
An Analysis of High-Performance Primes
at High-Security Levels

Zhe Liu University of Luxembourg
Hwajeong Seo Pusan National University

Patrick Longa
Microsoft Research

NIST Workshop on Elliptic Curve Cryptography Standards
June 11-12, 2015, Gaithersburg, USA

Our motivations

1. Curves that regain confidence and get wide acceptance

‒ A simple and rigid generation procedure as the foundation

‒ Compatibility with existing security levels

‒ Design consistency across security levels

2. Curves that are efficient on multiple platforms

‒ 8-bit, 32-bit, 64-bit platforms, with and without vectorization support

Performance is important, but should not take priority

over goals of security and transparency

1

In this talk …

 Review a few implementation aspects that are relevant to achieve a robust
curve selection.

 Compare the performance of the NUMS curves against the fastest handpicked
curves without rigid prime generation.

2

We consider four high-security twisted Edwards curves defined by:

𝐸/𝔽𝑝: 𝑎𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2,

with quadratic twist 𝐸′.

High-security curves for the analysis

curve
curve param.

(𝒂, 𝒅)
prime 𝒑

Prime
modularity

co-factors
(𝑬, 𝑬′)

bit-
security

“NUMS” numsp384t1 (1, −11556) 2384 − 317 3(mod 4) (4, 4) 191

“NUMS” numsp512t1 (1, −78296) 2512 − 569 3(mod 4) (4, 4) 255

Ted37919 (−1, 143305) 2379 − 19 5(mod 8) (8, 4) 188

Ed48817 (1, 14695) 2488 − 17 3(mod 4) (4, 4) 243

3

Curve design considerations:

 “numsp384t1” and “numsp512t1” produced using rigid NUMS generation
(curve + prime). These curves match standard security levels.

 “Ted37919” and “Ed48817” produced using NUMS curve generation but
primes were handpicked for efficiency purposes: determine upper bound on
the performance gap

 All curves have minimal 𝑑 in twisted Edwards form and minimal constant
(𝐴 + 2)/4 in their isogenous Montgomery form (minimal in absolute value).

 All curves support a complete addition law and are twist-secure.

High-security curves for the analysis

4

Implementation aspects: consistency

 Fixing the same curve form across the different security levels can help in
reducing security risks, reducing developer/maintenance work, and improving
code size.

Example: twisted Edwards supports addition formulas that are incomplete or
complete depending on the chosen values for the curve parameters.

The affine addition formula

𝑥1, 𝑦1 + 𝑥2, 𝑦2 =
𝑥1𝑦2+𝑦1𝑥2

1+𝑑𝑥1𝑦1𝑥2𝑦2
,
𝑦1𝑦2−𝑎𝑥1𝑥2

1−𝑑𝑥1𝑦1𝑥2𝑦2

*

is complete if 𝑎 is square and 𝑑 is non-square (in 𝔽𝑝),

BUT it’s incomplete if 𝑎 is non-square and 𝑑 is square (in 𝔽𝑝).

* This addition formula is from [Bernstein-Birkner-Joye-Lange-Peters 2008]. 5

Implementation aspects: consistency

 Choosing the same prime form for different security levels can help in
reducing developer/maintenance work, and improving code portability and
compactness.

Example: all the base field primes used by the NUMS curves have:

‒ bitlengths with 64-bit alignment

‒ pseudo-Mersenne form

These design features enable highly-compact and portable field arithmetic, which
is desirable in many applications (e.g., IoT).

6

Implementation aspects: consistency

Portable field multiplication that works for all six NUMS curves (Weierstrass and Edwards)

 Field elements are represented as arrays of radix-8 (or radix-16) elements stored in 32-
bit (64-bit resp.) signed integer datatypes, depending on the targeted architecture.

NLIMBS (curve->NLIMBS): number of limbs used to represent a field element.
NBITS (curve->NBITS): number of bits per limb.
C_CURVE (curve->C_CURVE): constant 𝑐 for a given prime 𝑝 = 22𝑠 − 𝑐.

void field_mul(digit_t* op1, digit_t* op2, digit_t* res, CurveStruct curve){

digit_t i, j, rem = 0, mask = (1 << NBITS)–1, t[NLIMBS_MAX] = {0};

// Integer multiplication

for (i = 0; i < NLIMBS; i++){

for (j = 0; j < NLIMBS; j++)

t[(i+j)-NLIMBS*((i+j)≥ NLIMBS)] += (((i+j)≥ NLIMBS)*(C_CURVE-1) + 1)*op1[i]*op2[j]; }

// Reduction

for (j = 0; j ≤ 2; j++){

t[0] += ((rem+1)*C_CURVE*(j==1)) + ((rem-1) & C_CURVE*(j==2));

for (i = 0; i < 2*(NLIMBS-2); i++){

t[i+1] += (t[i] >> NBITS);

t[i] &= mask; }

rem = (t[2*(NLIMBS-2)] >> NBITS); }

for (i = 0; i < NLIMBS; i++) res[i] = t[i];

}

7

Implementation aspects: representation

Canonical (or saturated):

limbs = field bitlength/computer word bitlength

No room for accumulating intermediate values without word spilling.

Extended (or unsaturated):

limbs ≥ field bitlength + 𝛿 /computer word bitlength , for some 𝛿 > 0

Extra room for accumulating intermediate values without word spilling.

8

The problem:

Some platforms are more efficient with canonical representations (e.g., AMD,
Intel Atom, Intel Quark, ARM w/o NEON, microcontrollers), others are more
efficient with extended representations (e.g., Intel desktop/server, ARM with
NEON).

 Primes that are optimal on a certain platform might not be optimal on another
platform.

Implementation aspects: representation

9

 We used MSR ECCLib for evaluation of “numsp384t1” and “numsp512t1”.

 We wrote platform-specific implementations for “Ted37919” and “Ed48817”.

 Costs are reported for variable-base scalar multiplication.

 All implementations are fully protected against timing and cache attacks.

 Results for “numsp384t1” and “numsp512t1” from MSR ECCLib are somewhat
in disadvantage. MSR ECCLib is a generic and portable library supporting a
variety of curves, security levels, operating systems and devices.

Performance

10

Performance: cost of rigidity

Cycles to compute variable-base scalar multiplication

0

5

10

15

20

25

30

35

40

45

50

8-bit AVR (*)

M
ill

io
n

s

0

100

200

300

400

500

600

700

800

64-bit AMD
(Steamroller)

Th
o

u
sa

n
d

s

0

100

200

300

400

500

600

700

800

64-bit Intel
(Sandy Bridge)

Th
o

u
sa

n
d

s

(*) Extrapolated from field arithmetic costs.
Canonical representation used except when marked (><) . 11

(><)

Performance across different platforms
Cycles to compute variable-base scalar multiplication

0

10

20

30

40

50

60

70

8-bit AVR (*)

M
ill

io
n

s

0

200

400

600

800

1000

64-bit AMD
(Steamroller)

Th
o

u
sa

n
d

s

0

200

400

600

800

1000

64-bit Intel
(Sandy Bridge)

Th
o

u
sa

n
d

s

0

200

400

600

800

1000

ARM+NEON
(Cortex-A15)

Th
o

u
sa

n
d

s

(*) Extrapolated from field arithmetic costs.
(**) Ed448-Goldilocks’ results were obtained by running SUPERCOP on the 64-bit and ARM platforms.
Canonical representation used except when marked (><) . 12

(**)

(><)

(><)

(><)

(><)(><)

Performance: comparison on x64 processors

Curve prime 𝒑
bit

security
Intel Sandy

Bridge
Intel Haswell

AMD
Steamroller

Ted37919 2379 − 19 188 491,000 407,000 675,000

numsp384t1 𝟐𝟑𝟖𝟒 − 𝟑𝟏𝟕 191 611,000 504,000 717,000

Ed448-Goldilocks 2448 − 2224 − 1 223 667,000 532,000 990,000

Ed48817 2488 − 17 243 1,091,000 916,000 1,319,000

numsp512t1 𝟐𝟓𝟏𝟐 − 𝟓𝟔𝟗 255 1,320,000 1,136,000 1,523,000

Cycles to compute variable-base scalar multiplication

13

(><) (><)

(><)(><)

(><)

(><)

(><)

Canonical representation used except when marked (><) .

Performance: canonical versus extended

Cycles to compute variable-base scalar multiplication, curve “Ted37919”

0

100

200

300

400

500

600

700

800

900

64-bit AMD
(Steamroller)

Th
o

u
sa

n
d

s

0

100

200

300

400

500

600

700

800

900

64-bit Intel
(Sandy Bridge)

Th
o

u
sa

n
d

s

14

 Performance should not be the top priority when selecting curves. Performance is
technology- and application-dependent, and changes over time.

 We can choose curves that offer superior advantages in terms of rigidity, security,
compatibility and consistency, and that also achieve good efficiency across
multiple devices.

 Experimental results support selecting curves that follow standard security levels.

Conclusions

15

 We can innovate our way out of slow-performing implementations to fast
performing. We can optimize hardware, etc. What we can’t do is to add rigidity
back later.

Conclusions

16

A brief discussion on selecting new elliptic curves

C. Costello, P. Longa, M. Naehrig, 2015.

http://research.microsoft.com/pubs/246915/NIST.pdf

Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis,

J.W. Bos, C. Costello, P. Longa, M. Naehrig,

in Journal of Cryptographic Engineering, 2015.

http://eprint.iacr.org/2014/130

MSR ECCLib, version 2.0

http://research.microsoft.com/en-us/projects/nums/

See also …

17

http://research.microsoft.com/pubs/246915/NIST.pdf
http://eprint.iacr.org/2014/130
http://research.microsoft.com/en-us/projects/nums/

An Analysis of High-Performance Primes
at High-Security Levels

Zhe Liu University of Luxembourg
Hwajeong Seo Pusan National University

Patrick Longa
Microsoft Research

NIST Workshop on Elliptic Curve Cryptography Standards
June 11-12, 2015, Gaithersburg, USA

