Requirements for Elliptic Curves for High-Assurance Applications

Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, Torsten Schütze
Background

- NIST curves widely deployed
 - Public debate on trustworthiness
 - However: No security issues known

- In Germany, deployment of Brainpool curves
 - E.g. passports, ID cards, smart meter

- Recent efforts in IETF / CFRG for standardization of new curves
 - Triggered by TLS working group
 - Strong focus on software and performance
 - Montgomery and Edwards curves selected
ECC Application Scenarios

1. Protected environment
 - E.g. Certification Authorities
 - Side-channels hardly exploitable

2. Network environment
 - E.g. Web server
 - Timing attacks, cache attacks

3. Potentially Hostile Environments
 - E.g. Smart cards, embedded devices
 - All kind of implementation attacks (power analysis, fault injection, EM)
Our Focus

- High Assurance and hardware applications
 - Scenario 3
 - Resistant to various side-channel attacks
 - Typically hardware or embedded crypto
 - Often certifications required, e.g. FIPS 140 or Common Criteria

- Importance increases
 - IoT, ID cards, smart meter, sensor networks, Car2X communication

- Transition to hardware crypto even advisable for scenario 2
 - Heartbleed, etc.
Finite Field Primes

- Special primes (with sparse binary rep.)
 - High speed software implementations possible

- High assurance (hardware) implementations
 - Higher implementation costs
 - Longer development cycles

- Typically, general modular multiplier
 - Usable for all curves and RSA
 - No advantages for special primes
Finite Field Primes

- Countermeasures against SCA, esp. DPA/DEMA
 - Popular: scalar blinding (Coron)

- For general primes, at least 64 bit blinding factor recommended
- For special primes, blinding less efficient
 - Long runs of zeros / ones in group order
 - Minimum length: approx. n/2 bits (Schindler-Wiemers 2015)

- For high-assurance ECC, we prefer verifiably pseudo-random primes as in Brainpool curves
Cofactor

- Most standard curves have cofactor 1
 » High assurance implementations exist

- Montgomery/Edwards curves have cofactor ≥ 4
 » Advantages in software
 » Simple, time-constant, efficient arithmetic
 » Unclear, if these advantages also apply to high-assurance ECC
 » (X,Z)-Brier-Joye ladder for general curves is commonly used in SCs

- For high-assurance ECC, cofactor = 1 is preferable
 » Minimize attack surface
 » Re-use existing hardware implementations
Rigid Selection of Curve Parameters

- Transparent process without wiggle room

- Two approaches:
 1. Verifiably pseudo-random generation
 2. Choose curves with (some) minimal property

- Both allow very limited flexibility

- However: Agree on curve properties first
Interoperability

- Short Weierstrass format is used by
 - NIST, ANSI, ISO, IETF, W3C, ...

- Montgomery / (twisted) Edwards representation can be easily converted from/to short Weierstrass

- Affine or compressed affine Weierstrass points on wire (exchange format)
 - Computations may be performed in arbitrary representations (projective, Jacobian, etc.)

- Backward-compatibility reduces implementation costs
Conclusions

- Do not only focus on software performance

- Different demands for:
 - High speed in software
 - High assurance

- Two sets of curves necessary
 - Provide flexibility and agility

- Flexibility also needed in FIPS-140
 - E.g. for verifying foreign passports with FIPS-approved hardware
Requirements for Elliptic Curves for High-Assurance Applications

Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, Torsten Schütze