

Efficient and Secure ECC Implementation of Curve *P-256*

Mehmet Adalier

Antara Teknik LLC

www.antarateknik.com

Motivation

Border Gateway Protocol is vulnerable to malicious attacks that target the control plane

- Prefix/sub-prefix hijacks
 - Steers traffic away from legitimate servers
- Prefix squatting
 - Hijacks a not-in-service prefix and sets up spam servers
- AS path modification (Man-in-the Middle) attacks
 - Modifies AS path causing data to flow via the attacker
- Route leaks
 - Announces routes in violation of ISP policy, thereby redirecting traffic via the attacker

The exploitations commonly result in DDoS, spam, misrouting of data traffic, eavesdropping on user data, etc.

Motivation

- IETF currently developing BGPSEC (BGP with Security) to provide
 - Route Origin Validation
 - Path Validation
- ECDSA P-256 is being used for BGPSEC AS-path signing and verification
 - "BGPSEC Protocol Specification," Jan 19, 2015,
- ECDSA P-256
 - Provides 128-bit security
 - Approved for protecting National Security Systems (Suite B)

The performance efficiency of ECDSA *P-256* is imperative to meet strict Internet routing table convergence requirements

Optimizations and Considerations

- Multi-level Optimizations to maximize performance
 - Algorithmic Optimizations
 - Group Level Optimization
 - Field Level Optimizations
- Considerations
 - Potentially millions of Public Keys necessitate innovative data handling methods for routines using Public Keys
 - Multi-segment path verifications require thread-safe implementations to maximize system resources
 - Side-channel resiliency required for sign operation

Optimizations must maintain and enhance the security of the implementation under all use-cases

ECDSA Sign and Verify Algorithms

ECDSA Sign

P3

- 1. Generate (k) and (k^{-1})
- 2. Compute $R = (kG)^{P1}$
- 3. Compute $r = x_R \mod n^{P4}$
- 4. Compute H = Hash(M)
- 5. Convert the bit string H to an integer e: where $e = \sum_{i=1}^{H} 2^{H-i} * b_i$

6.
$$s = (k^{-1} * (e + d * r)) \mod n$$

7. Return (*r, s*)

ECDSA Verify

- 1. Is r' and s' in [1, n-1]?
- 2. Compute H' = Hash(M')
- 3. Convert the bit string H' to an integer e:' where:

$$e' = \sum_{(i=1)}^{H'} 2^{H'-i} * b_i$$

- 4. Compute $w = (s')^{-1} \mod n$
- 5. $u_1 = (e' * w) \mod n$
- 6. $u_2 = (r' * w) \mod n$
- 7. $R = (x_R, y_R) = u_1G + u_2Q$
- 8. Compute $v = x_R \mod n$
- 9. Compare v and r'. If v = r' output VALID

Px – Priority Optimization Area

Algorithmic Optimizations 1

ECDSA Sign

- 1. Generate k and k^{-1}
- 2. Compute $R = (kG)_{P1}$
- 3. Compute $r = x_R \mod n$ P4
- 4. Compute H = Hash(M)
- 5. Convert the bit string H to an integer e: where $e = \sum_{(i=1)}^{H} 2^{H-i} * b_{i}$.
- 6. $s = (k^{-1} * (e + d * r)) \mod n$
- 7. Return (*r*, *s*)

k and k-1 Generation

~15k to 25k cycles

Options:

- 1. Pre-compute & safely store
- 2. Asynchronously compute on a different core

Considerations:

- Leaking information on k is detrimental
- For generating k follow NIST
 Guidelines and Best Practices

Multiplicative Inverse

Options:

- 1. Fermat's Little Theorem
 - Constant time imp ~18k cycles
- 2. Half GCD
 - Very fast when variable time

Algorithmic Optimizations 2

ECDSA Sign

- 1. Generate k and k^{-1}
- 2. Compute R = kG
- Sompute $r = x_R \mod n$
- 4. Compute H = Hash(M)
- 5. Convert the bit string H to an integer e: where $e = \sum_{(i=1)}^{H} 2^{H-i} * b_{i}$
- 6. $s = (k^{-1} * (e + d * r)) \mod n$
- 7. Return (*r*, *s*)

Observation: The most compute intensive calculations do not have any dependency on the message to be signed

Options:

- 1. Pre-compute *r* & safely store
- 2. Asynchronously compute *r* on a different core
- 3. Proprietary methods

Considerations:

 Secure implementations are not trivial

Substantially reduces sign operation latency

Group Level Optimizations 1

INPUT:
$$k = (k_{t-1}, ..., k_1, k_0)_2$$
, P
 $\subseteq E(F_a)$

OUTPUT:
$$Q = kP$$

- 1. Q← 0
- 2. For *i* from 0 to *t* −1 do

2.1 If
$$k_i = 1$$
 then $Q \leftarrow Q + P$

- 2.2 P←2P
- 3. Return (Q)

Right to Left Binary Method for Point Multiplication

Evaluation time: 0.5mA + mD

P-256 Eval. time: 128A + 256D

Not SCA resistant

Pt. addition in mixed Jacobian-Affine

$$(X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : 1)$$

 $A = X_2 . Z_1^2$, $B = Y_2 . Z_1^3$,
 $C = A - X_1$, $D = B - Y_1$,
 $X_3 = D^2 - (C^3 + 2X_1 . C^2)$;
 $Y_3 = D . (X_1 . C^2 - X_3) - Y_1 . C^3$;
 $Z_3 = Z_1 . C$

Pt. doubling in mixed Jacobian-Affine

$$(X_3 : Y_3 : Z_3) = 2(X_1 : Y_1 : Z_1)$$
, where
 $A = 4X_1.Y_1^2$, $B = 8Y_1^4$
 $C = 3(X_1 - Z_1^2) \cdot (X_1 + Z_1^2)$, $D = -2A + C^2$,
 $X_3 = D$;
 $Y_3 = C \cdot (A - D) - B$;
 $Z_3 = 2Y_1 \cdot Z_1$,

Group Level Optimizations 2

Pre-Calculation:

Take $(K_{d-1}, ..., K_1, K_0)_2^w$ as the base 2^w representation of k,

where $d = \lceil (m/w) \rceil$, then

$$kP = \sum_{i=0}^{d-1} K_i(2^{wi} P)$$

For each i from 0 to d-1,

pre-calculate *j* number of points, where

$$j = (2^{w+1}-2)/3$$
 if w is even;
 $j = (2^{w+1}-1)/3$ if w is odd

Storage per Point:

~40KB for P (X, Y)

~60KB for P (X, Y, -Y)

Evaluation time: d(A)

P-256 Eval. time: ~64A

Evaluation:

INPUT: NAF(k), d, pT (Pointer to precomputed data table)

OUTPUT: A = kP.

- 1. Evaluation: $A \leftarrow O$
- 2. For *i* from *0* to *d-1* do
 - 2.1 SafeSelect (Pi),

use K*i=j* to choose the appropriate *P[i][j]* from Ptable (handle –*j*)

$$2.2 A \leftarrow A + Pi$$

3. Return(A)

SCA Resistant Fast Fixed-base NAF Windowing Method for Point Multiplication

Use Chudnovsky + Affine -> Chudnovsky 8M, 3S

Field Level Optimizations 1

- radix-2⁶⁴ representation is quite efficient on a 64-bit architecture compute unit
 - Each field element is unsigned 64-bit type
 - 32-byte values represented with a 4-field element structure
 - Enables effective use of 64-bit CPU instructions
- Special forms of often used parameters enable <u>low-level</u> optimizations
 - $-p_{256}$ is a Generalized Mersenne Prime
 - $-p_{256}$ = 115792089210356248762697446949407573530 086143415290314195533631308867097853951

Field Level Optimizations 2

- Multi-precision regular/constant time add and subtract modulo prime ops are best implemented in x86-assembly
 - Any Carry or Borrow is easily detected
 - Handled by instructions such as "adcq" and "sbbq"
- Optimized multi-precision multiply and square operations are a must for high performance

Traditional 64-bit multiply in x86

mov OP, [pB+8*0]	adc R0, 0	
mov rax, [pA+8*0]	add R1, TMP	
mul OP	adc RO, 0	
add R0, rax	mov rax, [pA+8*2]	
adc rdx, 0	mul OP	
mov TMP, rdx	mov TMP, rdx	
mov pDst, R0	add R2, rax	
mov rax, [pA+8*1]	adc TMP, 0	
mul OP	add R2, R0	
mov R0, rdx	adc TMP, 0	
add R1, rax		

64-bit multiply with Broadwell Inst.

```
xor rax, rax mulx T1, R'1, [pA+8*2]
mov rdx, [pB+8*0] adox R'1, R2
adcx R3, T1
mulx T1, T2, [pA+8*0] ...
adox R0, T2
adcx R1, T1
mov pDst, R0

mulx T1, R'0, [pA+8*1]
adox R'0, R1
adcx R2, T1
```

Field Level Optimizations 3

Imperative to optimize reductions

Barrett Reduction modulo p

INPUT: $p, b \ge 3$, $k = \lfloor \log_b p + 1 \rfloor$,

$$0 \le a < b^{2k}$$
, and $\mu = \lfloor b^{2k}/p \rfloor$

OUTPUT: $r = a \mod p$

- 1. $q \leftarrow [a/b^{k-1}] \cdot \mu$
- 2. $q' \leftarrow |q/b^{k+1}|$
- 3. $r \leftarrow (a \mod b^{k+1}) (q'. p \mod b^{k+1})$
- 4. If r < 0 then $r \leftarrow r + b^{k+1}$
- 5. While $r \ge p$ do: $r \leftarrow r p$
- 6. Return (r)

Montgomery W-by-W mod p

INPUT: $p < 2^{l} 0 \le a, b < p, l = s.k$

OUTPUT: $r = a.b.2^{-1} \mod p$

- 1. t = a.b
- 2. for *i* 1 to *k* do

$$2.1 t_1 = t \mod 2s$$

$$2.2 t_2 = t_1 . p$$

$$2.3 t_3 = (t + t_1)$$

$$2.4 t = t_3 / 2s$$

- 3. if $t \ge p$ then r = t p
- 4. else r = t
- 5. Return (*r*)

Mul+Barrett Red p Cycles ~ 322

Mul+Mont Red Cycles ~ 298

Results

ECDSA – NISTZ256 vs. *tarap256* Measured with OpenSSL speed

-		
	ECDSA P-256	
	OpenSSL	OpenSSL
	Speed	Speed
	(NISTZ256)	(tarap256)
sign	29,938	45,300
(ops/sec)	(1X)	(1.51X)
verify	11,842	31,805
(ops/sec)	(1X)	(2.69X)

(k, k⁻¹) pre-calc'ed (tarap256f): Sign Perf is 63,807 ops/sec

Measured on Intel® Xeon® E3 1275v3 Single core, Turbo & HT Off

Conclusions

- Performance results indicate that it is possible to implement high performance and secure ECDSA P-256
- Our P-256 implementation, tara EcCRYPT™
 - Provides 128-bit security
 - Runs on low-power, low-cost, commercially available CPUs
 - Dynamically supports latest high efficiency CPU instructions
 - Natively thread-safe for multi-CPU and multi-core parallelization
 - Will satisfy BGPSEC Converge Time Requirement