Diversity and Transparency for ECC

Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Ekerå

ANSSI and NCSA/SW

June 11, 2015

I – Standardization

Need for standardization?

In general, the group of rational points of an elliptic curve behaves as a "generic group": the DLOG problem has **exponential** complexity, provided:

- The curve cardinality includes a *large prime factor q*.
 - Solution: use curves with (almost) prime cardinality.
- The DLOG problem can not be transferred into *weaker* groups.
 - Solution: avoid weak curves.

Applying these solutions is **computationally expensive**: curves can not be generated on demand.

Standardized curves

Year		Curves	Sizes
2000	NIST	NIST	192, 224, 256, 384, 521
2005	C.	Brainpool	160, 192, 224, 256, 320, 384, 512
2010		OSCCA	256
2011	Ø	ANSSI	256

 Plus a few academic propositions (Curve25519/41417, NUMS, Ed448-Goldilocks, ...).

Need for a second round?

The first curves were standardized in years 2000 when:

- it was possible to find curves with prime cardinality (SEA algorithm);
- weak classes of curves were identified.

We think that these curves are still secure...

... but new concerns emerged since then:

- what about the generation process? (is there some hidden secret vulnerability?)
- what about side-channel attacks?
- what about scientific progess in related domains (e.g. DLOG in finite fields)?

It is a good time to standardize new curves.

II – Security

Security

Five classes of criteria

- **1** The **DLOG** problem should be hard.
- 2 Implementations should be safe (e.g. resist side-channel attacks).
- 3 The curve should exhibit no particularities.
- Implementations can be optimized.
- **5** (The curve exhibits **interesting** properties.)

Tradeoffs

Some conditions are **incompatible**: this is a good reason to standardize *different* (families of) curves.

Base field

We only deal with *prime base fields* as we think that *extension fields* introduce more vulnerabilities without valuable properties.

DLOG problem difficulty

Large prime subgroup: Attacks with complexity $O(\sqrt{q})$ exist where q is the largest prime factor of N.

It is mandatory that:

q ≈ N (P ≈ ¹/_{log p}, costly).
 At best q = N (no complete addition law!).

 Weak curves: For some curves the DLOG problem can be transferred into a weaker finite field.

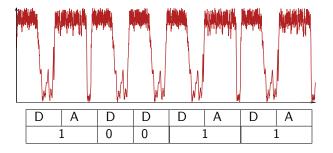
It is mandatory that:

- $\Delta \neq 0$ ($\mathcal{P} \approx 1$, free);
- $N \neq p$ ($\mathcal{P} \approx 1$, free);
- the *embedding degree* must be large ($\mathcal{P} \approx 1$, costly).

Safe implementation

Even though the DLOG problem is *hard* on the curve, implementations might **leak** information.

Example: scalar multiplication using naive "double-and-add" algorithm.



Classical countermeasures

Against simple attacks: avoid branching depending on secret elements.

- "double-and-add" always;
- Montgomery ladder.

Against differential attacks: avoid using secrets elements repeatedly.

- secret masking;
- curve masking;
- point *masking*.

This is not enough: information can still leak!

Further countermeasures

Masking inefficiency

Avoid base field with *special prime* cardinality (*no fast reduction!*).

Exceptional cases

Use a curve with a *complete* addition law (*no prime cardinality!*).

Special points

Ensure no points with a zero coordinate exist (no complete addition law!).

Misbehavior resistance

Subgroup attacks

Ensure no *small subgroups* exist ($\mathcal{P} = 1$ if N is prime, *no complete addition law!*).

Twist attacks

Use a *twist* with prime cardinality ($\mathcal{P} \approx \frac{1}{\log p}$, does not leverage all checks!).

Resist attacks to come?

- What if we don't know all classes of weak curves?
- Avoid producing too "*special*" curves!
- Verify properties satisfied with $\mathcal{P} \approx 1$ in the sense of the DLOG problem difficulty.
- In particular, some numbers attached to the curve should be "large enough".

The curve should look generic.

Numbers attached to a curve

Discriminant of the endomorphism ring

In general, the *discriminant* satisfies $|D_E| \approx p$; therefore, $|D_E| \geq \sqrt{p}$ with $\mathcal{P} \approx 1 - O(1/\sqrt{p})$ (no pairings, no fast endomorphism!).

Class number friability

In general, the class number h_E has at least a prime divisor $\geq (\log p)^{O(1)}$.

Embedding degree

The embedding degree is $\geq p^{1/4}$ with $\mathcal{P} \geq 1 - 1/\sqrt{p}$ (no pairings!).

Numbers attached to a curve (II)

Twist cardinality

In general, the *twist cardinality* N' has at least a prime divisor $\geq (\log p)^{O(1)}$.

DLOG in the base field

- The base field cardinality *p* should be **pseudo-random** (*no fast reduction!*).
- p-1 has a prime divisor $\geq (\log p)^2$ with $\mathcal{P} \geq 1 1/\sqrt{p}$.

Summary

	NIST	Brainpool	ANSSI	OSCCA
N prime	\checkmark	\checkmark	\checkmark	\checkmark
p ordinary		\checkmark	\checkmark	\checkmark
Complete law				
Twist secure				
Generic		\checkmark	\checkmark	\checkmark
	NUMS	Curve25519/41417	Ed448-Goldilocks	
N prime				
p ordinary				
Complete law	\checkmark	\checkmark	\checkmark	
Twist secure	\checkmark	\checkmark	\checkmark	
Generic				

Optimized implementation

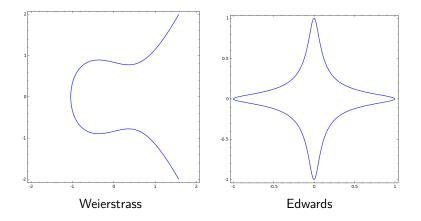
- Curves with N
- Fast computation of square roots $(p \neq 3 \pmod{4})$.
- Fast modular *reduction* (special primes, *inefficient masking!*).
- Small coefficients for the curve equation (no genericity!).
- Specific system of *coordinates* (some entail *no prime cardinality!*).

Different criteria for different uses

- The aforementioned criteria are **conflicting**.
- In particular, *tradeoffs* to be made between genericity/speed...
- ... but also between optimization/side-channel security.
- Only the first class of criteria is mandatory to ensure the *DLOG problem difficulty*.
- The other classes of criteria mostly affect speed and ease of implementation.

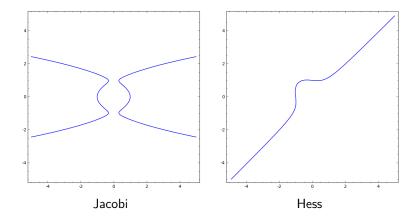
Use (and standardize) different (families of) curves!

Real zoo

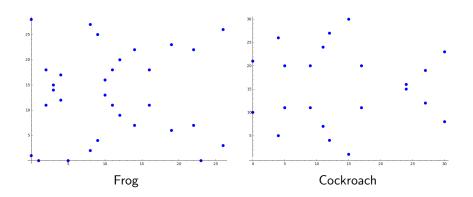


Security Diversity

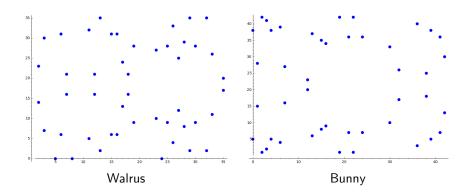
Real zoo (II)



Finite field zoo



Finite field zoo (II)



III – Transparency

Architecture

- Provide curves fulfilling a selection of criteria...
- ... together with a certificate for faster verification of:
 - the number of points,
 - the discriminant and class number properties,
 - the embedding degree.
- A deterministic algorithm to sample curves...
- ...and producing a certificate:
 - Completely *reproducible* generation process.
 - Either pseudo-random (for genericity) or by enumeration of increasing values (for efficiency).
 - Certify every step, including *rejected* curves.

Cardinality of curves

Prime order

- **Certificate**: (G, q, Π) where G = 0 is s.t. $q \cdot G = 0$ with $q \ge p 2\sqrt{p} + 1$, and Π a primality proof for q.
- Size and verification in $O(\log^2 p)$, generally only generated once.

Composite order

- **Certificate**: (P, n, c), where P = 0 is s.t. $n \cdot P = 0$ with $n < 2(\sqrt{p} 1)^2$, and c a composition witness for n.
- Size in $O(\log p)$, generation and verification in $O(\log^2 p)$.
- More efficient verification using early-abort SEA information about small torsion points.

Example

Sampling function from the seed s:

- $p = \text{smallest prime} \geq s;$
- $g = \text{smallest generator of } \mathbb{F}_p^{\times}$;
- equations of the form $y^2 = x^3 3x + b$, $b = g, g^2, \dots$.

Conditions:

- N et N' prime;
- $\Delta = 0, N, N' = p, p + 1;$
- embedding degrees of E, E' at least $p^{1/4}$;
- class number $\geq p^{1/4}$.

Certificate

From the seed s = 2015: p = 2017, g = 5,

Curve

```
(2017, -3, 625)
order = 2063, point = (0, 25)
twist_order = 1973
disc_factors = {6043}
class_number = 9, form = (17,3,89)
embedding_degree = 1031, factors = {2, 1031}
twist_embedding_degree = 493, factors = {2, 17, 29}
```

Rejected curves

((2017, -3, 5), composite, 2065, witness, 1679, point, (1,258)) ((2017, -3, 25), torsion_point, 3, point, (448, 288)) ((2017, -3, 125), torsion_point, 2, point, (982, 0))

Non-manipulability

Such a process produces deterministically a curve from:

- a set of *conditions* (including numerical bounds),
- a sampling function (including potential seed).

No *rigidity* but still **transparency**.

Only a few conditions will actually affect the process:

- twist security,
- smoothness bounds.
- When a **seed** is needed, suspicion can be avoided:
 - using a share-commitment scheme;
 - using unpredictable and unmanipulable values (sports results, stock values, lottery results, sunspot observations, ...).

Seed generation

IV – Conclusion

Diversity and Transparency for ECC

Diversity

International standards should:

- not restrict to a single curve or family of related elliptic curves;
- include a "generic" elliptic curve.

Transparency

All details about the generation process should be:

- public and "transparent";
- annonced before the actual generation.

Questions?

