

A Fix of the MD4 Family of Hash
Functions - Quasigroup Fold

Danilo Gligoroski1,2, Smile Markovski2, Svein Johan Knapskog1

1: Centre for Quantifiable Quality of Service in Communication Systems (Q2S)
Centre of Excellence, Norwegian University of Science and Technology (NTNU)
2: Institute of Informatics, Faculty of Natural Sciences, University of Skopje,
MACEDONIA

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

1

Why fix?

Outline

•
• Why quasigroups?
• How – Quasigroup Fold!
• What we gain?
• What we loose?
• Directions ...

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

2

All popular operating systems (UNIX-like family S V, BSD,
Linux, HP-UX, IBM's AIX, Solaris, Mac OS X, and Microsoft Windows
family - ndows XP, Windows Server
2003) and many others, in their access control and password management
operations.
All popular database m s (MySQL, Oracle, Sybase, SAP,
Microsoft SQL, …)
All popular program s (Java,
.Net, …)

- ystem

Windows NT, Windows 2000, Wi

anagement system

ming languages and development platform

Why we propose a fix instead of new hash

function?

•	 Usage of MD5, SHA-1 or some other members of the MD4 family of
hash functions can be found in hundreds of thousands of installedhundreds of thousands of installed
softsoftwareware:
–

Simple function call:

md5(data);

– or
– sha(data);

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

3

Why we propose a fix instead of new hash

function? (cont.)

•	 If the fix provides the following features:
–	 Makes infeasible all known successful attacks for finding collisions
–	 Gives security guarantees according to the current level of mathematical knowledge
–	 Doesn’t increase the hash output length
–	 Doesn’t change other “known and good” statistical properties of the hash functions
–	 Reduces the costs for intervention in millions of lines of source code of the

currently used software
–	 As an additional effect it makes some other popular attacks (such as Dictionary

attack – unpractical)
–	 As a technique can be used generally in the design of new hash functions

••	 ThenThen wwee think that the fix is reasonable option to think aboutthink that the fix is reasonable option to think about

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

4

Why quasigroups?

Outline

• Why fix?

•
• How – Quasigroup Fold!
• What we gain?
• What we loose?
• Directions ...

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

5

Why we propose usage of quasigroups?
• All successful collision attacks on MDx family of hash functions has

common this:
– They exploit linear invertability of the operations of

• Addition modulo 232

• Left rotation
that are operations applied at every step of the hash functions.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

6

Why we propose usage of quasigroups? (cont.)
• den Boer and Bosselaers – ‘91: Collisions on last two rounds of MD4.

–	 Solving a system of 32 eq. with 48 unknown 32 bit variables and a system
of 16 eq. with 16 unknown 32 bit variables. Setting up those systems was
due to the fact that GG and HH operations of MD4 use linear and
invertible addition mod 232 and left rotation.

•	 Dobbertin – ’92, … : For MD4 he used weak differential properties of
the operation of addition mod 232 in the steps 12-19. He set up 8 eq.
with 14 unknown 32 bit variables to find inner almost-collisions.
Setting up those systems was due to the fact that every step
operation in MD4 uses linear and invertible addition mod 232 and
left rotation.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

7

Why we propose usage of quasigroups? (cont.)
• den Boer and Bosselaers – ‘93: Collisions on last two rounds of MD5.

Usage of clever techniques of choosing “magic numbers” as target
values to obtain.
–	 Their attack: “walking forward” and “walking backward”, tracing the

obtained differences and solving simple linear equations.
–	 For example: part 2.2 of their attack explicitly describes equations that are

obtained directly from the equations of MD5 that involves invertible
linear operations of addition mod 232 and left rotation.

•	 Dobbertin – ‘96: Collisions on full MD5.
– Crucial role in his attack: Setting up systems of equations for tracing the

differences is due to the fact that compression function of MD5 uses
invertible linear operations of addition mod 232 and left rotation.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

8

Why we propose usage of quasigroups? (cont.)
• Wang at al. 2004, 2005: Collisions on MD4, MD5, HAVAL-128,

RIPEMD, SHA-1: Usage of much complicated techniques for tracing
the differentials from step to step.
–	 Crucial role for setting up all the systems of linear equations that have to

be satisfied in order to obtain results with low Hamming distances is the
usage of invertible linear properties of the operations of addition mod
232 and left rotation.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

9

We wanted to add additional operation that will nonlinearly fold
those invertible operations in every step
Thus we wanted an algebraic structure that is
– non-commutative
– non-associative
– non-idempotent
– do not have a neutral element

Why we propose usage of quasigroups? (cont.)
• Quasigroup
• is

such algebraic

structure.

– have enormous combinatorial potential

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

10

How – Quasigroup Fold!

Outline

• Why fix?
• Why quasigroups?
•
• What we gain?
• What we loose?
• Directions ...

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

11

12

How is defined the Quasigroup Fold?

• Randomly generated and fixed

quasigroup (Q,*) of order 16.

• It is:

- Non-commutative,

- Non-associative,

- Non-idempotent

- Without left and right neutral element.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

How is defined the Quasigroup Fold? (cont.)
• Every 32-bit register is seen as a concatenation of 8, 4-bit
variables a1,…,a8.

Quasigroup Fold (applied at the end of every step of the

hash function):

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 a5 a6 a7 a8

b1= a1 * a5

b2= a6 * a2

b3= a3 * a7

b4= a8 * a4

Quasigroup Fold
is bijective

mapping i.e. it
preserves all

good statistical
properties of

MDx.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

13

How is defined the Quasigroup Fold? (cont.)
• Applying current successful attacks on Quasigrouply Folded steps of the
hash functions will have to involve two “parastrophes” of the original
quasigroup in highly complex and nonlinear way.
• There are no fast algebraic methods for solving nonlinear systems of
quasigroup equations in general.

14 A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

What we gain?

Outline

• Why fix?
• Why quasigroups?
• How – Quasigroup Fold!
•
• What we loose?
• Directions ...

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

15

What we gain?
•	 Every quasigroup folding introduces 4 nonlinear equations with 8

unknown 4 bit variables.
–	 Quasigroup Fold makes impractical all current successful attacks on MD4

family of hash functions.
•	 Quasigroup Fold Fix on MD4 family of functions (as a software patch)

would be much cheaper solution then any “immediate” replacement
with new hash function.

•	 Instead of one fixed one-way hash function (e.g. MD4) with different
quasigroups we obtain a family of ~2430 one-way hash functions.
–	 As a consequence some versions of the dictionary attack can become

unpractical
•	 Quasigroup Fold can be used in the design of any new one-way hash

function and will offer a family of one-way functions.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

16

What we loose?

Outline

• Why fix?
• Why quasigroups?
• How – Quasigroup Fold!
• What we gain?
•
• Directions ...

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

17

What we loose?
•	 Speed

–	 Reference C implementation is 3-5 times slower
–	 An optimized assembler version can reduce the loss of the speed to 1.5 – 2

times (our projection)
–	 A hardware realization of Quasigroup Fold can be implemented

•	 To run in parallel
•	 To be executed in 1 or 2 CPU cycles
•	 Not to take more then 1000 logic gates

•	 Compatibility with old MDx functions
–	 But we gain a huge family of 2430 one-way hash functions with same

security characteristics.

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

18

Directions ...

Outline

• Why fix?
• Why quasigroups?
• How – Quasigroup Fold!
• What we gain?
• What we loose?
•

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

19

Directions ...
• Closer look from the scientific community to the security properties of

the fixed hash functions
• Fast realization in assembler
• Defining one standardized (default) quasigroup
• Defining protocols that use different randomly generated quasigroups
• Hardware implementation
• Definition of Quasigroup Fold for 64bit CPUs
• Definition of similar register operations with quasigroups

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

20

Thank you for your attention

A Fix of the MD4 Family of Hash Functions - Quasigroup Fold NIST Cryptographic Hash Workshop
Gligoroski, Markovski, Knapskog 31 Oct – 1 Nov 2005

21

A Fix of the MD4 Family of Hash Functions -

Quasigroup Fold

D. Gligoroski∗ ∗∗, S. Markovski∗∗ and S.J. Knapskog∗

∗ Centre for Quantifiable Quality of Service in Communication
Systems, Norwegian University of Science and Technology,

O.S.Bragstads plass 2E, N-7491 Trondheim, NORWAY, e-mail:
gligoroski@yahoo.com, Svein.J.Knapskog@Q2S.ntnu.no

∗∗ University - “Ss Cyril and Methodius”, Faculty of Natural
Sciences and Mathematics, Institute of Informatics, P.O.Box 162,
1000 Skopje, Republic of MACEDONIA, e-mail: smile@ii.edu.mk

Abstract

In this paper we show a relatively simple and rela­
tively cheap fix to all hash functions from the MD4
family. Our fix introduces 4 additional quasigroup
transformations on 32-bit intermediate variables in
every step of the hash function. These operations
are called quasigroup-folding. The result is that
every equation (assignment) that is defined in the
hash function is folded by quasigroup operations that
are chosen to be non-commutative, non-associative,
non-idempotent, non-involutory and without neutral
elements. That is quite different to the Boolean
functions conjunction, disjunction, negation, addi­
tion (mod 232) and exclusive disjunction, that are
used in the MD4 family of hash functions. All of
these Boolean functions satisfy many algebraic laws
suitable for making reductions and for solving equa­
tions and systems of equations. On the other hand,
solving equations that introduce quasigroup opera­
tions can not lead to the reduction of variables, and
successful tracing of differences that is the core of
every successful differential attack on the hash func­
tions that we know of today. The folding technique
involving quasigroup operations can be used also in
design of any new hash function. 1

1This work was carried out during the tenure of an ERCIM
fellowship of D. Gligoroski visiting Q2S - Centre for Quantifi­

1 Introduction

The MD4 family of which the hash functions
MD4, MD5, SHA-1, SHA-256, SHA-512, RIPEMD,
RIPEMD-160 and many others are members seems to
have come to an end of its life. During this 15 years
of their existence, for many of them was proved that
they can not be considered as one-way hash func­
tions that are collision free. The numerous attacks
starting by the attacks of den Boer, Bosselaers and
Dobbertin to MD4 and MD5 finally polished to ex­
cellence by Wang at al. to SHA-1, have shown that
the MD4 family of hash functions no longer defend
their status as one-way functions.

All the above mentioned attacks exploit one com­
mon characteristic of the MD4 family of hash func­
tions: in every iterative step, the assignment of the
new 32-bit working variable is done by applying addi­
tion modulo 232 and left rotation. Both of these oper­
ations are invertible, and even more, addition modulo
232 is a group operation. Thus, no matter how com­
plicated the unfolding and tracing of all equations
involved in the definition of the hash function would
seem, in the search for collisions the equations can
be unfolded, and then by applying classical algebraic
routines for reduction of variables and tracing the
differences, the equations can be solved as a linear
system of equations in a finite field.

In this paper we show if that common charac­
teristic of MD4 family of hash function is removed,
then the existing differential attacks on all hash func­

able Quality of Service in Communication Systems at Norwe­
gian University of Science and Technology - Trondheim, Nor­
way.

mailto:Svein.J.Knapskog@Q2S.ntnu.no
mailto:gligoroski@yahoo.com

2

tions from the MD4 family would be ineffective. To
achieve that goal, we choose an algebraic structure
that has enormous combinatorial and structural po­
tential, but at the same time is non-commutative,
non-associative, non-idempotent, non-involutory and
does not have a neutral element (neither left nor
right). A quasigroup is such an algebraic structure.

The structure of the paper is the following: In Sec­
tion 2 we give a brief overview of successful attacks on
hash functions from the MD4 family and the crucial
techniques and ideas that they employ, in Section 3
we describe the fix for the MD4 family of hash func­
tions (and especially implement it on MD4, MD5 and
SHA-1) and discuss why the current attacks would
not be successful in that case, and in Section 4 we give
conclusions. We have compiled an Appendix 1 where
we present a C source code for the modified MD4,
MD5 and SHA-1 that have working names: MD4Q,
MD5Q and SHA-1Q.

A brief summary of success­
ful attacks on hash functions
from the MD4 family

In this section we will start by a brief description
of the hash functions MD4, MD5 and SHA-1. The
description is not detailed, and the reader can find
complete description of them in [1, 2, 3]. We will use
the notation that Dobbertin used in his paper [4].

The compression function of MD4 uses three
Boolean functions

F (U, V, W) = (U ∧ V) ∨ (¬U ∧ W),
G(U, V, W) = (U ∧ V) ∨ (U ∧ W) ∨ (V ∧ W),
H(U, V, W) = U ⊕ V ⊕ W

that acts bitwise on 32-bit boolean vectors U, V and
W . It uses two additive constants and it updates the
value of the variable a (which is one of four working
32-bit variables a, b, c and d) by one of the three as­
signments FF (a, b, c, d, Z, s), GG(a, b, c, d, Z, s) and
HH(a, b, c, d, Z, s) that are defined as follows:

FF : a := (a + F (b, c, d) + Z)«s ,
GG : a := (a + G(b, c, d) + Z)«s ,
HH : a := (a + H(b, c, d) + Z)«s .

MD4 has 3 rounds of 16 steps each, and in each
step one of the working 32-bit variables is updated.

The compression function of MD5 uses four
Boolean functions

F (U, V, W) = (U ∧ V) ∨ (¬U ∧ W),
G(U, V, W) = (U ∧ W) ∨ (V ∧ ¬W),
H(U, V, W) = U ⊕ V ⊕ W,
I(U, V, W) = (U ∨ ¬W) ⊕ V

It uses 64 additive constants and it updates the value
of the variable a (which is one of four working 32­
bit variables a, b, c and d) by one of the four as­
signments FF (a, b, c, d, Z, Y, s), GG(a, b, c, d, Z, Y, s),
HH(a, b, c, d, Z, Y, s) and II(a, b, c, d, Z, Y, s) that are
defined as follows:

FF : a := b + (a + F (b, c, d) + Z + Y)«s ,
GG : a := b + (a + G(b, c, d) + Z + Y)«s ,
HH : a := b + (a + H(b, c, d) + Z + Y)«s ,
II : a := b + (a + I(b, c, d) + Z + Y)«s .

MD5 has 4 rounds of 16 steps each, and in each step
one of the working 32-bit variables is updated.

Finally, we give brief description of main compo­
nents in the definition of SHA-1. It uses the same
three Boolean functions as MD4, but in 4 rounds and
in the following order:

F (U, V, W) = (U ∧ V) ∨ (¬U ∧ W),
H(U, V, W) = U ⊕ V ⊕ W,
G(U, V, W) = (U ∧ V) ∨ (U ∧ W) ∨ (V ∧ W),
H(U, V, W) = U ⊕ V ⊕ W

It uses four additive constants and has five working
32-bit variables: a, b, c, d and e. Every round has 20
steps, and it uses an internal procedure for message
expansion from 16 to 80, 32-bit variables. Its output
is 160 bits. The assignments of working variables is

done by the following functions:

t := a«5 + F (b, c, d) + e + W + K,
(a, b, c, d, e) := (t, a, b«30, c, d),

t := a«5 + H(b, c, d) + e + W + K,
(a, b, c, d, e) := (t, a, b«30, c, d),

t := a«5 + G(b, c, d) + e + W + K,
(a, b, c, d, e) := (t, a, b«30, c, d),

t := a«5 + H(b, c, d) + e + W + K,
(a, b, c, d, e) := (t, a, b«30, c, d)

where W are 32-bit variables obtained by message ex­
pansion and K can have one of four predefined values
of additive constants.

The first published successful attack on the last two
rounds of MD4 was made by den Boer and Bosselaers
in [5]. One of the crucial parts of their attack is solv­
ing 32 equations with 48 unknown 32-bit variables,
and then again solving a system of 16 equations with
16 unknown 32-bit variables. Setting up and success­
fully solving such a system of equations is due to the
fact that operations GG and HH use easily invertible
operations of addition modulo 232 and left rotation.

In his attack on the full MD4, Dobbertin [4] used
the same principle as den Boer and Bosselaers, with
several crucial observations on weak development
of differences (caused by the operations of addition
modulo 232) in steps 12-19. In his paper he sets up 8
equations with 14 unknown 32-bit variables for find­
ing inner almost-collisions. Again, obtaining those
8 equations is very easy having in mind invertibil­
ity of addition modulo 232 and left rotation. Further
on in the paper all other analysis and computing ef­
forts to find collisions of MD4 are again expressed by
systems of equations heavily exploiting the fact that
every step in MD4 involves invertible operations of
addition modulo 232 and left rotation.

The successful series of attacks on MD5 hash func­
tion started early in 1993 with the work of den Boer
and Bosselaers in their paper [6]. Again, with clever
techniques of choosing ”magic” numbers as a target
values to obtain, they analyze the first two rounds
of MD5 finding collisions by ”walking forward” and

”walking backward” - i.e. tracing the obtained dif­
ferences, and solving simple linear equations for some
parts of the processed message. The part 2.2 of their
algorithm explicitly describes equations that are ob­
tained directly from the equations of MD5 that in­
volves invertible operations of addition modulo 232

and left rotation.
Then in 1996 at the rump session of Eurocrypt ’96

by the similar techniques as den Boer and Bosselaers,
Dobbertin provided even better results on finding col­
lisions for MD5. Again, the crucial role was on the
fact that setting up equations for tracing the differ­
ences although complicated, was possible due to the
fact that compression function of MD5 uses the in­
vertible operations of addition modulo 232 and left
rotation.

Finally in 2004 at the rump session of CRYPTO
2004 (as well as at Cryptology ePrint Archive) Wang
at al. presented concrete results of breaking MD5,
HAVAL-128 and RIPEMD hash functions [7, 8].
Shortly after that, Wang at al. in February 2005 gave
the note about their latest findings about SHA-1 and
the possibility to find collisions after 269 SHA-1 hash
computations [9]. Although the approach of Wang
at al. is much broader and more complicated, we
can say that again the basic principle of finding the
collisions is exploiting the invertible and linear prop­
erties of the functions used in MD4 family of hash
functions.

3	 A Quasigroup fix for the
MD4 family of hash functions

In this section we will describe a technique of bijec­
tive transformation of a 32-bit variable called ’Quasi­
group Fold’. For that purpose we will use one ran­
domly generated and fixed quasigroup (Q, ∗) of order
16 that is non-commutative, non-associative, non­
idempotent and without (left, right) neutral element.
An example of such a quasigroup is given in Table 1.

We will give here only basic definitions for quasi-
groups and quasigroup operations. The reader can
find more detailed explanation in [10] and [11].

Definition 1 A quasigroup is a groupoid (Q, ∗) sat­

Table 1: A quasigroup (Q, ∗) of order 16

∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 a 4 5 9 6 0 e 1 2 c d f 3 8 b 7
1 5 b c 8 4 e 0 7 3 2 f a 1 9 d 6
2 c 5 2 d f 8 a e 1 3 6 7 b 0 9 4
3 7 d 3 e 2 1 b c 5 9 4 8 0 f 6 a
4 1 2 4 a b 7 8 9 0 d 3 e 6 c 5 f
5 4 a 8 b d 2 c 6 e f 5 9 7 3 1 0
6 0 e d 2 8 3 6 5 c b 7 4 9 a f 1
7 b 6 0 5 9 d 4 8 7 a 2 3 f 1 e c
8 d 8 6 1 c a f 0 b 5 9 2 4 7 3 e
9 2 f 1 0 7 c 5 b 9 6 8 d a e 4 3
a 6 c b 7 a f 1 3 4 8 e 0 d 5 2 9
b 8 1 f 6 3 9 7 4 a e c 5 2 d 0 b
c f 3 9 4 e 6 2 d 8 7 0 1 c b a 5
d e 9 7 3 1 b d f 6 0 a c 5 4 8 2
e 3 0 e c 5 4 9 a f 1 b 6 8 2 7 d
f 9 7 a f 0 5 3 2 d 4 1 b e 6 c 8

isfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x = v, y ∗ u = v).

Hence, a quasigroup satisfies the cancellation laws

x ∗ y = x ∗ z =⇒ y = z, y ∗ x = z ∗ x =⇒ y = z

and the equations a ∗ x = b, y ∗ a = b have unique
solutions x, y for each a, b ∈ Q. If (Q, ∗) is a quasi-
group, then ∗ is called a quasigroup operation.

Here we consider only finite quasigroups, i.e Q is
a finite set. Closely related combinatorial structures
to finite quasigroups are the so called Latin squares:
a Latin square L on a finite set Q (with cardinality
|Q| = s) is an s × s-matrix with elements from Q
such that each row and each column of the matrix is
a permutation of Q. To any finite quasigroup (Q, ∗)
given by its multiplication table there is an associated
Latin square L, consisting of the matrix formed by
the main body of the table, and each Latin square L
on a set Q defines a quasigroup (Q, ∗).

Given a quasigroup (Q, ∗) five new operations, so
called parastrophes or adjoint operations, can be de­
rived from the operation ∗. We will need only the
following two, denoted by \ and /, and defined by:

x ∗ y = z ⇐⇒ y = x \ z ⇐⇒ x = z/y (1)

Then the algebra (Q, ∗, \, /) satisfies the identities

x\(x∗y) = y, x∗(x\y) = y, (x∗y)/y = x, (x/y)∗y = x
(2)

and (Q, \), (Q, /) are quasigroups too. The quasi-
group (Q, \) is called left parastrophe and (Q, /) right
parastrophe of (Q, ∗).

The corresponding (Q, \) and (Q, /) of the quasi-
group defined in Table 1 are given in Table 2 and
3.

Table 2: The left parastrophe (Q, \) of (Q, ∗)
\ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 5 7 8 c 1 2 4 f d 3 0 e 9 a 6 b
1 6 c 9 8 4 0 f 7 3 d b 1 2 e 5 a
2 d 8 2 9 f 1 a b 5 e 6 c 0 3 7 4
3 c 5 4 2 a 8 e 0 b 9 f 6 7 1 3 d
4 8 0 1 a 2 e c 5 6 7 3 4 d 9 b f
5 f e 5 d 0 a 7 c 2 b 1 3 6 4 8 9
6 0 f 3 5 b 7 6 a 4 c d 9 8 2 1 e
7 2 d a b 6 3 1 8 7 4 9 0 f 5 e c
8 7 3 b e c 9 2 d 1 a 5 8 4 0 f 6
9 3 2 0 f e 6 9 4 a 8 c 7 5 b d 1
a b 6 e 7 8 d 0 3 9 f 4 2 1 c a 5
b e 1 c 4 7 b 3 6 0 5 8 f a d 9 2
c a b 6 1 3 f 5 9 8 2 e d c 7 4 0
d 9 4 f 3 d c 8 2 e 1 a 5 b 6 0 7
e 1 9 d 0 5 4 b e c 6 7 a 3 f 2 8
f 4 a 7 6 9 5 d 1 f 0 2 b e 8 c 3

Table 3: The right parastrophe (Q, /) of (Q, ∗)
/ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 6 e 7 9 f 0 1 8 4 d c a 3 2 b 5
1 4 b 9 8 d 3 a 0 2 e f c 1 7 5 6
2 9 4 2 6 3 5 c f 0 1 7 8 b e a d
3 e c 3 d b 6 f a 1 2 4 7 0 5 8 9
4 5 0 4 c 1 e 7 b a f 3 6 8 d 9 2
5 1 2 0 7 e f 9 6 3 8 5 b d a 4 c
6 a 7 8 b 0 c 6 5 d 9 2 e 4 f 3 1
7 3 f d a 9 4 b 1 7 c 6 2 5 8 e 0
8 b 8 5 1 6 2 4 7 c a 9 3 e 0 d f
9 f d c 0 7 b e 4 9 3 8 5 6 1 2 a
a 0 5 f 4 a 8 2 e b 7 d 1 9 6 c 3
b 7 1 a 5 4 d 3 9 8 6 e f 2 c 0 b
c 2 a 1 e 8 9 5 3 6 0 b d c 4 f 7
d 8 3 6 2 5 7 d c f 4 0 9 a b 1 e
e d 6 e 3 c 1 0 2 5 b a 4 f 9 7 8
f c 9 b f 2 a 8 d e 5 1 0 7 3 6 4

Let us represent a variable of 32 bits, a as a con­
catenation of 8, 4-bit variables a1, a2, . . . , a8 i.e.
a = a1a2a3a4a5a6a7a8.

Definition 2 The operation of quasigroup folding of
the variable a = a1a2a3a4a5a6a7a8 is defined by the
following equations:

QFOLD(a) = aU1a
U
2a
U
3a
U
4a5a6a7a8,

aU1 = a1 ∗ a5,
aU2 = a6 ∗ a2, (3)
aU3 = a3 ∗ a7,
aU4 = a8 ∗ a4

From the definition of quasigroup folding opera­
tion and from the properties of the quasigroups the
following proposition follows.

Proposition 1 The operation QFOLD as defined by
the equation (3), is a bijection on the set {0, 1}32 .

The fix for the MD4 family of hash functions we
propose to be the quasigroup folding of variables a in
every step of the definition of the hash function.

Thus, the fix for MD4 would look like this:

FF : a := QFOLD((a + F (b, c, d) + Z)«s),
GG : a := QFOLD((a + G(b, c, d) + Z)«s),
HH : a := QFOLD((a + H(b, c, d) + Z)«s).

The fix for MD5 would be:

FF : a := QFOLD(b + (a + F (b, c, d) + Z + Y)«s),
GG : a := QFOLD(b + (a + G(b, c, d) + Z + Y)«s),
HH : a := QFOLD(b + (a + H(b, c, d) + Z + Y)«s),
II : a := QFOLD(b + (a + I(b, c, d) + Z + Y)«s).

and the fix for SHA-1 would be:

t := QFOLD(a«5 + F (b, c, d) + e + W + K),
(a, b, c, d, e) := (t, a, b«30, c, d),

t := QFOLD(a«5 + H(b, c, d) + e + W + K),
(a, b, c, d, e) := (t, a, b«30, c, d),

t := QFOLD(a«5 + G(b, c, d) + e + W + K),
(a, b, c, d, e) := (t, a, b«30, c, d),

t := QFOLD(a«5 + H(b, c, d) + e + W + K),
(a, b, c, d, e) := (t, a, b«30, c, d)

Since by Proposition 1, we have that the operation
QFOLD is a permutation, it is guaranteed that our
fix of MD4 family of hash functions will not introduce
some undesirable statistical effects such as shrinking
the space of possible outcomes of the hash function
or introducing bias of any kind. On the other hand,
quasigroup folding will make any algebraic attempt
to set up a system of equations that will be easily
solved infeasible. The only possible way to trace the
equations would be with setting up a system of non­
linear quasigroup equations in a quasigroup of or­
der 16, that is non-commutative, non-associative and
without a neutral element.

Let us illustrate that by looking at one of the equa­
tions that Dobbertin obtained in his paper [4]. The
equation (4) in that paper is:

Z«13 − Z«13F (˜ V , ˜W, ˜ U) − F (W, V, U) = ˜

and is obtained by these two equations that are ap­
plied in step 15 of MD4:

Z := (B + F (W, V, U) + X15)«19 ,
Z̃ := (B + F (˜ V , ˜ .W , ˜ U) + X15)«19

If quasigroup folding is applied, then the equations
in that 15-th step will be:

Z := QFOLD((B + F (W, V, U) + X15)«19),
Z̃ := QFOLD((B + F (˜ V , ˜W, ˜ U) + X15)«19).

Let us denote 32-bit variables Z and Z̃ as 8 con­
catenated 4-bit variables, i.e. Z = z1z2z3z4z5z6z7z8

and Z̃ = z̃1z̃2z̃3z̃4z̃5z̃6z̃7z̃8. Then, to obtain the origi­
nal values of the variables Z and Z̃, first this 8 quasi-
group equations would have to be set

Uz1 = z1/z5,
Uz2 = z6 \ z2, Uz3 = z3/z7,
Uz4 = z8 \ z4,

Uz̃1 = z̃1/z̃5,
Uz̃2 = z̃6 \ z̃2, Uz̃3 = z̃3/z̃7,
Uz̃4 = z̃8 \ z̃4,

and then the equation

Z«13 − Z«13F (˜ V , ˜W, ˜ U) − F (W, V, U) = ˜

4

would hold. More specifically, from the definition of
the quasigroup fold it follows that every referencing
of an equation used in some step of the execution of
a MD4 hash function introduces at least 4 nonlin­
ear quasigroup equations with 8 unknown variables
from the set {0, 1, ..., 15}. Thus, by applying quasi-
group folding in every step further, the final system
will end up as a huge nonlinear system of quasigroup
equations. Its solution would demand a huge combi­
natorial effort to try every possible value of the in­
volved variables.

As an additional positive effect that we want to
stress from applying the quasigroup folding technique
is the enormous number of possibilities for choosing
a quasigroup of order 16. Approximately their num­
ber can be calculated from [14] and is more then 2430 .
Thus by applying the quasigroup folding technique on
MDx with different and randomly chosen quasigroups
of order 16, we are dealing not only with several one-
way hash functions but with several huge families of
one-way hash functions. In some protocols for net­
work access this fact can be used to eliminate the
well known dictionary attack, since attackers in such
a case beside the knowledge which particular MDx
hash function was used will have to know the quasi-
group that is used too, which can be kept secret.

Conclusion

We have suggested fixes to the MD4 family of hash
functions by means of quasigroup transformations.
The introduced quasigroup folding will make any al­
gebraic attempt to set up a system of equations that
will be easily solved infeasible. As far as we know,
there are no algebraic methods for solving nonlinear
systems of quasigroup equations in general (and it is
easy to make sure that the quasigroup does not have
any algebraic property that makes solving the equa­
tions efficiently). Thus, techniques that were have
proved to be effective for breaking hash functions
from the MD4 family will become ineffective.

As it is always the case, adding a new operation
will increase the number of computations. In our
proposal we have tried to keep an optimum balance
between making the modified MD4 family of hash

functions resistant to the current successful attacks
and requirements not to decrease the speed of com­
putation of the hash functions too much.

Finally, in accordance to the NIST call for iden­
tifying undesirable properties of hash functions, this
paper can be seen as a contribution in that direction.
The undesirable property of algebraic tractability of
the differences in the hash functions can be removed
by applying the proposed technique of quasigroup
folding in the design of any new hash function. More­
over, the designers of those new one-way hash func­
tions will get not only one particular one-way hash
function but a huge family with more then 2430 one-
way hash functions.

References

[1] Rivest, R.: The MD4 message-digest algorithm,
Request for Comments (RFC) 1320, Internet
Activities Board, Internet Privacy Task Force,
April 1992.

[2] Rivest, R.: The MD5 message-digest algorithm,
Request for Comments (RFC) 1321, Internet
Activities Board, Internet Privacy Task Force,
April 1992.

[3] ”Secure Hash Standard”, United States of Amer­
ican, National Institute of Science and Technol­
ogy, Federal Information Processing Standard
(FIPS) 180-1, April 1993.

[4] Dobbertin, H.: Cryptanalysis of MD4, J. Cryp­
tology (1998) 11: 253271.

[5] den Boer, B., and Bosselaers, A.: An attack on
the last two rounds of MD4, Advances in Cryp­
tology, CRYPTO91, Lecture Notes in Computer
Science, vol. 576, Springer-Verlag, Berlin, 1992,
pp. 194203.

[6] den Boer,	 B., and Bosselaers, A.: Collisions
for the compression function of MD5, Advances
in Cryptology, EUROCRYPT93, Lecture Notes
in Computer Science, vol. 765, Springer-Verlag,
Berlin, 1994, pp. 293304.

[7] Wang, X., Feng, D., Lai, X., Yu, H.: Collisions
for Hash Functions MD4, MD5, HAVAL-128 and
RIPEMD, rump session, CRYPTO 2004.

[8] Wang, X., Feng, D., Lai, X., Yu,	 H.: Colli­
sions for Hash Functions MD4, MD5, HAVAL­
128 and RIPEMD, Cryptology ePrint Archive,
Report 2004/199, first version (August 16,
2004), second version (August 17, 2004),
http://eprint.iacr.org/2004/199.pdf

[9] Wang,	 X., Lai, X., Yu, H.,: Col­
lision Search Attacks on SHA1,
http://theory.csail.mit.edu/ yiqun/shanote.pdf,
February 2005.

[10] J. Dénes and A.D. Keedwell, Latin Squares and
their Applications, English Univer. Press Ltd.
(1974)

[11] Markovski,	 S., Gligoroski, D., Bakeva, V.:
Quasigroup String Processing: Part 1. Contri­
butions, Sec. Math. Tech. Sci., MANU XX, 1-2
(1999) 13–28

[12] Markovski,	 S., Gligoroski, D., Bakeva, V.:
Quasigroup and Hash Functions, Disc. Math.
and Appl, Sl.Shtrakov and K. Denecke ed., Pro­
ceedings of the 6th ICDMA, Bulgaria 2001, 43–
50

[13] Gligoroski,	 D., Markovski, S., Bakeva, V.:
On Infinite Class of Strongly Collision Resis­
tant Hash Functions ”EDON-F” with Variable
Length of Output. Proc. 1-st Inter. Conf. Mathe­
matics and Informatics for industry MII, Greece,
Thessaloniki (2003) 302–308

[14] McKay, B.D., and Rogoyski, E.: Latin squares of
order ten, Electronic J. Combinatorics, 2 (1995)
#N3.

Appendix 1: C sources of fixed MD4,
MD5 and SHA-1 hash functions by
quasigroup folding

Here we provide three main C sources that can be
used with original test drive programs for MD4, MD5
and SHA-1.

Here is the source for MD4Q.C
/* MD4CQ.C - An altered MD4 algorithm that fixes the weaknesses of

MD4 message-digest algorithm
*/

/* The modification made by Danilo Gligoroski 20.06.2005.

Danilo Gligoroski makes no representations concerning either

the merchantability of this software or the suitability of this

software for any particular purpose. It is provided "as is"

without express or implied warranty of any kind.

This work was carried out during the tenure of an ERCIM fellowship

of D. Gligoroski visiting Q2S - Centre for Quantifiable Quality of

Service in Communication Systems at Norwegian University of Science

and Technology - Trondheim, Norway.

*/

/* MD4C.C - RSA Data Security, Inc., MD4 message-digest algorithm
*/

/* Copyright (C) 1990-2, RSA Data Security, Inc. All rights
reserved.

License to copy and use this software is granted provided that it

is identified as the "RSA Data Security, Inc. MD4 Message-Digest

Algorithm" in all material mentioning or referencing this software

or this function.

License is also granted to make and use derivative works provided

that such works are identified as "derived from the RSA Data

Security, Inc. MD4 Message-Digest Algorithm" in all material

mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either

the merchantability of this software or the suitability of this

software for any particular purpose. It is provided "as is"

without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this

documentation and/or software.

*/

#include "global.h" #include "md4.h"

/* This is the definition of the quasigroup Q of order 16x16. */
unsigned char Q[256] ={ 10, 4, 5, 9, 6, 0, 14, 1, 2, 12,
13, 15, 3, 8, 11, 7,
5, 11, 12, 8, 4, 14, 0, 7, 3, 2, 15, 10, 1, 9, 13, 6,
12, 5, 2, 13, 15, 8, 10, 14, 1, 3, 6, 7, 11, 0, 9, 4,
7, 13, 3, 14, 2, 1, 11, 12, 5, 9, 4, 8, 0, 15, 6, 10,
1, 2, 4, 10, 11, 7, 8, 9, 0, 13, 3, 14, 6, 12, 5, 15,
4, 10, 8, 11, 13, 2, 12, 6, 14, 15, 5, 9, 7, 3, 1, 0,
0, 14, 13, 2, 8, 3, 6, 5, 12, 11, 7, 4, 9, 10, 15, 1,
11,	 6, 0, 5, 9, 13, 4, 8, 7, 10, 2, 3, 15, 1, 14, 12,
13, 8, 6, 1, 12, 10, 15, 0, 11, 5, 9, 2, 4, 7, 3, 14,
2, 15, 1, 0, 7, 12, 5, 11, 9, 6, 8, 13, 10, 14, 4, 3,
6, 12, 11, 7, 10, 15, 1, 3, 4, 8, 14, 0, 13, 5, 2, 9,
8, 1, 15, 6, 3, 9, 7, 4, 10, 14, 12, 5, 2, 13, 0, 11,
15,	 3, 9, 4, 14, 6, 2, 13, 8, 7, 0, 1, 12, 11, 10, 5,
14, 9, 7, 3, 1, 11, 13, 15, 6, 0, 10, 12, 5, 4, 8, 2,
3, 0, 14, 12, 5, 4, 9, 10, 15, 1, 11, 6, 8, 2, 7, 13,
9, 7, 10, 15, 0, 5, 3, 2, 13, 4, 1, 11, 14, 6, 12, 8
};

/* First 16 bits of a variable ’a’ will be changed by 16 bits
obtained by quasigroup transformation defined below. */ #define
QFOLD(a) {\

(a) = ((a)&0x0fffffff)|(((unsigned char)Q[(((a)&0xf0000000)>>28)| \

(((a)&0x0000f000)>> 8)])<<28);\

(a) = ((a)&0xf0ffffff)|(((unsigned char)Q[(((a)&0x0f000000)>>20)| \

(((a)&0x00000f00)>> 8)])<<24);\

(a) = ((a)&0xff0fffff)|(((unsigned char)Q[(((a)&0x00f00000)>>20)| \

(((a)&0x000000f0))])<<20);\

(a) = ((a)&0xfff0ffff)|(((unsigned char)Q[(((a)&0x000f0000)>>12)| \
(((a)&0x0000000f))])<<16);\

}

/* Constants for MD4Transform routine.

http:http://theory.csail.mit.edu
http://eprint.iacr.org/2004/199.pdf

*/
#define S11 3 #define S12 7 #define S13 11 #define S14 19 #define
S21 3 #define S22 5 #define S23 9 #define S24 13 #define S31 3
#define S32 9 #define S33 11 #define S34 15

static void MD4Transform PROTO_LIST ((UINT4 [4], unsigned char
[64])); static void Encode PROTO_LIST

((unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST

((UINT4 *, unsigned char *, unsigned int));
static void MD4_memcpy PROTO_LIST ((POINTER, POINTER, unsigned
int)); static void MD4_memset PROTO_LIST ((POINTER, int, unsigned
int));

static unsigned char PADDING[64] = {
0x80,
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};

/* F, G and H are basic MD4 functions.
*/

#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z)
(((x) & (y)) | ((x) & (z)) | ((y) & (z))) #define H(x, y, z) ((x)
^ (y) ^ (z))

/* ROTATE_LEFT rotates x left n bits.
*/

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG and HH are transformations for rounds 1, 2 and 3 */ /*
Rotation is separate from addition to prevent recomputation */

#define FF(a, b, c, d, x, s) { \
(a) += F ((b), (c), (d)) + (x); \
(a) = ROTATE_LEFT ((a), (s)); \

QFOLD((a));\

}
#define GG(a, b, c, d, x, s) { \

(a) += G ((b), (c), (d)) + (x) + (UINT4)0x5a827999; \
(a) = ROTATE_LEFT ((a), (s)); \

QFOLD((a));\

}
#define HH(a, b, c, d, x, s) { \

(a) += H ((b), (c), (d)) + (x) + (UINT4)0x6ed9eba1; \
(a) = ROTATE_LEFT ((a), (s)); \
QFOLD((a));\

}

/* MD4 initialization. Begins an MD4 operation, writing a new
context.
*/

void MD4Init (context) MD4_CTX *context;
/* context */ {

context->count[0] = context->count[1] = 0;

/* Load magic initialization constants.
*/

context->state[0] = 0x67452301;

context->state[1] = 0xefcdab89;

context->state[2] = 0x98badcfe;

context->state[3] = 0x10325476;

}

/* MD4 block update operation. Continues an MD4 message-digest
operation, processing another message block, and updating the
context.

*/
void MD4Update (context, input, inputLen) MD4_CTX *context;
/* context */ unsigned char *input;
/* input block */ unsigned int inputLen; /*
length of input block */ {

unsigned int i, index, partLen;

/* Compute number of bytes mod 64 */

index = (unsigned int)((context->count[0] >> 3) & 0x3F);

/* Update number of bits */

if ((context->count[0] += ((UINT4)inputLen << 3))

< ((UINT4)inputLen << 3))

context->count[1]++;

context->count[1] += ((UINT4)inputLen >> 29);

partLen = 64 - index;

/* Transform as many times as possible.
*/

if (inputLen >= partLen) {
MD4_memcpy

((POINTER)&context->buffer[index], (POINTER)input, partLen);
MD4Transform (context->state, context->buffer);

for (i = partLen; i + 63 < inputLen; i += 64)

MD4Transform (context->state, &input[i]);

index = 0;

}

else

i = 0;

/* Buffer remaining input */
MD4_memcpy

((POINTER)&context->buffer[index], (POINTER)&input[i],
inputLen-i);

}

/* MD4 finalization. Ends an MD4 message-digest operation, writing
the

the message digest and zeroizing the context.
*/
void MD4Final (digest, context) unsigned char digest[16];
/* message digest */ MD4_CTX *context;
/* context */ {

unsigned char bits[8];

unsigned int index, padLen;

/* Save number of bits */

Encode (bits, context->count, 8);

/* Pad out to 56 mod 64.
*/

index = (unsigned int)((context->count[0] >> 3) & 0x3f);

padLen = (index < 56) ? (56 - index) : (120 - index);

MD4Update (context, PADDING, padLen);

/* Append length (before padding) */

MD4Update (context, bits, 8);

/* Store state in digest */

Encode (digest, context->state, 16);

/* Zeroize sensitive information.
*/

MD4_memset ((POINTER)context, 0, sizeof (*context));
}

/* MD4 basic transformation. Transforms state based on block.
*/
static void MD4Transform (state, block) UINT4 state[4]; unsigned
char block[64]; {

UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

Decode (x, block, 64);

/* Round 1 */

FF (a, b, c, d, x[0], S11); /* 1 */

FF (d, a, b, c, x[1], S12); /* 2 */

FF (c, d, a, b, x[2], S13); /* 3 */

FF (b, c, d, a, x[3], S14); /* 4 */

FF (a, b, c, d, x[4], S11); /* 5 */

FF (d, a, b, c, x[5], S12); /* 6 */

FF (c, d, a, b, x[6], S13); /* 7 */

FF (b, c, d, a, x[7], S14); /* 8 */

FF (a, b, c, d, x[8], S11); /* 9 */

FF (d, a, b, c, x[9], S12); /* 10 */

FF (c, d, a, b, x[10], S13); /* 11 */

FF (b, c, d, a, x[11], S14); /* 12 */

FF (a, b, c, d, x[12], S11); /* 13 */

FF (d, a, b, c, x[13], S12); /* 14 */

FF (c, d, a, b, x[14], S13); /* 15 */

FF (b, c, d, a, x[15], S14); /* 16 */

/* Round 2 */

GG (a, b, c, d, x[0], S21); /* 17 */

GG (d, a, b, c, x[4], S22); /* 18 */

GG (c, d, a, b, x[8], S23); /* 19 */

GG (b, c, d, a, x[12], S24); /* 20 */

GG (a, b, c, d, x[1], S21); /* 21 */

GG (d, a, b, c, x[5], S22); /* 22 */

GG (c, d, a, b, x[9], S23); /* 23 */

GG (b, c, d, a, x[13], S24); /* 24 */

GG (a, b, c, d, x[2], S21); /* 25 */

GG (d, a, b, c, x[6], S22); /* 26 */

GG (c, d, a, b, x[10], S23); /* 27 */

GG (b, c, d, a, x[14], S24); /* 28 */

GG (a, b, c, d, x[3], S21); /* 29 */

GG (d, a, b, c, x[7], S22); /* 30 */

GG (c, d, a, b, x[11], S23); /* 31 */

GG (b, c, d, a, x[15], S24); /* 32 */

/* Round 3 */

HH (a, b, c, d, x[0], S31); /* 33 */

HH (d, a, b, c, x[8], S32); /* 34 */

HH (c, d, a, b, x[4], S33); /* 35 */

HH (b, c, d, a, x[12], S34); /* 36 */

HH (a, b, c, d, x[2], S31); /* 37 */

HH (d, a, b, c, x[10], S32); /* 38 */

HH (c, d, a, b, x[6], S33); /* 39 */

HH (b, c, d, a, x[14], S34); /* 40 */

HH (a, b, c, d, x[1], S31); /* 41 */

HH (d, a, b, c, x[9], S32); /* 42 */

HH (c, d, a, b, x[5], S33); /* 43 */

HH (b, c, d, a, x[13], S34); /* 44 */

HH (a, b, c, d, x[3], S31); /* 45 */

HH (d, a, b, c, x[11], S32); /* 46 */

HH (c, d, a, b, x[7], S33); /* 47 */

HH (b, c, d, a, x[15], S34); /* 48 */

state[0] += a;

state[1] += b;

state[2] += c;

state[3] += d;

/* Zeroize sensitive information.
*/

MD4_memset ((POINTER)x, 0, sizeof (x));
}

/* Encodes input (UINT4) into output (unsigned char). Assumes len
is

a multiple of 4.
*/

static void Encode (output, input, len) unsigned char *output;
UINT4 *input; unsigned int len; {

unsigned int i, j;

for (i = 0, j = 0; j < len; i++, j += 4) {

output[j] = (unsigned char)(input[i] & 0xff);

output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);

output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);

output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);

}
}

/* Decodes input (unsigned char) into output (UINT4). Assumes len
is

a multiple of 4.
*/

static void Decode (output, input, len)

UINT4 *output; unsigned char *input; unsigned int len; {
unsigned int i, j;

for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |

(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}

/* Note: Replace "for loop" with standard memcpy if possible.
*/

static void MD4_memcpy (output, input, len) POINTER output;
POINTER input; unsigned int len; {

unsigned int i;

for (i = 0; i < len; i++)
output[i] = input[i];

}

/* Note: Replace "for loop" with standard memset if possible.
*/

static void MD4_memset (output, value, len) POINTER output; int
value; unsigned int len; {

unsigned int i;

for (i = 0; i < len; i++)
((char *)output)[i] = (char)value;

}

Here is the source for MD5Q.C

/* MD5CQ.C - An altered MD5 algorithm that fixes the weaknesses of
MD5 message-digest algorithm

*/

/* The modification made by Danilo Gligoroski 20.06.2005.

Danilo Gligoroski makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

This work was carried out during the tenure of an ERCIM fellowship

of D. Gligoroski visiting Q2S - Centre for Quantifiable Quality of
Service in Communication Systems at Norwegian University of Science
and Technology - Trondheim, Norway.

*/

/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
*/

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
*/

#include "global.h" #include "md5.h"

#include <memory.h>

/* This is the definition of the quasigroup Q of order 16x16. */
unsigned char Q[256] ={ 10, 4, 5, 9, 6, 0, 14, 1, 2, 12,
13, 15, 3, 8, 11, 7,
5, 11, 12, 8, 4, 14, 0, 7, 3, 2, 15, 10, 1, 9, 13, 6,
12, 5, 2, 13, 15, 8, 10, 14, 1, 3, 6, 7, 11, 0, 9, 4,
7, 13, 3, 14, 2, 1, 11, 12, 5, 9, 4, 8, 0, 15, 6, 10,
1, 2, 4, 10, 11, 7, 8, 9, 0, 13, 3, 14, 6, 12, 5, 15,
4, 10, 8, 11, 13, 2, 12, 6, 14, 15, 5, 9, 7, 3, 1, 0,
0, 14, 13, 2, 8, 3, 6, 5, 12, 11, 7, 4, 9, 10, 15, 1,
11, 6, 0, 5, 9, 13, 4, 8, 7, 10, 2, 3, 15, 1, 14, 12,
13, 8, 6, 1, 12, 10, 15, 0, 11, 5, 9, 2, 4, 7, 3, 14,
2, 15, 1, 0, 7, 12, 5, 11, 9, 6, 8, 13, 10, 14, 4, 3,
6, 12, 11, 7, 10, 15, 1, 3, 4, 8, 14, 0, 13, 5, 2, 9,
8, 1, 15, 6, 3, 9, 7, 4, 10, 14, 12, 5, 2, 13, 0, 11,
15, 3, 9, 4, 14, 6, 2, 13, 8, 7, 0, 1, 12, 11, 10, 5,
14, 9, 7, 3, 1, 11, 13, 15, 6, 0, 10, 12, 5, 4, 8, 2,
3, 0, 14, 12, 5, 4, 9, 10, 15, 1, 11, 6, 8, 2, 7, 13,
9, 7, 10, 15, 0, 5, 3, 2, 13, 4, 1, 11, 14, 6, 12, 8
};

/* First 16 bits of a variable ’a’ will be changed by 16 bits
obtained by quasigroup transformation defined below. */ #define
QFOLD(a) {\

(a) = ((a)&0x0fffffff)|(((unsigned char)Q[(((a)&0xf0000000)>>28)| \
(((a)&0x0000f000)>> 8)])<<28);\
(a) = ((a)&0xf0ffffff)|(((unsigned char)Q[(((a)&0x0f000000)>>20)| \
(((a)&0x00000f00)>> 8)])<<24);\
(a) = ((a)&0xff0fffff)|(((unsigned char)Q[(((a)&0x00f00000)>>20)| \
(((a)&0x000000f0))])<<20);\
(a) = ((a)&0xfff0ffff)|(((unsigned char)Q[(((a)&0x000f0000)>>12)| \
(((a)&0x0000000f))])<<16);\

}

/* Constants for MD5Transform routine.
*/
#define S11 7 #define S12 12 #define S13 17 #define S14 22 #define
S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4
#define S32 11 #define S33 16 #define S34 23 #define S41 6 #define
S42 10 #define S43 15 #define S44 21

static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char
[64])); static void Encode PROTO_LIST

((unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST

((UINT4 *, unsigned char *, unsigned int));
static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned
int)); static void MD5_memset PROTO_LIST ((POINTER, int, unsigned
int));

static unsigned char PADDING[64] = {
0x80,
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};

/* F, G, H and I are basic MD5 functions.
*/

#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z)
(((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
*/

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
*/

#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \

QFOLD((a));\

}

#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \

QFOLD((a));\

}

#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \

QFOLD((a));\

}

#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
QFOLD((a));\

}

/* MD5 initialization. Begins an MD5 operation, writing a new
context.
*/

void MD5Init (context) MD5_CTX *context;
/* context */ {

context->count[0] = context->count[1] = 0;

/* Load magic initialization constants.

*/
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;

}

/* MD5 block update operation. Continues an MD5 message-digest
operation, processing another message block, and updating the
context.
*/

void MD5Update (context, input, inputLen) MD5_CTX *context;
/* context */ unsigned char *input;
/* input block */ unsigned int inputLen; /*
length of input block */ {

unsigned int i, index, partLen;

/* Compute number of bytes mod 64 */

index = (unsigned int)((context->count[0] >> 3) & 0x3F);

/* Update number of bits */

if ((context->count[0] += ((UINT4)inputLen << 3))

< ((UINT4)inputLen << 3))

context->count[1]++;

context->count[1] += ((UINT4)inputLen >> 29);

partLen = 64 - index;

/* Transform as many times as possible.
*/

if (inputLen >= partLen) {
MD5_memcpy

((POINTER)&context->buffer[index], (POINTER)input, partLen);
MD5Transform (context->state, context->buffer);

for (i = partLen; i + 63 < inputLen; i += 64)

MD5Transform (context->state, &input[i]);

index = 0;

}

else

i = 0;

/* Buffer remaining input */
MD5_memcpy
((POINTER)&context->buffer[index], (POINTER)&input[i],
inputLen-i);

}

/* MD5 finalization. Ends an MD5 message-digest operation, writing
the

the message digest and zeroizing the context.
*/
void MD5Final (digest, context) unsigned char digest[16];
/* message digest */ MD5_CTX *context;
/* context */ {

unsigned char bits[8];
unsigned int index, padLen;

/* Save number of bits */
Encode (bits, context->count, 8);

/* Pad out to 56 mod 64.
*/

index = (unsigned int)((context->count[0] >> 3) & 0x3f);
padLen = (index < 56) ? (56 - index) : (120 - index);
MD5Update (context, PADDING, padLen);

/* Append length (before padding) */

MD5Update (context, bits, 8);

/* Store state in digest */

Encode (digest, context->state, 16);

/* Zeroize sensitive information.
*/

MD5_memset ((POINTER)context, 0, sizeof (*context));
}

/* MD5 basic transformation. Transforms state based on block.
*/
static void MD5Transform (state, block) UINT4 state[4]; unsigned
char block[64]; {

UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

Decode (x, block, 64);

/* Round 1 */

FF (a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */

FF (d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */

FF (c, d, a, b, x[2], S13, 0x242070db); /* 3 */

FF (b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */

FF (a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */

FF (d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */

FF (c, d, a, b, x[6], S13, 0xa8304613); /* 7 */

FF (b, c, d, a, x[7], S14, 0xfd469501); /* 8 */

FF (a, b, c, d, x[8], S11, 0x698098d8); /* 9 */

FF (d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */

FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */

FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */

FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */

FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */

FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */

FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

/* Round 2 */

GG (a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */

GG (d, a, b, c, x[6], S22, 0xc040b340); /* 18 */

GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */

GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */

GG (a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */

GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */

GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */

GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */

GG (a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */

GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */

GG (c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */

GG (b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */

GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */

GG (d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */

GG (c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */

GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

/* Round 3 */

HH (a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */

HH (d, a, b, c, x[8], S32, 0x8771f681); /* 34 */

HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */

HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */

HH (a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */

HH (d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */

HH (c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */

HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */

HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */

HH (d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */

HH (c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */

HH (b, c, d, a, x[6], S34, 0x4881d05); /* 44 */

HH (a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */

HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */

HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */

HH (b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */

*/
/* Round 4 */
II (a, b, c, d, x[0], S41, 0xf4292244); /* 49 */ /* The modification made by Danilo Gligoroski 20.06.2005.
II (d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ Danilo Gligoroski makes no representations concerning either
II (b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */ the merchantability of this software or the suitability of this
II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ software for any particular purpose. It is provided "as is"
II (d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */ without express or implied warranty of any kind.
II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II (b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */ This work was carried out during the tenure of an ERCIM fellowship
II (a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */ of D. Gligoroski visiting Q2S - Centre for Quantifiable Quality of
II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ Service in Communication Systems at Norwegian University of Science
II (c, d, a, b, x[6], S43, 0xa3014314); /* 59 */ and Technology - Trondheim, Norway.
II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ */
II (a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ /*
II (c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */ * sha1.c
II (b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */ *

* Description:
state[0] += a; * This file implements the Secure Hashing Algorithm 1 as
state[1] += b; * defined in FIPS PUB 180-1 published April 17, 1995.
state[2] += c; *
state[3] += d; * The SHA-1, produces a 160-bit message digest for a given

* data stream. It should take about 2**n steps to find a
/* Zeroize sensitive information. * message with the same digest as a given message and

*/ * 2**(n/2) to find any two messages with the same digest,
MD5_memset ((POINTER)x, 0, sizeof (x)); * when n is the digest size in bits. Therefore, this

} * algorithm can serve as a means of providing a
* "fingerprint" for a message.

/* Encodes input (UINT4) into output (unsigned char). Assumes len *
is * Portability Issues:

a multiple of 4. * SHA-1 is defined in terms of 32-bit "words". This code
*/ * uses <stdint.h> (included via "sha1.h" to define 32 and 8

static void Encode (output, input, len) unsigned char *output; * bit unsigned integer types. If your C compiler does not
UINT4 *input; unsigned int len; { * support 32 bit unsigned integers, this code is not

unsigned int i, j; * appropriate.
*

for (i = 0, j = 0; j < len; i++, j += 4) { * Caveats:
output[j] = (unsigned char)(input[i] & 0xff); * SHA-1 is designed to work with messages less than 2^64 bits
output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); * long. Although SHA-1 allows a message digest to be generated
output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); * for messages of any number of bits less than 2^64, this
output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); * implementation only works with messages with a length that is
} * a multiple of the size of an 8-bit character.

} *
*/

/* Decodes input (unsigned char) into output (UINT4). Assumes len
is #include "sha1.h"

a multiple of 4.
/ / This is the definition of the quasigroup Q of order 16x16. */

static void Decode (output, input, len) UINT4 *output; unsigned unsigned char Q[256] ={ 10, 4, 5, 9, 6, 0, 14, 1, 2, 12,
char *input; unsigned int len; { 13, 15, 3, 8, 11, 7,

unsigned int i, j; 5, 11, 12, 8, 4, 14, 0, 7, 3, 2, 15, 10, 1, 9, 13, 6,
12, 5, 2, 13, 15, 8, 10, 14, 1, 3, 6, 7, 11, 0, 9, 4,

for (i = 0, j = 0; j < len; i++, j += 4) 7, 13, 3, 14, 2, 1, 11, 12, 5, 9, 4, 8, 0, 15, 6, 10,
output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | 1, 2, 4, 10, 11, 7, 8, 9, 0, 13, 3, 14, 6, 12, 5, 15,

(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); 4, 10, 8, 11, 13, 2, 12, 6, 14, 15, 5, 9, 7, 3, 1, 0,
} 0, 14, 13, 2, 8, 3, 6, 5, 12, 11, 7, 4, 9, 10, 15, 1,

11, 6, 0, 5, 9, 13, 4, 8, 7, 10, 2, 3, 15, 1, 14, 12,
/* Note: Replace "for loop" with standard memcpy if possible. 13, 8, 6, 1, 12, 10, 15, 0, 11, 5, 9, 2, 4, 7, 3, 14,
*/ 2, 15, 1, 0, 7, 12, 5, 11, 9, 6, 8, 13, 10, 14, 4, 3,

6, 12, 11, 7, 10, 15, 1, 3, 4, 8, 14, 0, 13, 5, 2, 9,
static void MD5_memcpy (output, input, len) POINTER output; 8, 1, 15, 6, 3, 9, 7, 4, 10, 14, 12, 5, 2, 13, 0, 11,
POINTER input; unsigned int len; { /* 15, 3, 9, 4, 14, 6, 2, 13, 8, 7, 0, 1, 12, 11, 10, 5,

unsigned int i; 14, 9, 7, 3, 1, 11, 13, 15, 6, 0, 10, 12, 5, 4, 8, 2,
3, 0, 14, 12, 5, 4, 9, 10, 15, 1, 11, 6, 8, 2, 7, 13,

for (i = 0; i < len; i++) 9, 7, 10, 15, 0, 5, 3, 2, 13, 4, 1, 11, 14, 6, 12, 8
output[i] = input[i]; };

*/
memcpy(output,input,len); /* First 16 bits of a variable ’a’ will be changed by 16 bits

} obtained by quasigroup transformation defined below. */ #define
QFOLD(a) {\

/* Note: Replace "for loop" with standard memset if possible. (a) = ((a)&0x0fffffff)|(((unsigned char)Q[(((a)&0xf0000000)>>28)| \
*/ (((a)&0x0000f000)>> 8)])<<28);\

static void MD5_memset (output, value, len) POINTER output; int (a) = ((a)&0xf0ffffff)|(((unsigned char)Q[(((a)&0x0f000000)>>20)| \
value; unsigned int len; { /* (((a)&0x00000f00)>> 8)])<<24);\

unsigned int i; (a) = ((a)&0xff0fffff)|(((unsigned char)Q[(((a)&0x00f00000)>>20)| \
(((a)&0x000000f0))])<<20);\

for (i = 0; i < len; i++) (a) = ((a)&0xfff0ffff)|(((unsigned char)Q[(((a)&0x000f0000)>>12)| \
((char *)output)[i] = (char)value; (((a)&0x0000000f))])<<16);\

*/ }
memset(output,value,len);

} /*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \

Here is the source for SHA1Q.C (((word) << (bits)) | ((word) >> (32-(bits))))

/* Local Function Prototyptes */ void SHA1PadMessage(SHA1Context
/* SHA1Q.C - An altered SHA-1 algorithm that fixes the weaknesses *); void SHA1ProcessMessageBlock(SHA1Context *);
of

SHA-1 message-digest algorithm /*

* SHA1Reset }

*

* Description:	 /*
* This function will initialize the SHA1Context in preparation * SHA1Input

* for computing a new SHA1 message digest. *

* * Description:

* Parameters:	 * This function accepts an array of octets as the next portion
* context: [in/out] * of the message.

* The context to reset. *

* * Parameters:

* Returns:	 * context: [in/out]
* sha Error Code. * The SHA context to update
* * message_array: [in]
*/ * An array of characters representing the next portion of

int SHA1Reset(SHA1Context *context) {	 * the message.
if (!context)	 * length: [in]
{	 * The length of the message in message_array

return shaNull; *

} * Returns:

* sha Error Code.

context->Length_Low = 0; *

context->Length_High = 0; */

context->Message_Block_Index = 0; int SHA1Input(SHA1Context *context,

const uint8_t *message_array,
context->Intermediate_Hash[0] = 0x67452301;	 unsigned length)
context->Intermediate_Hash[1] = 0xEFCDAB89;	 {
context->Intermediate_Hash[2] = 0x98BADCFE;	 if (!length)
context->Intermediate_Hash[3] = 0x10325476;	 {
context->Intermediate_Hash[4] = 0xC3D2E1F0;	 return shaSuccess;

}
context->Computed	 = 0;
context->Corrupted	 = 0; if (!context || !message_array)

{
return shaSuccess; return shaNull;

} }

/*	 if (context->Computed)
* SHA1Result	 {
*	 context->Corrupted = shaStateError;
* Description:
* This function will return the 160-bit message digest into the	 return shaStateError;
* Message_Digest array provided by the caller.	 }
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.	 if (context->Corrupted)
*	 {
* Parameters:	 return context->Corrupted;
* context: [in/out]	 }
* The context to use to calculate the SHA-1 hash.	 while(length-- && !context->Corrupted)
* Message_Digest: [out]	 {
* Where the digest is returned.	 context->Message_Block[context->Message_Block_Index++] =
*	 (*message_array & 0xFF);
* Returns:
* sha Error Code.	 context->Length_Low += 8;
* if (context->Length_Low == 0)
*/ {

int SHA1Result(SHA1Context *context, context->Length_High++;
uint8_t Message_Digest[SHA1HashSize]) if (context->Length_High == 0)

{ {
int i; /* Message is too long */

context->Corrupted = 1;
if (!context || !Message_Digest)	 }
{	 }

return shaNull;
}	 if (context->Message_Block_Index == 64)

{
if (context->Corrupted)	 SHA1ProcessMessageBlock(context);
{	 }

return context->Corrupted;
}	 message_array++;

}
if (!context->Computed)
{	 return shaSuccess;

SHA1PadMessage(context);	 }
for(i=0; i<64; ++i)
{	 /*

/* message may be sensitive, clear it out */	 * SHA1ProcessMessageBlock
context->Message_Block[i] = 0; *

} * Description:
context->Length_Low = 0; /* and clear length */ * This function will process the next 512 bits of the message
context->Length_High = 0; * stored in the Message_Block array.
context->Computed = 1; *

* Parameters:

} * None.

*

for(i = 0; i < SHA1HashSize; ++i) * Returns:

{ * Nothing.

Message_Digest[i]	 = context->Intermediate_Hash[i>>2] *

>> 8 * (3 - (i & 0x03)); * Comments:

}

* Many of the variable names in this code, especially the

return shaSuccess; * single character names, were used because those were the

* names used in the publication.

*

*

*/

void SHA1ProcessMessageBlock(SHA1Context *context) {
const uint32_t K[] =	 { /* Constants defined in SHA-1 */

0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};

int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */

/*
* Initialize the first 16 words in the array W
*/

for(t = 0; t < 16; t++)

{

W[t] = context->Message_Block[t * 4] << 24;

W[t] |= context->Message_Block[t * 4 + 1] << 16;

W[t] |= context->Message_Block[t * 4 + 2] << 8;

W[t] |= context->Message_Block[t * 4 + 3];

}

for(t = 16; t < 80; t++)
{

W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}

A = context->Intermediate_Hash[0];

B = context->Intermediate_Hash[1];

C = context->Intermediate_Hash[2];

D = context->Intermediate_Hash[3];

E = context->Intermediate_Hash[4];

for(t = 0; t < 20; t++)

{

temp = SHA1CircularShift(5,A) +

((B & C) | ((~B) & D)) + E + W[t] + K[0];

E = D;
D = C;
C = SHA1CircularShift(30,B);

B = A;

A = temp;

QFOLD((A));

}

for(t = 20; t < 40; t++)
{

temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QFOLD((A));

}

for(t = 40; t < 60; t++)

{

temp = SHA1CircularShift(5,A) +

((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];

E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QFOLD((A));

}

for(t = 60; t < 80; t++)
{

temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QFOLD((A));

}

context->Intermediate_Hash[0] += A;

context->Intermediate_Hash[1] += B;

context->Intermediate_Hash[2] += C;

context->Intermediate_Hash[3] += D;

context->Intermediate_Hash[4] += E;

context->Message_Block_Index = 0;
}

/*
* SHA1PadMessage

*

* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a ’1’. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.

*

* Parameters:
* context: [in/out]
* The context to pad
* ProcessMessageBlock: [in]
* The appropriate SHA*ProcessMessageBlock function
* Returns:
* Nothing.

*

*/

void SHA1PadMessage(SHA1Context *context) {
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/

if (context->Message_Block_Index > 55)

{

context->Message_Block[context->Message_Block_Index++] = 0x80;

while(context->Message_Block_Index < 64)

{

context->Message_Block[context->Message_Block_Index++] = 0;
}

SHA1ProcessMessageBlock(context);

while(context->Message_Block_Index < 56)
{

context->Message_Block[context->Message_Block_Index++] = 0;
}

}

else

{

context->Message_Block[context->Message_Block_Index++] = 0x80;

while(context->Message_Block_Index < 56)

{

context->Message_Block[context->Message_Block_Index++] = 0;
}

}

/*
* Store the message length as the last 8 octets
*/

context->Message_Block[56] = context->Length_High >> 24;

context->Message_Block[57] = context->Length_High >> 16;

context->Message_Block[58] = context->Length_High >> 8;

context->Message_Block[59] = context->Length_High;

context->Message_Block[60] = context->Length_Low >> 24;

context->Message_Block[61] = context->Length_Low >> 16;

context->Message_Block[62] = context->Length_Low >> 8;

context->Message_Block[63] = context->Length_Low;

SHA1ProcessMessageBlock(context);
}

	Gligoroski_MD4Fix_PPT.pdf
	A Fix of the MD4 Family of Hash Functions - Quasigroup Fold
	Outline
	Why we propose a fix instead of new hash function?
	Why we propose a fix instead of new hash function? (cont.)
	Outline
	Why we propose usage of quasigroups?
	Why we propose usage of quasigroups? (cont.)
	Why we propose usage of quasigroups? (cont.)
	Why we propose usage of quasigroups? (cont.)
	Why we propose usage of quasigroups? (cont.)
	Outline
	How is defined the Quasigroup Fold?
	How is defined the Quasigroup Fold? (cont.)
	How is defined the Quasigroup Fold? (cont.)
	Outline
	What we gain?
	Outline
	What we loose?
	Outline
	Directions ...
	Thank you for your attention

