120r+17)/448, which lies between 263 and 264. Thus, the optimal situation is to translate
of PE(B) (using a vector in L) that fits inside the convex body of the 4-cube H = {264·x | x ∈ [0, 1]4}.
In fact, as we discuss in the next paragraph, we actually want to find two unique translates of PE(B)
inside H.

The scalar recoding described in Section 5 requires that the first component of the multi-
scalar (a1, a2, a3, a4) is odd. In the case that a1 is even, which happens around half of the time,
previous works have employed this “odd-only” recoding by instead working with the multiscalar
(a1 − 1, a2, a3, a4), and adding the point P to the value output by the main loop (cf. [40, Alg. 4]
and [16, Alg. 2]). Of course, in a constant-time routine, this scalar update and point addition must
be performed regardless of the parity of a1, and the correct scalars and results must be masked in
and out of the main loop accordingly. In this work we simplify the situation by using offset vectors
in L to achieve the same result; this has the added advantage of avoiding an extra point addition.

' 'We do this by finding two vectors c, c ∈ L such that c + PE(B) and c + PE(B) both lie inside H,
'and such that precisely one of (a1, a2, a3, a4) + c and (a1, a2, a3, a4) + c has a first component that

is odd. This is made explicit in the full scalar decomposition described below.

Proposition 5 (Scalar Decompositions). Let µ = 2256, let B = (b1, b2, b3, b4) be the basis in
Proposition 3, and define the four curve constants £i :=)α̂i · µ/N l for i = 1, 2, 3, 4, with the α̂i as

'given in Proposition 4. Let c = 2b1 − b2 + 5b3 + 2b4 and c = 2b1 − b2 + 5b3 + b4 in L. For any
integer m ∈ [0, 2256), let α̃i =)£im/µJ, and let (a1, a2, a3, a4) be given by

a1 = m − α̃1 · b1[1] − α̃2 · b2[1] − α̃3 · b3[1] − α̃4 · b4[1],

a2 = −α̃1 · b1[2] − α̃2 · b2[2] − α̃3 · b3[2] − α̃4 · b4[2],

a3 = −α̃1 · b1[3] − α̃2 · b2[3] − α̃3 · b3[3] − α̃4 · b4[3],

a4 = −α̃1 · b1[4] − α̃2 · b2[4] − α̃3 · b3[4] − α̃4 · b4[4].

'Then both of the multiscalars (a1, a2, a3, a4) + c and (a1, a2, a3, a4) + c are valid decompositions
of m, have al l four coordinates positive and less than 264, and precisely one of them has a first
coordinate that is odd.

Proof. Lemma 1 gives α̃i =)αil − Ei with Ei ∈ {0, 1} for i = 1, 2, 3, 4, where (α1, α2, α3, α4) ∈ Q4 is
4the unique solution to (m, 0, 0, 0) = αibi in Proposition 4. The point (a1, a2, a3, a4) above is i=1

4 'given as (a1, a2, a3, a4) = (m, 0, 0, 0) − α̃ibi, and since c, c ∈ L, then both (a1, a2, a3, a4) + ci=1
'and (a1, a2, a3, a4) + c are in (m, 0, 0, 0) + L, so are valid decompositions of m. Furthermore,
4 ' (a1, a2, a3, a4) + c = i=1(αi − ()αil − Ei))bi + c is in PE(B) + c, and similarly (a1, a2, a3, a4) + c

'is in PE(B) + c '. All sixteen corners of PE(B) + c and PE(B) + c are inside the convex body of H,
meaning they have all four coordinates positive and less than 264. Precisely one of the multiscalars

'having an odd first coordinate follows from the difference of the two multiscalars being c − c = b4,
whose first coordinate is (−360α + 77r + 42)/28, which is odd. D

14

The scalar decomposition described in Proposition 5 outputs two miniscalars. Our decomposi­
tion routine uses a bitmask to select and output the one with an odd first coordinate in constant
time.

We conclude this section with a remark concerning an alternative decomposition strategy.

Remark 4. Another way of dealing with negative components in multiscalars (a1, a2, a3, a4) that lie
in PE(B) is to always compute all eight points ±P , ±φ(P), ±ψ(P) and ±ψ(φ(P)), before selecting
the correct combination according to the signs of the ai, and proceeding with the multiscalar
(|a1|, |a2|, |a3|, |a4|). In this case the |ai| would then be at most 63 bits each, rather than the 64 bits
that we have above. Moreover, there are many translates of PE(B) inside H ' = {263 ·x | x ∈ [−1, 1]4},
so we can readily find two that differ by a vector in L whose first component is odd. This would
require additional point negations and four masked selections, but would save us a double-and­
add operation in the main loop. In our software we opted for the slower approach for its obvious
simplicity benefits: our code avoids the sign-dependent maskings so that the outputs of scalar
decomposition and endomorphism routines are fed into the main loop independently of one another.

5 The Scalar Multiplication

This section describes the full scalar multiplication of P ∈ E (F 2) by an integer m ∈ [0, 2256), pulling p

together the endomorphisms and scalar decompositions derived in the previous two sections.

5.1 Recoding the multiscalar

The “all-positive” multiscalar (a1, a2, a3, a4) that is output from the decomposition described in
Proposition 5 could be input as is into a simple 4-way multiexponentiation (e.g., the 4-dimensional
version of [50]) to achieve an efficient scalar multiplication. However, more care needs to be taken
to obtain an efficient routine that also runs in constant-time. For example, we need to guarantee
that the main loop iterates in the same number of steps, which would not currently be the case
since maxj (log2(|aj |)) can be several integers less than 64. As another example, a straightforward
multiexponentiation could leak information in the case that the i-th (least significant) bit of all
four aj values was 0, which would result in a “do-nothing” rather than a non-trivial addition.

To achieve an efficient constant-time routine, we adopt the general recoding Algorithm from [16,
Alg. 1], and tailor it to scalar multiplications on FourQ. This results in Algorithm 1 below, which
is presented in two flavors: one that is geared towards the general reader and one that is geared
more towards an implementer (we note that the lines do not coincide for the most part). On input
of any multiscalar (a1, a2, a3, a4) produced by Proposition 5, Algorithm 1 outputs an equivalent

64multiscalar (b1, b2, b3, b4) with bj = bj [i] · 2i for bj [i] ∈ {−1, 0, 1} and j = 1, 2, 3, 4, such that i=0
we always have b1[64] = 1 and such that b1[i] is non-zero for every i = 0, . . . , 63. This fixes the
length of the main loop and ensures that each addition step of the multiexponentiation requires an
addition by something other than the neutral element.

Another benefit of Algorithm 1 is that bj [i] ∈ {0, b1[i]} for j = 2, 3, 4; as was exploited in [16],
this “sign-alignment” means that the lookup table used in our multiexponentiation only requires
8 elements, rather than the 16 that would be required in a näıve multiexponentiation that uses
(a1, a2, a3, a4). More specifically, since b1[i] (which is to be multiplied by P) is always non-zero,
every element of the lookup table T must contain P , so we have

15

T [u] := P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)),

where u = (u2, u1, u0)2 for u = 0, . . . , 7.
In Proposition 1 we present and prove the three required properties of the output multiscalars.

We point out that the recoding must itself be implemented in constant-time; the implementer­
friendly version shows that Algorithm 1 indeed lends itself to such a constant-time implementation.
We further note that the outputs of the two versions are formatted differently: the left side outputs
the multiscalar (b1, b2, b3, b4), while the right side instead outputs the corresponding lookup table
indices (the di) and the masks (the mi) used to select the correct signs of the lookup elements.

Algorithm 1 FourQ multiscalar recoding: reader-friendly (left) and implementer-friendly (right).

Input: four positive integers aj = (0, aj [63], . . . , aj [0])2 ∈ {0, 1}65 less than 264 for 1 ≤ j ≤ 4 and with a1 odd.

Output: four integers bj = 64 bj [i] · 2i ,i=0
with bj [i] ∈ {−1, 0, 1}.
1: b1[64] = 1
2: for i = 0 to 63 do
3: b1[i] = 2a1[i + 1] − 1
4: for j = 2 to 4 do
5: bj [i] = b1[i] · aj [0]
6: aj = Laj /2J − Lbj [i]/2J
7: for j = 2 to 4 do
8: bj [64] = b1[64] · aj [0]
9: aj = Laj /2J − Lbj [64]/2J

10: return (bj [64], . . . , bj [0]) for 1 ≤ j ≤ 4.

Output: (d64, . . . , d0) with 1 ≤ di < 8, and
(m64, . . . , m0) with mi ∈ {−1, 0}.
1: m64 = −1
2: for i = 0 to 63 do
3: di = 0
4: mi = −a0[i + 1]
5: for j = 1 to 3 do
6: di = di + (aj [0] « (j − 1))
7: c = (a0[i + 1] | aj [0]) ∧ a0[i + 1]
8: aj = (aj » 1) + c
9: d64 = a1 + 2a2 + 4a3

10: return (d64, . . . , d0) and (m64, . . . , m0).

Proposition 6. The four integers b1, b2, b3 and b4 output from Algorithm 1 are such that:

(Property 1) bj = aj , f or 1 ≤ j ≤ 4;

(Property 2) b1[i] ∈ {−1, 1}, f or 0 ≤ i ≤ 64;

(Property 3) bj [i] ∈ {0, b1[i]}, f or 2 ≤ j ≤ 4 and 0 ≤ i ≤ 64.

Proof. We refer to the lines in the “reader-friendly” version. Property 3 follows immediately from
Lines 5 and 8 and Property 2 follows immediately from Lines 1 and 3. Property 1 with j = 1 also

63 63 63follows from Lines 1 and 3 since b1 = 264 + (2a1[i + 1] − 1) · 2i = (264 − 2i) + i=0 i=0 i=0 a1[i +
641] · 2i+1 = 1 + i=1 a1[i] · 2i, which is a1 because a1[0] = 1. It remains to prove Property 1 for

ij = 2, 3, 4, so for j as any of them, let aj and bj
i respectively denote the intermediate values of

the integers aj and bj immediately after the execution of Line 6 of the i-th iteration, and note
i ithat bi = bj [k] · 2k. We claim that the value 2i+1 · aj + bi is invariant as follows. Line 5 gives j k=0 j

bi+1 i i+1 i i i i= bi j +2i+1 ·b1[i]·aj [0] and Line 6 gives a =)aj /2J−)bj [i]/2J = (a −aj [0])/2−)b1[i]·aj [0]/2J.j j j J J
i+1 + bi+1 i i i bi iWe then write 2i+2 · a = 2i+1 (a − aj [0])/2 −)b1[i]aj [0]/2J + j + 2i+1 · b1[i] · aj [0] .j j j

iEvaluating this expression for the four possible combinations of aj [0] ∈ {0, 1} and b1[i] ∈ {−1, 1}
i+1 + bi+1 ialways gives 2i+2 · a = 2i+1 · aj + bi , and hence the claimed invariance. Viewing the end of j j j

the first (i = 0) iteration yields that this invariant is the input integer aj , and this invariance clearly
64holds until the end of line 9, at which point aj = 0, giving b64

j = aj as the output integer. D

16

5.2 Fast addition formulas

The fastest set of explicit formulas for the addition law on E are due to Hisil, Wong, Carter and
Dawson [30]: they use extended twisted Edwards coordinates to represent the affine point (x, y) on
E by any pro jective tuple of the form (X : Y : Z : T) for which Z = 0, x = X/Z , y = Y /Z and
T = X Y /Z .

Starting with the alternatives discussed in Hisil’s thesis [28, §5.1.4], some minor modifications
of the original formulas in [30] have proven to offer additional speedups in certain scenarios. For
example, Hamburg [25, §3.2] uses the tuple (X, Y , Z, Ta, Tb) to represent a point (X : Y : Z : T) in
extended twisted Edwards coordinates, where Ta and Tb are any field elements such that T = TaTb.
In our case, a careful analysis of the full scalar multiplication routine and explicit formulas revealed
that there are four alternative point representations that can be used to achieve a faster scalar mul­
tiplication. Table 2 summarizes these alternative representations, denoted R1, R2, R3 and R4, and
Table 3 summarizes the costs of the three functions that we need to convert between these represen­
tations, as well as the three functions used to compute the group law on E . We point out that the
function ADD(P, Q) is equivalent to (and implemented as) ADD(P, Q) = ADD_core (R1toR3(P), Q),
and reiterate that the three group law functions in Table 3 have no exceptions.

Table 2. Different representa- Table 3. Summary of conversion and addition functions, together with the (re­
tions of a point in extended spective) representation of input and output points.
twisted Edwards coordinates.

rep. representation of
(X : Y : Z : T)

R1 (X, Y, Z, Ta, Tb)
(X + Y, Y − X, 2Z, 2dT)R2

(X + Y, Y − X, Z, T)R3

(X, Y, Z)R4

function input(s) rep(s). output rep.
M

cost
S A

R1toR2 P R1 P R2 2 - 4
R1toR3 P R1 P R3 1 - 2
R2toR4 P R2 P R4 - - 2

ADD_core P, Q R3, R2 P + Q R1 7 - 4
ADD P, Q R1, R2 P + Q R1 8 - 6
DBL P R4 [2]P R1 4 3 5

5.3 The full routine

We now present Algorithm 2: the full scalar multiplication routine. This is immediately followed
by Theorem 1, which proves that Algorithm 2 computes the correct result in a constant number
(and fixed sequence) of operations. This proof also provides more details on the steps summarized
in Algorithm 2; in particular, it specifies the representations of all points in order to state the total
number of F 2 operations. Algorithm 2 assumes that the input point P is in E(F 2)[N], i.e., has p p

been validated according to Appendix A. As such we assume that P is input as a pro jective point
represented using R1 (or R4, since the endomorphisms only need the first three coordinates – see
Table 2).

Theorem 1. For every point P ∈ E (F 2)[N] and every non-negative integer m less than 2256 ,p

Algorithm 2 computes [m]P correctly using a fixed sequence of exactly 1I, 906M, 219S, 886.5A and
a fixed sequence of integer and table-lookup operations.

Proof. We proceed through each line of Algorithm 2 and refer back to Table 3 for definitions
and costs of lower level functions. As discussed in Remark 6, φ and ψ compute correctly for all
points in E(F 2)[N], including the neutral point (0, 1). Line 1 therefore requires exactly 68M,p

17

Algorithm 2 FourQ’s scalar multiplication on E(F 2)[N].p

Input: Point P ∈ E (Fp2)[N] and integer scalar m ∈ [0, 2256).
Output: [m]P .

Compute endomorphisms:
1: Compute φ(P), ψ(P) and ψ(φ(P)) using the explicit formulas summarized in Table 1.
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)) for u = (u2, u1, u0)2 in 0 ≤ u ≤ 7.
Scalar decomposition:
3: Decompose m into the multiscalar (a1, a2, a3, a4) exactly as in Proposition 5.
Scalar recoding:
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . , m0) using Algorithm 1. Write si = 1 if mi = −1 and
si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q + si · T [di]
9: return Q

27S and 49.5A (see Table 1), at which point we have P , φ(P), ψ(P) and ψ(φ(P)) in R1. Before
computing the lookup table, we convert formats and take P ← R1toR2(P), φ(P) ← R1toR3(φ(P)),
ψ(P) ← R1toR3(ψ(P)), ψ(φ(P)) ← R1toR3(ψ(φ(P))) at a cost of 5M and 10A. Executing Line 2
then requires exactly 7 executions of ADD_core, which costs 49M and 28A. The output of these
additions are in R1; in preparation for a faster main loop, they are all converted to R2 at a
cost of 14M and 28A. Line 3 requires only integer operations and Proposition 5 proves that it
computes a correct, all-positive decomposition (a1, a2, a3, a4) for every 0 ≤ m < µ = 2256, such that
0 < ai < 264 − 1. For Line 4, Proposition 6 proves that Algorithm 1 computes a correct recoding
of (a1, a2, a3, a4) using a fixed sequence of bit operations. Line 5 uses one point negation (costing
1A) and one table lookup to extract the initial value of Q; this is converted to R4 using R2toR4
which costs 2A. What follows in Line 6-8 is 64 point doublings (DBL), 64 point additions (ADD), 64
point negations and 64 table lookups, which costs 768M, 192S and 768A. We reiterate that these
group operations all work without exception. Finally, Line 9 requires a normalization which incurs
1I and 2M, and the tallied operation count is as claimed. D

Remark 5. Providing exact counts for the integer operations in the scalar decomposition is not too
meaningful, since this depends on the underlying architecture. It suffices to say that, for example,
the entire scalar decomposition requires less than 200 clock cycles on both the Sandy Bridge and Ivy
Bridge architectures. In addition, we note that implementers targeting different architectures may
find it advantageous exploit other trade-offs (within the explicit formulas) and arrive at different
operation counts in F 2 than those stated in Theorem 1. p

6 Performance Analysis and Results

This section shows that, at the 128-bit security level, FourQ is significantly faster than all other
known ECC primitives. We reiterate that our software runs in constant-time and is therefore fully
protected against timing and cache attacks.

18

6.1 Operation counts

We begin with a first-order comparison based on operation counts between FourQ and two other
efficient curve-based primitives that are defined over large characteristic fields and that target the
128-bit security level: the twisted Edwards GLV+GLS curve defined over F 2 with p = 2127 − 5997p

proposed in [35], and the genus 2 Kummer surface defined over Fp with p = 2127 − 1 that was pro­
posed in [41]; we dub these “GLV+GLS” and “Kummer” below. Both of these curves have recently set
speed records on a variety of platforms (see [16] and [5]). Table 4 summarizes the operation counts
for one variable-base scalar multiplication on FourQ, GLV+GLS and Kummer. In the right-most
column we approximate the cost in terms of prime field operations (using the standard assumption
that 1 base field squaring is approximately 0.8 base field multiplications), where we round each
tally to the nearest integer. For the GLV+GLS and FourQ operation counts, we assume that one
multiplication over F 2 involves 3 multiplications and 5 additions/subtractions over Fp (when using p

Karatsuba) and one squaring over F 2 involves 2 multiplications and 3 additions/subtractions over p

Fp.

Table 4. Operation counts for variable-base scalar multiplication on three different curves targeting the 128-bit
security level. In the case of the Kummer surface, we additionally use a “word-mul” column to count the number of
special multiplications of a general element in Fp by a small (i.e., one-word) constant – see [5].

primitive prime op. count over Fp2 approximate op. count over Fp

char. p inv. mul. sqr. add. inv. mul. add. word-mul.

FourQ

GLV+GLS

Kummer

2127 − 1

2127 − 5997

2127 − 1

1 906 219 886.5

1 833 191 769

- - - -

1 3160 6962 -

1 2885 6278 -

1 4319 8032 2008

Table 4 shows that the GLV+GLS routine from [35] requires slightly fewer operations than
FourQ. This can mainly be explained by the faster endomorphisms, but (as we will see in Table 5)
this difference is more than made up for by the faster modular arithmetic and superior simplicity
of FourQ. Table 4 shows that FourQ requires far fewer operations (in the same ground field) than
Kummer; it is therefore expected, in general, that implementations based on FourQ will outperform
Kummer implementations for computing variable-base scalar multiplication.

6.2 Experimental Results

We wrote a standalone library supporting FourQ on x64 processors. The library computes basic
elliptic curve operations including variable-base and fixed-base scalar multiplications, making it
suitable for a wide range of cryptographic protocols. It is mostly written in the C language, with
an optional, high-performance implementation of part of the arithmetic over F 2 written in x64 p

assembly. As we mentioned in Section 1, this library will be released in a few weeks and will be
linked to a subsequent version of this paper.

In Table 5 we compare FourQ’s performance with other state-of-the-art implementations docu­
mented in the literature. To cast the performance numbers in the context of a real-world protocol,
we choose to illustrate FourQ’s performance in one round of an ephemeral Diffie-Hellman (DH)
key exchange. This means that both parties can generate their public keys using a fixed-base scalar
multiplication and generate the shared secret using a variable-base scalar multiplication. Exploiting

19

such precomputations to generate truly ephemeral public keys agrees with the comments made by
Bernstein and Lange in [7, §1], e.g., that “ forward secrecy is at its strongest when a key is discarded
immediately after its use ”. Thus, Table 5 shows the execution time (in terms of clock cycles) for
both variable-base and fixed-base scalar multiplications. As we discussed in Section 1, laddered
implementations are generally restricted to variable-base scalar multiplications, which is why we
use the cost of two variable-base scalar multiplications to approximate the cost of ephemeral DH
using the software in [3] and [5]. For the FourQ and GLV+GLS implementations, precomputations
for the fixed-base scalar multiplications occupied 6KB of storage.

Table 5. Performance results (expressed in terms of thousands of clock cycles) of state-of-the-art implementations
of various curves targeting the 128-bit security level on various x64 platforms. Benchmark tests were taken with
TurboBoost disabled and the results were rounded to the nearest 1000 clock cycles. The benchmarks for the FourQ
and GLV+GLS implementations were done on 3.4GHz Intel Core i7-2600 Sandy Bridge, 3.4GHz Intel Core i7-3770 Ivy
Bridge and 3.1GHz AMD A8 PRO-7600B Kaveri. For the Kummer and Curve25519 implementations, Sandy Bridge
and Ivy Bridge benchmarks were taken from eBACS [6] (machines h6sandy and h9ivy), while AMD benchmarks were
obtained by running eBACS’ SUPERCOP toolkit on the corresponding targeted machine. The benchmarks for Curve
P-256 were taken directly from [23].

proc. operation FourQ GLV+GLS [16] Kummer [5] Curve25519 [3] P-256 [23]

Sandy

var-base

fixed-base

76

50

92

51

89

-

194

-

400

90

Bridge ephem. DH 126 143 178 388 490

Ivy

var-base

fixed-base

73

46

89

49

88

-

183

-

N/A

N/A

Bridge ephem. DH 119 138 176 366 N/A

AMD

var-base

fixed-base

103

60

N/A

N/A

134

-

247

-

N/A

N/A

Kaveri ephem. DH 163 N/A 268 494 N/A

Table 5 shows that, for variable-base scalar multiplications, our FourQ implementation is always
between 1.17 and 1.30 times faster than the Kummer and GLV+GLS implementations; in terms of
comparisons to the “conservative” curves, FourQ is around 2.5 times faster than Curve25519 and
around 5 times faster than CurveP256. Table 5 also shows that these relative speedups become
greater (over the Kummer and Curve25519 software) when a moderate amount of precomputation
is available.

We remark that our library does not currently exploit vector instructions to accelerate the field
arithmetic, which is likely to further increase the advantage of FourQ over the Kummer surface
on suitable platforms (e.g., on an Intel Ivy Bridge processor, [8] computed the Kummer ladder in
122,000 cycles without the use of vector instructions, whereas [5] computed the same operation on
the same curve in only 88,000 cycles by exploiting vector floating-point instructions). On constrained
platforms where vector instructions are not available (e.g., 8-bit microcontrollers), the analysis of
FourQ’s cost at the beginning of this section shows that its performance will be difficult to match
using any other known primitive.

20

Acknowledgements. We thank Michael Naehrig for several discussion throughout this work, and
Joppe Bos and Greg Zaverucha for their comments on an earlier version of this paper. We are
especially thankful to Ben Smith for pointing out the better option for φ in §3.2.

References

1.	 O. Ahmadi and R. Granger. On isogeny classes of Edwards curves over finite fields. Cryptology ePrint Archive,
Report 2011/135, 2011. http://eprint.iacr.org/.

2.	 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13, 1986.
3.	 D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,

editors, Public Key Cryptography - PKC 2006, 9th International Conference on Theory and Practice of Public-Key
Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume 3958 of Lecture Notes in Computer
Science, pages 207–228. Springer, 2006.

4.	 D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards curves. In S. Vaudenay,
editor, Progress in Cryptology - AFRICACRYPT 2008, First International Conference on Cryptology in Africa,
Casablanca, Morocco, June 11-14, 2008. Proceedings, volume 5023 of Lecture Notes in Computer Science, pages
389–405. Springer, 2008.

5.	 D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes back: New DH speed records.
In Sarkar and Iwata [44], pages 317–337.

6.	 D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems, accessed on May 19,
2015. http://bench.cr.yp.to/results-dh.html.

7.	 D. J. Bernstein and T. Lange. Hyper-and-elliptic-curve cryptography. LMS Journal of Computation and Math­
ematics, 17(A):181–202, 2014.

8.	 J. W. Bos, C. Costello, H. Hisil, and K. E. Lauter. Fast cryptography in genus 2. In T. Johansson and P. Q.
Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science, pages 194–210. Springer, 2013.

9.	 J. W. Bos, C. Costello, H. Hisil, and K. E. Lauter. High-performance scalar multiplication using 8-dimensional
GLV/GLS decomposition. In G. Bertoni and J. Coron, editors, CHES 2013, volume 8086 of Lecture Notes in
Computer Science, pages 331–348. Springer, 2013.

10.	 W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. Journal of Symbolic
Computation, 24(3):235–265, 1997.

11.	 A. Bostan, F. Morain, B. Salvy, and É. Schost. Fast algorithms for computing isogenies between elliptic curves.
Mathematics of Computation, 77(263):1755–1778, 2008.

12.	 Certicom Research. Standards for Efficient Cryptography 2: Recommended Elliptic Curve Domain Parameters,
v2.0. Standard SEC2, Certicom, 2010.

13.	 C. Costello, H. Hisil, and B. Smith. Faster compact Diffie-Hellman: Endomorphisms on the x-line. In P. Q. Nguyen
and E. Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 183–200. Springer, 2014.

14.	 I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computation on curves with automor­
phisms. In K. Lam, E. Okamoto, and C. Xing, editors, Advances in Cryptology - ASIACRYPT ’99, International
Conference on the Theory and Applications of Cryptology and Information Security, Singapore, November 14-18,
1999, Proceedings, volume 1716 of Lecture Notes in Computer Science, pages 103–121. Springer, 1999.

15.	 H. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44(3):393–422,
2007.

16.	 A. Faz-Hernández, P. Longa, and A. H. Sánchez. Efficient and secure algorithms for GLV-based scalar multiplica­
tion and their implementation on GLV-GLS curves (extended version). J. Cryptographic Engineering, 5(1):31–52,
2015.

17.	 G. Frey, M. Müller, and H. Rück. The Tate pairing and the discrete logarithm applied to elliptic curve cryp­
tosystems. IEEE Transactions on Information Theory, 45(5):1717–1719, 1999.

18.	 S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.
19.	 S. D. Galbraith, X. Lin, and M. Scott. Endomorphisms for faster elliptic curve cryptography on a large class of

curves. J. Cryptology, 24(3):446–469, 2011.

21

http://bench.cr.yp.to/results-dh.html
http:http://eprint.iacr.org

20.	 R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication on elliptic curves with efficient
endomorphisms. In J. Kilian, editor, CRYPTO 2014, volume 2139 of Lecture Notes in Computer Science, pages
190–200. Springer, 2001.

21.	 P. Gaudry. Fast genus 2 arithmetic based on Theta functions. J. Mathematical Cryptology, 1(3):243–265, 2007.
22.	 P. Gaudry. Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm

problem. J. Symbolic Computation, 44(12):1690–1702, 2009.
23.	 S. Gueron and V. Krasnov. Fast prime field elliptic curve cryptography with 256 bit primes. IACR Cryptology

ePrint Archive, 2013:816, 2013.
24.	 A. Guillevic and S. Ionica. Four-dimensional GLV via the Weil restriction. In Sako and Sarkar [43], pages 79–96.
25.	 M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309, 2012.

http://eprint.iacr.org/.
26.	 M. Hamburg. Twisting Edwards curves with isogenies. Cryptology ePrint Archive, Report 2014/027, 2014.

http://eprint.iacr.org/.
27.	 Y. Hasegawa. Q-curves over quadratic fields. Manuscripta Mathematica, 94(1):347–364, 1997.
28.	 H. Hisil. Elliptic curves, group law, and efficient computation. PhD thesis, Queensland University of Technology,

2010.
29.	 H. Hisil and C. Costello. Jacobian coordinates on genus 2 curves. In Sarkar and Iwata [44], pages 338–357.
30.	 H. Hisil, K. K. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited. In J. Pieprzyk, editor,

Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on the Theory and Application of
Cryptology and Information Security, Melbourne, Australia, December 7-11, 2008. Proceedings, volume 5350 of
Lecture Notes in Computer Science, pages 326–343. Springer, 2008.

31.	 A. H. Koblitz, N. Koblitz, and A. Menezes. Elliptic curve cryptography: The serpentine course of a paradigm
shift. Journal of Number theory, 131(5):781–814, 2011.

32.	 D. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California at
Berkeley, 1996.

33.	 A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische
Annalen, 261(4):515–534, 1982.

34.	 C. H. Lim and P. J. Lee. A key recovery attack on discrete log-based schemes using a prime order subgroupp.
In CRYPTO, pages 249–263, 1997.

35.	 P. Longa and F. Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. J. Cryptology,
27(2):248–283, 2014.

36.	 L. Lovász and H. E. Scarf. The generalized basis reduction algorithm. Mathematics of Operations Research,
17(3):751–764, 1992.

37.	 A. Menezes, S. A. Vanstone, and T. Okamoto. Reducing elliptic curve logarithms to logarithms in a finite field.
In C. Koutsougeras and J. S. Vitter, editors, Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 80–89. ACM, 1991.

38.	 P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of computation,
48(177):243–264, 1987.

39.	 National Institute of Standards and Technology (NIST). 186-2. Digital Signature Standard (DSS). Federal
Information Processing Standards (FIPS) Publication, 2000.

40.	 T. Oliveira, J. López, D. F. Aranha, and F. Rodríguez-Henríquez. Two is the fastest prime: lambda coordinates
for binary elliptic curves. J. Cryptographic Engineering, 4(1):3–17, 2014.

41.	 P.Gaudry and E. Schost. Genus 2 point counting over prime fields. Journal of Symbolic Computation, 47(4):368–
400, 2012.

42.	 J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of computation, 32(143):918–
924, 1978.

43.	 K. Sako and P. Sarkar, editors. Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,
Proceedings, Part I, volume 8269 of Lecture Notes in Computer Science. Springer, 2013.

44.	 P. Sarkar and T. Iwata, editors. Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science. Springer, 2014.

45.	 J. Scholten. Weil restriction of an elliptic curve over a quadratic extension, URL: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.118.7987&rep=rep1&type=pdf. 2004.

46.	 B. Smith. Families of fast elliptic curves from Q-curves. In Sako and Sarkar [43], pages 61–78.
47.	 B. Smith. Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians.

Contemporary Mathematics Series, 637:15, May 2015.

22

http://citeseerx.ist.psu
http:http://eprint.iacr.org
http:http://eprint.iacr.org

48.	 B. Smith. The Q-curve construction for endomorphism-accelerated elliptic curves. To appear in the Journal of
Cryptology., March 2015.

49.	 H. M. Stark. Class-numbers of complex quadratic fields. In Modular functions of one variable I, volume 320 of
Lecture Notes in Math, pages 153–174, 1973.

50.	 E. G. Straus. Addition chains of vectors. American Mathematical Monthly, 70(806-808):16, 1964.
51.	 J. Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB, 273:A238–A241, 1971.
52.	 M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In S. E. Tavares and

H. Meijer, editors, Selected Areas in Cryptography ’98, SAC’98, Kingston, Ontario, Canada, August 17-18, 1998,
Proceedings, volume 1556 of Lecture Notes in Computer Science, pages 190–200. Springer, 1998.

A Point validation

The main scalar multiplication routine (in Algorithm 2) assumes that the input point lies in
E(F 2)[N]. However, since we have #E(F 2) = 392 · N , and in light of smal l subgroup attacks [34]p	 p

that can be carried out in certain scenarios, here we briefly mention how our software enables the
assertion (if desired) that scalar multiplications only accept points in E(F 2)[N]. We then discuss p

why this validation is not done via more sophisticated means.
On input of a point P = (x, y) ∈ F 2 × Fp2 , we p

2(i) Validate that P ∈ E , i.e, assert that −x + y2 = 1 + dx2y2, otherwise reject P and abort.
(ii) Compute P ← [392]P . Plainly, since (392)2 = (1, 1, 0, 0, 0, 1, 0, 0, 0), this sequence involves 8

doubling and 2 addition operations. We note that these operations are independent of secret
data and so constant-time strategies are irrelevant here.

Our method of achieving step (ii) above prompts the question as to why we do not absorb
this cofactor into the decomposition. Indeed, this would be faster than multiplying input points
by the cofactor outside of the multiexponentiation routine, since (as with the rest of the scalar) it
compresses the length of the required loop by a factor close to 4.

The difficulty in “killing the cofactor” in this way arises because the initial decomposition in
Proposition 4 maps all integers in the coset m + NZ to the same multiscalar (a1, a2, a3, a4) ∈
P(B) ∩ Z4. Thus, if we instead take m̃ = 392m where m is chosen uniformly in an interval of length
at least N , then the decomposition of m̃ will produce the same multiscalar as all integers in m̃+NZ,
and in particular, will produce the same multiscalar as the unique representative of this coset in
[0, N), the distribution of which is (approximately) uniform modulo 392. Subsequently, we cannot
simply force scalars to be a multiple of the cofactor and expect the decomposition in Proposition 4
to respect this divisibility.

One possibility of dealing with the above problem is to use a sublattice L ' of index 392 in L, such
that det(L ') = #E(F 2). This way, for any m ∈ [0, N), then m̃ = 392m is the unique representative p

of the coset m̃+ 392NZ, and the decomposition will respect the divisibility of m̃ by 392.
Unfortunately though, the above approach cannot work on E(F 2). One reason for this is that p

there are small prime order subgroups of E(F 2) that are not fixed by both ψ and φ. The group p

structure of E is E(F 2) ∼ Z/8Z × (Z/7Z)2 × Z/N Z, meaning that the entire 7-torsion is Fp = p2 ­
rational; it consists of 8 linearly independent cyclic subgroups of order 7. On the one hand, ψ fixes
each of these subgroups and has a consistent eigenvalue on E [7], namely ψ|E[7] = [2]|E[7], but on
the other hand, φ only fixes two of the subgroups and therefore does not have an eigenvalue on all
of E [7]. Subsequently, there is no meaningful way to build the (sub)lattice L ' above such that it
encompasses the action of φ and ψ on all points in E(F 2). Another obstruction concerning the use p

of L ' is that E(F 2)[8] contains elements in the kernels of φ and ψ, since ker(τ) is the four points p

23

�
�

of exact order 8 in E(F 2). This is why we choose to avoid any complications or exceptions, opting p

for a simple double-and-add sequence to compute P → [392]P .
Our code leaves the cofactor killing as an option to the user, so that this selection is done at

build time. It is important to note that, in real-world scenarios, this can only be turned off when
the input point is in E(F 2)[N], e.g., is a known (multiple of a) public generator that is asserted p

to be of order N . We point out that, even with cofactor killing enabled, the total cost of scalar
multiplications is still significantly faster than all known implementations (many of which do not
kill cofactors, e.g., [5]).

Remark 6. An observation that is important in the proof of Theorem 1 is that the (F 2 -rationalp

parts of the) kernels of all of the isogenies in Table 1 are killed by the map P → [392]P , and
furthermore, that all of the explicit formulas derived in this work are well behaved on E(F 2)[N],p

including the neutral point (0, 1). This also means that, besides the two steps above, we never have
to perform further checks or blacklist certain inputs into the main scalar multiplication.

Remark 7. There is a way to absorb part of the cofactor into a multiexponentiation. The explicit
formulas for φ and ψ are well behaved on E(F 2)[4], mapping all four elements to the neutral point p

(0, 1) on E . Thus, the maps φ and ψ can be extended to E(F 2)[4N] \ E (F 2)[4] without modifying p p

the eigenvalues (we must remove the 4-torsion since both maps are equivalent to [0] when restricted
to E(F 2)[4].). This means that we could instead work with the lattice L̃ = (z1, z2, z3, z4) ∈p

Z4 | z1 + z2λφ + z3λψ + z4λφλψ ≡ 0 (mod 4N) of index 4 in L, decompose scalars of the form
m̃ = 4m for m ∈ [0, N), and begin with P → [98]P , saving two doublings. In fact, the Babai-optimal
basis B̃ of L̃ is such that all 16 corners of P(B̃) still have absolute value less than 262, meaning
that these doublings could be absorbed into the multiexponentiation for free (if a similar treatment
beginning with the analogue of Proposition 4 were carried out). However, this would require a new
decomposition which means a new set of fixed constants; this is why we chose the simplified but
slightly slower option of killing the full cofactor outside of the multiexponentiation.

24

