Ed448-Goldilocks
A new high-strength curve and implementation

Mike Hamburg
Rambus Cryptography Research
Goal

- Design a modern high-strength curve
- Complete formulas, constant time
- Better performance than NIST P-384, P-521
- One curve — no “overkill” and “more overkill” levels
Desiderata

• “Overkill”: ~384+ bit field size
• Good tradeoff of size vs performance
• Simple implementation
• Implementation flexibility, good on multiple arch’s
• Conservative: prime field, no endomorphisms
• Safecurves criteria
Prime choice: $2^{448} - 2^{224} - 1$

- Best performance for its size on many platforms
- Best Solinas prime shape
- Vectorizable: $448 = 16 \times 28 = 8 \times 56$
- Fast Karatsuba multiplication
- Designed for 32- and 64-bit
 - On 64-bit, could use $2^{480} - 2^{240} - 1$
Ed448-Goldilocks

\[y^2 + x^2 = 1 - 39081x^2y^2 \]

- Minimum $|d|$ with 4q curve and 4q’ twist
- Order 4q, q just under 2^{446}
Implementation

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/

- x86-64, ARM32 scalar, ARM NEON, generic 32/64
- C and asm
- Constant-time (except verify)
- Control and indexing don’t depend on secrets
- Complete formulas using extended coords
Implementation

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/

- Example crypto: Schnorr, ECDH/3DH, MQV, PAKE
- Hash to curve, steg encoding with Elligator 2
- C library with C++ wrapper
“Decaf” point compression

- Remove cofactor of 4 with subgroup/quotient
- Transparently use isogenous curves
 - Remove points at infinity on twisted curve
 - compatible with Montgomery ladder
- Performs the same as other point compression
- CRYPTO 2015
Performance – Intel

ECDH, Haswell cycles
Performance – ARM

ECDH, Cortex-A9 cycles
Performance – NEON

ECDH, Cortex-A8 cycles
Conclusion

- Goldilocks has conservative design
- Edwards replacement for NIST “overkill” curves
- Fast on many platforms
- Featureful implementation
- Selected by CFRG for TLS
- Good choice for NIST standardization
Questions?