
1 

Long-lived digital integrity using short-lived hash functions 

Stuart Haber
 
Hewlett-Packard Laboratories
 

stuart.haber@hp.com 

May 12, 2006 

Abstract	 function? This is no longer the merely academic ques­
tion it was when it was first raised by the authors of 

New collision-finding attacks on widely used crypto- [3], who proposed an incorrect solution, and then cor­
graphic hash functions raise questions about systems rectly solved by [1]. 
that depend on certain properties of these functions 
for their security. Even after new and presumably 
better hash functions are deployed, users may have 2 Renewing integrity certifi­
digital signatures and digital time-stamp certificates 

cates that were computed with recently deprecated hash 
functions. Is there any way to use a new and cur­
rently unassailable hash function to buttress the se- 2.1 Time-stamp certificates 
curity of an old signature or time-stamp certificate? Here we describe the process of “renewing” digital 

The main purpose of this note is to remind the time-stamp certificates, as presented by [1]. 
technical community of a simple solution to this prob-

Suppose that an implementation of a particular lem that was published more than a decade ago. 
time-stamping system is in place, and consider the 
pair (x, c1), where c1 is a valid time-stamp certifi­
cate (in this implementation) for the bit-string x.Introduction 
Now suppose that some time later an improved time-

With advances in computational power and re- stamping system is implemented and deployed—by 
sources, as well as the discovery of entirely new crypt- replacing the hash function used in the original sys­
analytic algorithms, particular instances of crypto- tem with a new hash function, or even perhaps af­
graphic primitives that were secure when they were ter the invention of a completely new algorithm. Is 
first deployed may become insecure several years there any way to use the new time-stamping system 
later. In the last couple of years, the cryptographic to buttress the guarantee of integrity supplied by the 
community has been surprised by powerful new at- certificate, c1, in the face of potential later attacks on 
tacks on the hash functions MD5 and SHA-1, among the old system? 
others [6, 5]. This raises the question of how best to One could simply submit x as a request to the new 
introduce a new and presumably more secure hash time-stamping system. But this would lose the con-
function into a system that now uses an older hash- nection to the original time of certification. 
function design that may soon be subject to devas- Another possibility is to submit c1 as a request to 
tating compromise. In particular, what can be done the new time-stamping system. But that would be 
with digital signatures and time-stamp certificates vulnerable to the later existence of a devastating at-
that were computed using the original system’s hash tack on the hash function used in the computation 

1 

mailto:stuart.haber@hp.com


of c1, as follows: if an adversary could find another 
document xl with the same hash value as x, then he 
could use this renewal system to back-date xl to the 
original time. (In fact, resubmission of c1 was erro­
neously suggested by the authors of [3] as a solution 
to this problem.) 

Suppose instead that the pair (x, c1) is time-
stamped by the new system, resulting in a new cer­
tificate c2, and that some time after this is done (i.e. 
at a definite later date), the original method is com­
promised. The certificate c2 provides evidence not 
only that the document content x existed prior to 
the time of the new time-stamp, but that it existed at 
the time stated in the original certificate, c1. Prior to 
the compromise of the old implementation, the only 
way to create a valid time-stamp certificate was by 
legitimate means. 

2.2 Digital signatures 

Similar logic applies in the case of digital signatures. 
Let s be a digital signature for the document x, to 
be verified with respect to a particular public key, 
perhaps as part of a particular PKI. 

The PKI adds an extra complication. Specifically, 
let V denote the extra data—public-key certificates, 
CRLs, signed statements by trusted parties such as 
Online Certificate Status Protocol (OCSP) servers, 
etc.—needed in this PKI in order to validate the pub­
lic key for the signature s. Here are two different ways 
to integrate time-stamping securely: 

•	 The receiver of (d, s) assembles the key-
validating data V , requests a time-stamp certifi­
cate c for (d, s, V ), and saves (d, s, V, c). A later 
verifier needs to revalidate each of s, V , and c. 

•	 The signer of d computes a time-stamp certifi­
cate c for (d, s) and saves (d, s, c). Later verifiers 
of this triple must retrieve (from an appropriate 
service) a trustworthy archived version of V , and 
revalidate all the data. 

Naturally, other choices are possible for dividing up 
the responsibilities. 

3 Remarks 

3.1 A challenge for theorists? 

Observe that the security offered by an “updated” 
time-stamp certificate computed as above depends on 
the arguably questionable assumption that the first 
time-stamping system will not be compromised until 
a definite time after the second system was launched. 
But in practice, this is not an unreasonable assump­
tion. Advances in cryptanalytic attacks on hash func­
tions typically proceed incrementally, and well before 
a hash function is completely broken, fielded systems 
can swap in a new hash function. 

But this does raise the question of whether it is 
possible to capture in a mathematically satisfying 
way the actual state of affairs in cryptographic se­
curity, which is that the computational difficulty of 
the cryptanalyst’s algorithmic task is a moving tar­
get. 

3.2 Practical implementation 

A version of the time-stamping service described in 
[1] has been offered commercially by Surety since 
1995 [4]. Originally, the service used MD5 and SHA­
1, evaluated in parallel, as its hash function. Last 
year, in light of recent attacks on both of these func­
tions, Surety deployed a new version of its service, 
using SHA-256 and RIPEMD-160 (also evaluated in 
parallel), and offered the renewal capability described 
above for records that were originally time-stamped 
with the older version of the service. 

3.3 A generalization 

Updating the time-stamp certificate accompanying 
a digital document is just one example of the sort 
of transformation that objects in a long-lived digi­
tal archive will undergo from time to time. In [2], 
the authors generalize this procedure to a broad class 
of transformations, describing a service that can be 
used to prove the integrity of the contents of a well-
managed digital archive over the course of its lifetime. 

2 



References 

[1] D.	 Bayer, S. Haber, and W.S. Stornetta. Im­
proving the efficiency and reliability of digital 
time-stamping. In R.M. Capocelli, A. De Santis, 
and U. Vaccaro, editors, Sequences II: Methods 
in Communication, Security, and Computer Sci­
ence, pages 329–334. Springer-Verlag, 1993. (Pro­
ceedings of the Sequences Workshop, Positano, 
Italy, 1991.). 

[2] S. Haber and P. Kamat. A content integrity ser­
vice for long-term digital archives. In Proceedings 
of Archiving 2006. Society for Imaging Science 
and Technology, 2006. To appear. Available at 
http://www.hpl.hp.com/techreports/2006/ 
HPL-2006-54.html. 

[3] S. Haber and W.S. Stornetta. How to time-stamp 
a digital document. Journal of Cryptology, 3(2), 
1991. 

[4] Surety. http://www.surety.com. 

[5] X.	 Wang, Y.L. Yin, and H. Yu. Finding colli­
sions in the full SHA-1. In Victor Shoup, editor, 
Advances in Cryptology — CRYPTO 2005, vol­
ume 3621 of Lecture Notes in Computer Science. 
Springer-Verlag, 200. 

[6] X. Wang and H. Yu. How to break MD5 and other 
hash functions. In R. Cramer, editor, Advances in 
Cryptology — EUROCRYPT 2005, volume 3494 
of Lecture Notes in Computer Science. Springer-
Verlag, 200. 

3 

http:http://www.surety.com
http://www.hpl.hp.com/techreports/2006

