Symantec’s View of the Current State of ECDSA on the Web

Rick Andrews
Senior Technical Director and Distinguished Engineer
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Curves used in current practice</td>
</tr>
<tr>
<td>2</td>
<td>Market Penetration</td>
</tr>
<tr>
<td>3</td>
<td>Why customers use ECDSA</td>
</tr>
<tr>
<td>4</td>
<td>Why customers don’t use ECDSA</td>
</tr>
<tr>
<td>5</td>
<td>Impact of new ECC curves</td>
</tr>
</tbody>
</table>
Curves in Current Practice for Web-based TLS

• NSA published Suite B; adopted by NIST

• Only NIST-recommended curves have been used in practice for SSL/TLS certificates
 – IETF published “ECC Cipher Suites for TLS”
 • http://www.ietf.org/rfc/rfc4492.txt
 • Defined Supported Elliptic Curves Extension
 • http://tools.ietf.org/html/rfc5759
 – IETF published “Suite B Profile for TLS”
 • http://tools.ietf.org/html/rfc6460
 • Restricts TLS to use P-256, P-384 (not P-521)

• Most roots in browsers’ trust stores are P-384
Browser/OS Support for ECDSA and Roots

• Mozilla Firefox browser (since 3.6.28, NSS 3.11) trusts 11 ECC roots (10 P-384, 1 P-256)
 – https://wiki.mozilla.org/CA:IncludedCAs
 – https://bugzilla.mozilla.org/show_bug.cgi?id=195135
 – Platform independent

• Safari browser depends on platform - Mac OS X (since 10.9.1) and iOS (since 7) trust 13 ECC roots (12 P-384, 1 P-256)
 – http://support.apple.com/kb/HT6005
 – http://support.apple.com/kb/HT5012

• IE (since Vista) / Windows Phone 8 trusts 14 ECC roots (13 P-384, 1 P-256)
Browser/OS Support for ECDSA and Roots

• Android (since 3.x) trusts 6 ECC roots

• Desktop Chrome and Opera (Chromium) use platform crypto and trusted root store
 – Except on Linux, where the browser includes Mozilla’s NSS trust store.

• Blackberry (since 5.0)
Curves Supported in Mozilla NSS

<table>
<thead>
<tr>
<th>NIST_P192</th>
<th>X9_62_PRIME_192V2</th>
<th>X9_62_CHAR2_TNB239V2</th>
<th>SECG_PRIME_192K1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST_P224</td>
<td>X9_62_PRIME_192V3</td>
<td>X9_62_CHAR2_TNB239V3</td>
<td>SECG_PRIME_224K1</td>
</tr>
<tr>
<td>NIST_P256</td>
<td>X9_62_PRIME_239V1</td>
<td>X9_62_CHAR2_PNB272W1</td>
<td>SECG_PRIME_256K1</td>
</tr>
<tr>
<td>NIST_P384</td>
<td>X9_62_PRIME_239V2</td>
<td>X9_62_CHAR2_PNB304W1</td>
<td>SECG_PRIME_113R1</td>
</tr>
<tr>
<td>NIST_P521</td>
<td>X9_62_PRIME_239V3</td>
<td>X9_62_CHAR2_TNB359V1</td>
<td>SECG_CHAR2_113R2</td>
</tr>
<tr>
<td>NIST_K163</td>
<td>X9_62_CHAR2_PNB163V1</td>
<td>X9_62_CHAR2_PNB368W1</td>
<td>SECG_CHAR2_131R1</td>
</tr>
<tr>
<td>NIST_B163</td>
<td>X9_62_CHAR2_PNB163V2</td>
<td>X9_62_CHAR2_TNB431R1</td>
<td>SECG_CHAR2_131R2</td>
</tr>
<tr>
<td>NIST_K233</td>
<td>X9_62_CHAR2_PNB163V3</td>
<td>SECG_PRIME_112R1</td>
<td>SECG_CHAR2_163R1</td>
</tr>
<tr>
<td>NIST_B233</td>
<td>X9_62_CHAR2_PNB176V1</td>
<td>SECG_PRIME_112R2</td>
<td>SECG_CHAR2_193R1</td>
</tr>
<tr>
<td>NIST_K283</td>
<td>X9_62_CHAR2_TNB191V1</td>
<td>SECG_PRIME_128R1</td>
<td>SECG_CHAR2_193R2</td>
</tr>
<tr>
<td>NIST_B283</td>
<td>X9_62_CHAR2_TNB191V2</td>
<td>SECG_PRIME_128R2</td>
<td>SECG_CHAR2_239K1</td>
</tr>
<tr>
<td>NIST_K409</td>
<td>X9_62_CHAR2_TNB191V3</td>
<td>SECG_PRIME_160K1</td>
<td>WTLS_1</td>
</tr>
<tr>
<td>NIST_B409</td>
<td>X9_62_CHAR2_PNB208W1</td>
<td>SECG_PRIME_160R1</td>
<td>WTLS_8</td>
</tr>
<tr>
<td>NIST_K571</td>
<td>X9_62_CHAR2_TNB239V1</td>
<td>SECG_PRIME_160R2</td>
<td>WTLS_9</td>
</tr>
<tr>
<td>NIST_B571</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unclear if each curve can be used for ECDSA and/or ECDH(E)

Copyright © 2015 Symantec Corporation
Curves Supported in Web Server Software

• Microsoft Windows Server 2008; partial support
 – Can’t generate ECC CSR but can work with imported key and certificate

• Apache, nginx with latest OpenSSL

• Oracle JRE/JDK 1.7 or newer

• F5 11.5 or newer

• IBM z/OS V1R13 or newer

• CloudFlare (CDN) supports ECC
Curves Supported in Other Web Software

• OpenSSL (since 1.0)
 - P-224 P-256 P-384 P-521
 - B-233 B-283 B-409 B-571
 - K-233 K-283 K-409 K-571

• Boring SSL (used in Google Chrome) supports P-224, P-256, P-384, P-521
 - https://boringssl.googlesource.com/boringssl/+/master/crypto/ec/ec.c

• GnuTLS supports P-192, P-224, P-256, P-384 and P-521
Curves Supported in Other Web Software

• Java JCE Providers (since Java 6) must support
 – sect163k1, sect163r1, sect163r2, sect193r1, sect193r2, sect233k1, sect233r1, sect239k1, sect283k1, sect283r1, sect409k1, sect409r1, sect571k1, sect571r1
 – secp160k1, secp160r1, secp160r2, secp192k1, secp192r1, secp224k1, secp224r1, secp256k1, secp256r1, secp384r1, secp521r1

• BouncyCastle (since 1.32) supports SEC/NIST curves
 – http://www.bouncycastle.org/releasenotes.html

• Mac OS X and iOS support P-192, P-224, P-256, P-384, P-521
Certification Authorities that offer ECDSA certs

- Symantec (includes VeriSign/GeoTrust/Thawte roots)
- GlobalSign
- Entrust
- DigiCert
- Comodo (includes USERTrust roots)
- Trend Micro (includes AffirmTrust roots)

- These CAs issue 67% of the world’s public SSL certificates, according to Netcraft
Market Penetration

• Rough estimates of the number of deployed ECDSA SSL certificates:
 – Netcraft’s scans show 1.96% of all public SSL certificates are ECDSA
 • Data available by subscription only
 – ICSI Certificate Notary says that 2.1% of the certificates it sees are ECDSA
 • http://notary.icsi.berkeley.edu
 – Majority of ECDSA certs are hosted by CloudFlare as part of their Universal SSL initiative
 • https://blog.cloudflare.com/introducing-universal-ssl/
 – Most Symantec ECDSA customers are from the US, but interest is broadly distributed around the world (Europe, Africa, Middle East, Australia, Asia)

• We see some demand in non-Web (device) IoT market
Why Customers Choose ECDSA Certificates

• Forward-thinking – want to experiment with alternatives to RSA

• Symantec’s performance analysis showed significant server performance gains for P-256 over RSA 2048

• Research demonstrated significant performance advantage of ECDSA/ECDHE over RSA/DH (PFS for free)
What is holding back the market for ECDSA certs?

- Legal/IP concerns were not allayed by the 2003 NSA-Certicom license
- Distrust in Suite B curve choices after Snowden, especially in Europe
- Lack of client support (Windows XP and non-traditional devices like smart TVs and Japanese feature phones)
- RSA isn’t broken; risk of trying new algorithm; general lack of awareness
- Lack of dual-stack support in web servers (except Apache – see http://httpd.apache.org/docs/2.4/mod/mod_ssl.html#comment_970)
- Clients supporting ECDHE may not have ECDSA root; difficult for servers to know
- ECDSA root may not be EV-enabled
- Client-side performance penalty (ECDSA slower than RSA for signature verification for commonly-used key sizes)
- “Heard there was some technical problem with ECDSA” – (if a cryptographically secure random integer is not selected, the private key can be determined)
Impact of New Curves

• Impact will likely be muted if IP issues are not cleared up

• CAs need support in their HSMs and software toolkits

• CAs will most likely sign keys from new curves using existing P-256 or P-384 roots, to avoid delay of deploying roots using new curves
 – Signing with existing RSA roots or intermediates carries IP risk, but mitigates root ubiquity issue

• Even though CAs may not initially create intermediate CA certs with new curves, we need to perform Proof of Possession of key. Usually done by checking signature on CSR, requiring support of new key curve in the CA’s HSMs and software toolkits.

• Browser and web server vendors must support new curves
Thank you!

Rick Andrews
rick_andrews@symantec.com
650-527-9506

Copyright © 2015 Symantec Corporation. All rights reserved. Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

This document is provided for informational purposes only and is not intended as advertising. All warranties relating to the information in this document, either express or implied, are disclaimed to the maximum extent allowed by law. The information in this document is subject to change without notice.