\) Antaralek
N

Efficient and Secure ECC Implementation
of Curve P-256

This material is based upon work supported by the National Institute of Standards and Technology (NIST) under cooperative agreement

70NANB14H289. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author and do not
necessarily reflect the views of NIST.

http:www.antarateknik.com

Motivation

Border Gateway Protocol is vulnerable to malicious attacks
that target the control plane

* Prefix/sub-prefix hijacks

— Steers traffic away from legitimate servers
* Prefix squatting

— Hijacks a not-in-service prefix and sets up spam servers
* AS path modification (Man-in-the Middle) attacks

— Modifies AS path causing data to flow via the attacker

e Route leaks

— Announces routes in violation of ISP policy, thereby redirecting
traffic via the attacker

The exploitations commonly result in DDoS, spam, misrouting
of data traffic, eavesdropping on user data, etc.

Courtesy of Kotikalapudi Sriram

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Motivation

* |ETF currently developing BGPSEC (BGP with Security) to
provide

— Route Origin Validation
— Path Validation
 ECDSA P-256 is being used for BGPSEC AS-path signing and
verification
— “BGPSEC Protocol Specification,” Jan 19, 2015,

* ECDSA P-256

— Provides 128-bit security
— Approved for protecting National Security Systems (Suite B)

The performance efficiency of ECDSA P-256 is imperative to
meet strict Internet routing table convergence requirements

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Optimizations and Considerations

* Multi-level Optimizations to maximize performance
— Algorithmic Optimizations
— Group Level Optimization
— Field Level Optimizations

e Considerations

— Potentially millions of Public Keys necessitate innovative data
handling methods for routines using Public Keys

— Multi-segment path verifications require thread-safe
implementations to maximize system resources

— Side-channel resiliency required for sign operation

Optimizations must maintain and enhance the security of the
implementation under all use-cases

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

ECDSA Sign and Verify Algorithms

ECDSA Sign ECDSA Verify
o ,.‘P?’ o 2 1. Isr"ands’in[1,n-1]?
1. Generateg‘w; and k=) 2. Compute H’= Hash (M’)
2. Compute R =kG) P 3. Convert the bit string H’ to
= an integer e’ where:
3. Compute r = x;mod n:* e’ =2) 2" by o,
4. Compute H = Hash (M) 4. Compute w =(s’)mod n
5. Convert the bit string Hto | |2~ U;=(e”"* w)modn
an integer e : where 6. u,=(r"*w)modn
e =2H(/,=1) QH-i * b; 7 R-= (Xp, Y) =UG+UQ
_ (-1 R YRl =19 TH 28
6. s=(k"*(e+d*r))modn ||g Compute v = x,, mod n
7. Return (r, s 9. Comparevandr.lfv=r
output VALID

Px —Priority Optimization Area

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Algorithmic Optimizations 1

ECDSA Sign

..

4, ComputeH Hash (M)

5. Convert the bit string H
to an integer e : where
e=3H._, 21 * p,
6. s=(k1*(e+d*r)) mod
n
7. Return(r, s)

k and k* Generation
~15k to 25k cycles
Options:
1. Pre-compute & safely store
2. Asynchronously compute on a
different core
Considerations:
e Leaking information on k is
detrimental
* For generating k follow NIST
Guidelines and Best Practices

Multiplicative Inverse
Options:
1. Fermat’s Little Theorem
e Constant time imp ~18k cycles
2. Half GCD
* Very fast when variable time

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Algorithmic Optimizations 2

Observation: The most compute

ECDSA Sign intensive calculations do not have
... any dependency on the message to
1 Generate k and k" . be signed
2 Compute R = kG Options:
3., Compute r =xg mq@ n’ 1. Pre-compute r & safely store
... 5 Asynchronously Compute ron
4. Compute H = Hash (M) 3 different core

5. Convert the bit string H

to an integer e : where 3. Proprietary methods

e=3H,_, 2Hi % b, Considerations:
6. s=(k?**(e+d*r)) mod « Secure implementations are
n not trivial
7. Return(r, s)
Q -
&Q\)N\k Substantially reduces sign
L operation latency

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Group Level Optimizations 1

INPUT: k = (k,_,, . .
€ E(F,)

OUTPUT: Q= kP

1.Q< O

2.ForifromOtot-1do
2.11fk,=1thenQ<Q+P
2.2 P&2P

3. Return (Q)

. Kk, ko), P

Right to Left Binary Method
for Point Multiplication

Evaluation time: 0.5mA + mD
P-256 Eval. time: 128A + 256D

Not SCA resistant

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Pt. addition in mixed Jacobian-Affine
(X3:Y3:2Z3)=(X 1Y :Z)+(X,:Y,: 1)
A=X,.2,% B=Y,Z3

C=A-X, D=B-Y,

X;=D?—(C3 + 2X,.C?);

Y;=D. (X;.C2 = X;) = Y,.C3

Z,=2,C

Pt. doubling in mixed Jacobian-Affine
(X3:Y3:25) =2(X;:Y,:Z,), where
A=4X,.Y.% B=8Y/“
C=3(X;—-22).(X;+Z?), D=-2A+C?,
X; = D;

Y;=C.(A-D)-B;

Z3=2Y,.2,

Group Level Optimizations 2

Pre-Calculation:

Take (Ky_q, - - -, Ky, Kp)," as the base 2%
representation of k,

where d = [(m/w) |, then
kP =Z%1, o K(2*" P)
For each i from O to d-1,

pre-calculate j number of points,
where

j=(2%*1-2)/3 if wis even;
j=(2w+1-1)/3 if wis odd

Storage per Point:
~40KB for P (X, Y)
~60KB for P (X, Y, -Y)
Evaluation time: d(A)
P-256 Eval. time: “64A

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Evaluation:

INPUT: NAF(k), d, pT (Pointer to pre-
computed data table)

OUTPUT: A = kP.

1. Evaluation: A<O

2. ForifromOtod-1do
2.1 SafeSelect (Pi),

use Ki=j to choose the
appropriate P[i][j] from
Ptable (handle —)

2.2 ACA+Pi
3. Return(A)

SCA Resistant Fast Fixed-base NAF

Windowing Method for Point
Multiplication

Use Chudnovsky + Affine -> Chudnovsky
8M, 3S

Field Level Optimizations 1

* radix-2°* representation is quite efficient on a 64-bit
architecture compute unit
— Each field element is unsigned 64-bit type
— 32-byte values represented with a 4-field element structure
— Enables effective use of 64-bit CPU instructions

* Special forms of often used parameters enable low-level
optimizations
— p,sc IS a Generalized Mersenne Prime
— Pyss= 115792089210356248762697446949407573530
086143415290314195533631308867097853951
— pPyse= OxEffffF£f£f00000001 0x0000000000000000
O0x00000000ffffffff Oxffffffffffffffff

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Field Level Optimizations 2

e Multi-precision regular/constant time add and subtract modulo
prime ops are best implemented in x86-assembly
— Any Carry or Borrow is easily detected
— Handled by instructions such as “adcq” and “sbbq”

* Optimized multi-precision multiply and square operations are a
must for high performance

Traditional 64-bit multiply in x86 64-bit multiply with Broadwell Inst.
mov OP, [pB+8*0] adcRO, 0 XOr rax, rax mulx T1, R'1, [pA+8*2]
mov rax, [pA+8*0] add R1, TMP mov rdx, [pB+8*0] adox R’1, R2

mul OP adcRO, 0 adcx R3, T1

add RO, rax mov rax, [pA+8*2] mulx T1, T2, [pA+8*0] ...

adcrdx, O mul OP adox RO, T2

mov TMP, rdx mov TMP, rdx adcx R1, T1

mov pDst, RO add R2, rax mov pDst, RO

mov rax, [pA+8*1] adc TMP, O

mul OP add R2, RO mulx T1, R0, [pA+8*1]

mov RO, rdx adc TMP, 0 adox R’0, R1

add R1, rax adcx R2, T1

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Field Level Optimizations 3

Imperative to optimize reductions

Barrett Reduction modulo p Montgomery W-by-W mod p
INPUT: p, b23, k=] log, p+1 |, INPUT: p<2/ 0<a,b<p,/=5sk
. I
0<a<b®* and p=|b*/p | ?UIPUT.br- a.b.2"mod p
. t=a.

OUTPUT: r=amod p 2. foriltokdo
1. g &|a/b] . p 2.1t,=tmod 2s
2. g’ ¢ | q/ bk 22t,=t,.p
3. r < (amod b¥*1) - (g”. p mod b**1) 23t,=(t+t))
4. Ifr < Othenr &r+ bk .2-4t=t3/25
5. Whiler > pdo:ré&r-p 3. iftzpthenr=t—p

4. elser=t
6. Return(r) 5. Return (r)

Mul+Barrett Red p Cycles ~ 322 Mul+Mont Red Cycles ~ 298

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Results

ECDSA — NISTZ256 vs. tarap256

Measured with OpenSSL speed
NISTZP256 vs. tarap256

50,000

tarap256

45,000

ECDSA P-256

OpenSSL OpenSSL
Speed Speed 15 000

(NISTZ256) |[(tarap256) NISTZ256

30,000

40,000

tarap256

sign 29,938 45,300
(ops/sec) (1X) (1.51X)

verify 11,842 31,805

(ops/sec) (1X) (2.69X) 15,000 —

(k/ k-l) prE'CG/CIEd 5,000

(tarap256f):
Sign Perf is 63,807 ops/sec sign (ops/sec) verify(ops/sec)

Measured on Intel® Xeon® E3 1275v3 Single core, Turbo & HT Off

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

Conclusions

* Performance results indicate that it is possible to
implement high performance and secure ECDSA P-256

* Qur P-256 implementation, taraEcCRYPT™
— Provides 128-bit security
— Runs on low-power, low-cost, commercially available CPUs
— Dynamically supports latest high efficiency CPU instructions
— Natively thread-safe for multi-CPU and multi-core parallelization
— Will satisfy BGPSEC Converge Time Requirement

NIST Workshop on Elliptic Curve Cryptography Standards June 2015

