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Abstract 

In this article, it is discussed how to construct a com­
pression function with 2n-bit output using a com­
ponent function with n-bit output. The compo­
nent function is either a smaller compression func­
tion or a block cipher. Some constructions are pre­
sented which compose collision-resistant hash func­
tions: Any collision-finding attack on them is at most 
as efficient as the birthday attack in the random or­
acle model or in the ideal cipher model. A new se­
curity notion is also introduced, which we call indis­
tinguishability in the iteration, with a construction 
satisfying the notion. 

1 Introduction 

A cryptographic hash function is a function which 
maps an input of arbitrary length to an output of 
fixed length. It satisfies preimage resistance, second­
preimage resistance and collision resistance. It is 
one of the most important primitives in cryptogra­
phy [20]. For simplicity, a cryptographic hash func­
tion is called a hash function in this article. 

A hash function usually consists of iteration of a 
compression function with fixed input/output length. 
This type of hash function is called an iterated hash 
function. There has been an interest in constructing a 
compression function from component functions with 
smaller output length. Many schemes have been pre­
sented following the approach [4, 10, 12, 14, 15, 16, 
18, 21]. It is typical for constructions using block ci­
phers. For example, suppose that AES is used for 
construction. The block length of AES is 128 bits, 
and a hash function with 128-bit output is no longer 

∗This is a revised version of the paper presented at FSE 
2006 [11]. 

secure against the birthday attack. Thus, it is de­
sired to construct a compression function with larger 
output length. 

In this article, we study how to construct a com­
pression function with 2n-bit output using a compo­
nent function with n-bit output. A hash function 
with such a compression function is called a double­
block-length (DBL) hash function (as opposed to a 
single-block-length (SBL) hash function, where the 
compression function has n-bit output). The com­
ponent function may be either a block cipher or a 
smaller compression function. 

We first discuss constructions using a smaller com­
pression function. We focus on the constructions 
formalized by Nandi [23]. In his formalization, 
the compression function is of the form F (x) =  
(f(x), f(p(x))), where f is a component compression 
function and p is a permutation such that both p 

−1and p are easy to compute. We show that any 
collision-finding attack on a hash function with the 
compression function F is at most as efficient as the 
birthday attack if f is a random oracle and p satisfies 
some properties. Our properties for p are easy to be 
satisfied; for example, they are satisfied by the per­
mutation p(x) =  x ⊕ c, where  ⊕ is bit-wise addition 
and c is a non-zero constant. 

Similar results are in fact already obtained by 
Nandi [22], whose analysis actually applies to a 
broader range of hash functions than our analysis. 
However, our results are sharper. We give a signifi­
cantly better upper bound on the probability of find­
ing a collision as a function of the number of queries 
made by the adversary. 

A new security notion for a compression function 
is also introduced, which we call indistinguishabil­
ity in the iteration. It is really weaker than the no­
tion proposed in [5]. However, it may be valuable in 
practice. Loosely speaking, a compression function 
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F (x) = (f(x), f(p(x))) where f is a random oracle is 
called indistinguishable in the iteration if F cannot 
be distinguished from a random oracle in the iterated 
hash function. We give sufficient conditions on p for 
F to be indistinguishable in the iteration. 

Second, we discuss constructions using a block ci­
pher. A compression function composed of a block 
cipher is presented and its collision resistance is ana­
lyzed. We show that any collision-finding attack on a 
hash function composed of the compression function 
is at most as efficient as the birthday attack if the 
block cipher used is ideal. A block cipher is ideal if it 
is assumed to be a keyed invertible random permu­
tation. The compression function presented in this 
article is quite simple but has not been explicitly dis­
cussed previously. We also present some other similar 
constructions. 

In [10], it is shown that a collision-resistant hash 
function can be easily composed of a compression 
function using two distinct block ciphers. It is well-
known that two distinct block ciphers can be ob­
tained from a block cipher by fixing, for example, 
one key bit by 0 and 1. However, it is preferable in 
practice that fixing key bits is avoided. Moreover, fix­
ing one bit may not be sufficient and more bits may 
be required to be fixed. Our new construction does 
not involve any fixing of key bits by constants. 

The technique in [3] is used in the security proofs 
in this article. However, the analysis is more 
complicated than the one in [3] since the relation 
of two component-compression-function/block-cipher 
calls in a compression function need to be taken into 
account. 

The rest of this article is organized as follows. Sec­
tion 2 includes notations, definitions and a brief re­
view of the related works. Section 3 discusses com­
pression functions composed of a smaller compression 
function, including the results on collision resistance 
and our new notion of indistinguishability in the it­
eration. Section 4 exhibits block-cipher-based com­
pression functions whose associated hash functions 
have optimal collision resistance. Section 5 gives a 
concluding remark which mentions a recent collision 
attack on the scheme in Sect. 4. 

2 Preliminaries 

2.1	 Iterated Hash Function 
∗A hash function H : {0, 1} → {0, 1}y usually consists 

of a compression function F : {0, 1}y × {0, 1}y' → 
{0, 1}y and a fixed initial value h0 ∈ {0, 1}y. An input 
m is divided into the g'-bit blocks m1, m2, . . . , ml. 
Then, hi = F (hi−1, mi) is computed successively for 
1 ≤ i ≤ l and hl = H(m). H is called an iterated 
hash function. 

Before being divided into the blocks, unambiguous 
padding is applied to the input. The length of the 
padded input is a multiple of g'. In this article, we 
do not assume Merkle-Damg̊ard strengthening [6, 21] 
for padding in the security analysis. 

2.2	 Random Oracle Model and Ideal 
Cipher Model 

2.2.1 Random Oracle Model 

nLet F n',n = {f | f : {0, 1} ' → {0, 1}n}. In the ran­
dom oracle model, the function f is assumed to be 
randomly selected from F n',n. The computation of 
f is simulated by the following oracle. 

The oracle f first receives an input xi as a query. 
Then, it returns a randomly selected output yi if the 
query has never been asked before. It keeps a table of 
pairs of queries and replies, and it returns the same 
reply to the same query. 

2.2.2 Ideal Cipher Model 

A block cipher with the block length n and the key 
length κ is called an (n, κ) block cipher. Let e : 

n{0, 1}κ ×{0, 1}n → {0, 1} be an (n, κ) block cipher. 
κThen, e(k, ·) is a permutation for every k ∈ {0, 1} , 

and it is easy to compute both e(k, ·) and  e(k, ·)−1 . 
Let Bn,κ be the set of all (n, κ) block ciphers. In 

the ideal cipher model, e is assumed to be randomly 
selected from Bn,κ. The encryption e and the decryp­
tion e−1 are simulated by the following two oracles. 

The encryption oracle e first receives a pair of a 
key and a plaintext as a query. Then, it returns a 
randomly selected ciphertext. On the other hand, 

−1the decryption oracle e first receives a pair of a 
key and a ciphertext as a query. Then, it returns a 

−1randomly selected plaintext. The oracles e and e



share a table of triplets of keys, plaintexts and ci­
phertexts, which are produced by the queries and the 
corresponding replies. Referring to the table, they se­
lect a reply to a new query under the restriction that 
e(k, ·) is a permutation for every k. They also add 
the triplet produced by the query and the reply to 
the table. 

2.3 DBL Hash Function 

An iterated hash function whose compression func­
tion is composed of a block cipher is called a single­
block-length (SBL) hash function if its output length 
is equal to the block length of the block cipher. It is 
called a double-block-length (DBL) hash function if 
its output length is twice larger than the block length. 

Let F be a compression function composed of a 
block cipher. For an iterated hash function composed 
of F , the  rate  r defined below is often used as a mea­
sure of efficiency: 

|mi|
r = .

(the number of block-cipher calls in F ) × n 

In this article, we also call an iterated hash function 
a DBL hash function if its compression function F is 
composed of a smaller compression function f and its 
output length is twice larger than the output length 
of f . 

2.4 Related Work 

Knudsen and Preneel studied the schemes to con­
struct secure compression functions with longer out­
puts from secure ones based on error-correcting codes 
[14, 15, 16]. It is an open question whether op­
timally collision-resistant compression functions are 
constructed by their schemes. A hash/compression 
function is optimally collision-resistant if any attack 
to find its collision is at most as efficient as the birth­
day attack. 

Our work is largely motivated by the recent works 
by Lucks [19] and Nandi [23]. Nandi generalized the 
results by Lucks and by Hirose [10]. He discussed how 
to construct DBL hash functions and presented opti­
mally collision-resistant ones. However, their security 
analysis is not so sharp as ours, which is mentioned 
in Sect. 1. 

Coron, Dodis, Malinaud and Puniya [5] discussed 
how to construct a random oracle with arbitrary in­

put length given a random oracle with fixed input 
length. 

As is reviewed in the following, there are many 
papers on hash functions composed of block ciphers. 

Preneel, Govaerts and Vandewalle [26] discussed 
the security of SBL hash functions against several 
generic attacks. They considered SBL hash func­
tions with compression functions represented by hi = 
e(k, x) ⊕ z, where  e is an (n, n) block cipher, k, x, z ∈ 
{hi−1, mi, hi−1 ⊕ mi, c} and c is a constant. They 
concluded that 12 out of 64(= 43) hash functions are 
secure against the attacks. However, they did not 
provide any formal proofs. 

Black, Rogaway and Shrimpton [3] presented a de­
tailed investigation of provable security of SBL hash 
functions given in [26] in the ideal cipher model. The 
most important result in their paper is that 20 hash 
functions including the 12 mentioned above is opti­
mally collision-resistant. 

Knudsen, Lai and Preneel [17] discussed the insecu­
rity of DBL hash functions with the rate 1 composed 
of (n, n) block ciphers. Hohl, Lai, Meier and Wald­
vogel [12] discussed the security of compression func­
tions of DBL hash functions with the rate 1/2. On 
the other hand, the security of DBL hash functions 
with the rate 1 composed of (n, 2n) block ciphers was 
discussed by Satoh, Haga and Kurosawa [27] and by 
Hattori, Hirose and Yoshida [8]. These works pre­
sented no construction for DBL hash functions with 
optimal collision resistance. 

Many  schemes with  the  rates less than 1 were  also  
presented. Merkle [21] presented three DBL hash 
functions composed of DES with the rates at most 
0.276. They are optimally collision-resistant in the 
ideal cipher model. MDC-2 and MDC-4 [4] are also 
DBL hash functions composed of DES with the rates 
1/2 and 1/4, respectively. Lai and Massey proposed 
the tandem/abreast Davies-Meyer [18]. They consist 
of an (n, 2n) block cipher and their rates are 1/2. 
It is an open question whether the four schemes are 
optimally collision-resistant or not. 

Hirose [10] presented a large class of DBL hash 
functions with the rate 1/2, which are composed of 
(n, 2n) block ciphers. They were shown to be op­
timally collision-resistant in the ideal cipher model. 
However, his construction requires two independent 
block ciphers, which makes the results less attractive. 

Nandi, Lee, Sakurai and Lee [24] also proposed an 
interesting construction with the rate 2/3. However, 



they are not optimally collision-resistant. Knudsen 
and Muller [13] presented some attacks against it and 
illustrated its weaknesses, none of which contradicts 
the security proof in [24]. 

Black, Cochran and Shrimpton [2] showed that it 
is impossible to construct a highly efficient block­
cipher-based hash function provably secure in the 
ideal cipher model. A block-cipher-based hash func­
tion is highly efficient if it makes exactly one block-
cipher call for each message block and all block-cipher 
calls use a single key. 

Gauravaram, Millan and May proposed a new ap­
proach based on iterated halving technique to design 
rate-1 hash functions that can be instantiated with 
any secure 128-bit block cipher reduced to half the 
number of rounds [7]. 

3	 DBL Hash Function in the 
Random Oracle Model 

3.1 Compression Function 

In this section, we consider the DBL hash functions 
with compression functions given in the following def­
inition. 

b 2nDefinition 1 Let F : {0, 1}2n × {0, 1} → {0, 1}
be a compression function such that (gi, hi) =  

nF (gi−1, hi−1, mi), where gi, hi ∈ {0, 1} and mi ∈ 
b n{0, 1} . F consists of f : {0, 1}2n × {0, 1}b → {0, 1}

2n+b 2n+band a permutation p : {0, 1} → {0, 1} as 
follows: 

gi = FU(gi−1, hi−1, mi) =  f(gi−1, hi−1, mi) 
hi = FL(gi−1, hi−1, mi) =  f(p(gi−1, hi−1, mi)) . 

p satisfies the following properties: 

−1• It is easy to compute both p and p , 

• p(p(·)) is an identity permutation, and 

• p has no fixed points, that is, p(gi−1, hi−1, mi)  = 
(gi−1, hi−1, mi) for any (gi−1, hi−1, mi). 

3.2 Collision Resistance 

We will analyze the collision resistance of DBL hash 
functions composed of F under the assumption that 
f is a random oracle. 

Two queries to the oracle f are required to com­
pute the output of F for an input. For this compres­
sion function, a query to f for FU or FL uniquely 
determines the query to f for the other since p is 

2n+ba permutation. Moreover, for every w ∈ {0, 1} , 
f(w) and  f(p(w)) are only used to compute F (w) 
and F (p(w)), and w  = p(w) from the properties of p 
in Definition 1. Thus, it is reasonable to assume that 
a pair of  queries  w and p(w) to  f are asked at a time. 

'Definition 2 A pair of distinct inputs w, w to F are 
'called a matching pair if w = p(w). Otherwise, they 

are called a non-matching pair. 

'Notice that w = p(w) iff  w = p(w ') since  p(p(·)) is 
an identity permutation. 

3.2.1 Definition 

Insecurity is quantified by success probability of an 
optimal resource-bounded adversary. The resource is 
the number of the queries to f in the random oracle 
model. 

rFor a set S, let  z ← S represent random sampling 
from S under the uniform distribution. For a prob­

rabilistic algorithm M, let  z ← M mean that z is 
an output of M and its distribution is based on the 
random choices of M. 

Let H be a DBL hash function composed of a com­
pression function F in Definition 1. The following ex­
periment FindColHF(A, H) is introduced to quantify 
the collision resistance of H . The adversary A with 
the oracle f is a collision-finding algorithm of H . 

FindColHF(A, H) 
r

f ← F 2n+b,n;
 
r
(m, m ') ← Af ; 

' if m  = m ∧ H(m) =  H(m ') return 1; 
else return 0; 

FindColHF(A, H) returns 1 iff A finds a col-
Advcoll lision. Let (A) be the probability that H 

FindColHF(A, H) returns 1. The probability is taken 
over the uniform distribution on F 2n+b,n and random 
choices of A. 

Definition 3 For q ≥ 1, let { }
Advcoll Advcoll (q) = max (A) ,H	 HA 

where A makes at most q pairs of queries to f in 
total. 



Without loss of generality, it is assumed that A 
does not ask the same query twice. A can keep pairs 
of queries and their corresponding answers by him­
self. 

3.2.2 Analysis 

In this section, we show the collision resistance of 
hash functions composed of F in Definition 1. We 
first present some lemmas which are used to prove 
the collision resistance. 

Lemma 1 Let H be a hash function composed of a 
compression function F specified in Definition 1 and 
an initial value (g0, h0). Let  A be a collision-finding 
algorithm for H with the oracle f . A asks q pairs of 
queries to f in total. Then, there exists an algorithm 
B with the oracle f which succeeds in finding 

1. a colliding pair of non-matching inputs for F , 

2. a colliding pair of matching inputs for F , or  

3. a preimage of (g0, h0) for F 

with the probability Advcoll (A). B asks q pairs of H 
queries to f in total. 

Proof. B first runs A. Suppose that A finds a collid­
'ing pair m, m for H . Then, it is easy to see that B 

finds a colliding pair of inputs for F or a preimage of 
(g0, h0) for  F by tracking the computation of H(m) 
and H(m ') backwards. The colliding pair is either 
matching or non-matching. During the process, B 
needs no other queries than those made by A. D 

The following three lemmas give upper bounds 
of the success probabilities of the events listed in 
Lemma 1. 

Lemma 2 Let F be a compression function specified 
in Definition 1. Let Bc be an optimal algorithm to 
find a colliding pair of non-matching inputs for F . 
Suppose that Bc asks q pairs of queries to f in total. 
Then, the success probability of Bc is at most q(q − 
1)/22n . 

Proof. For 1 ≤ j ≤ q, let  wj and p(wj ) be the  j-th 
pair of queries made by Bc. For  2  ≤ j ≤ q, let  Cj 

be the event that Bc finds a colliding pair of non-
matching inputs for F with the j-th pair of queries. 
Namely, it is the event that 

(f(wj ), f(p(wj )) = 

(f(wj' ), f(p(wj' ))) or (f(p(wj' )), f(wj' )) 

'for some j < j. Since  both  f(wj ) and  f(p(wj )) are 
randomly selected by the oracle, 

2(j − 1)
Pr[Cj ] ≤ .

22n 

Let C be the event that Bc finds a colliding pair of 
non-matching inputs. Then, 

q q (q − 1)
Pr[C] =  Pr[C2∨C3∨· · ·∨Cq ] ≤ Pr[Cj ] ≤ .

22n 
j=2 

D 

Lemma 3 Let F be a compression function specified 
'in Definition 1. Let B be an optimal algorithm to c 

find a colliding pair of matching inputs for F . Sup­
' pose that B asks q pairs of queries to f in total. c 'Then, the success probability of B is at most q/2n .c 

'Proof. For 1 ≤ j ≤ q, let  Cm 
j be the event that Bc 

finds a colliding pair of matching inputs for F with 
the j-th pair of queries, that is, f(wj ) =  f(p(wj )). 
Thus, 

1
Pr[Cm 

j ] =  .
2n 

'Let Cm be the event that B finds a colliding pair of c 
matching inputs for F . Then, 

q 
Pr[Cm] =  Pr[Cm

2 ∨· · · ] ≤ Pr[Cm] =  
2
q 
n 

.1 ∨Cm ∨Cm 
q j 

j=1 

D 

Lemma 4 Let F be a compression function specified 
in Definition 1. Let Bp be an optimal algorithm to 
find a preimage of a given output (g, h) for F , where  

ng, h ∈ {0, 1} . Suppose that Bp asks q pairs of queries 
to f in total. Then, the success probability of Bp is 
at most 2q/22n . 



 

 

 

 

 

Proof. For 1 ≤ j ≤ q, let  Pj be the event that 
Bp finds a preimage of (g, h) for  F with the j­
th pair of queries. Namely, it is the event that 
(f(wj ), f(p(wj ))) = (g, h) or  (h, g). Thus, 

2
Pr[Pj ] ≤ .

22n 

Let P be the event that Bp finds a preimage of (g, h) 
for F . Then, 

q 
2 q

Pr[P] =  Pr[P1 ∨P2 ∨· · ·∨Pq ] ≤ Pr[Pj ] ≤ .
22n 

j=1 

D 

The following theorem is obvious from the above 
lemmas. 

Theorem 1 Let H be a hash function composed of a 
compression function F specified in Definition 1 and 
an initial value (g0, h0). Then,  

Advcoll q (q + 1)  q 
H	 (q) ≤ + .

22n 2n 

Proof. For Lemma 1, suppose that A is an optimal 
collision-finding algorithm for H . Then, from Lem­
mas 2, 3, and 4, 

Advcoll (A) =  Advcoll (q)H H 

q (q − 1) q 2 q≤ + +
22n 2n 22n 

q (q + 1)  q≤ + .
22n 2n 

D 

Theorem 1 is valid as long as its upper bound is 
less than 1. 

From Theorem 1, any constant probability of suc­
cess in finding a collision for H requires Ω(2n) queries.  
The upper bound of Theorem 1 is optimal up to a 
constant factor. However, we can go further. A bet­
ter bound can be obtained with more restricted per­
mutations given below. 

Definition 4 Let F be a compression function spec­
ified in Definition 1. Moreover, the permutation p is 
represented by p(g, h, m) = (pcv(g, h), pm(m)), where 
pcv : {0, 1}2n → {0, 1}2n and pm : {0, 1}b → {0, 1}b . 
pcv has no  fixed  points and  pcv(g, h) = (h, g) for any 
(g, h). 

Example 1 Here is an example of the permutation p 
satisfying the conditions given in Definition 4: 

p(g, h, m) = (g ⊕ c1, h ⊕ c2, m ⊕ c3) , 

where c1, c2 and c3 are constants in {0, 1}n, and  c1 = 
c2. 

We first present some lemmas similar to those given 
above. 

Lemma 5 Let H be a hash function composed of a 
compression function F specified in Definition 4 and 
an initial value (g0, h0). Let  A be a collision-finding 
algorithm for H with the oracle f . A asks q pairs of 
queries to f in total. Then, there exists an algorithm 
B with the oracle f which succeeds in finding 

1. a colliding pair of non-matching inputs for F , 

'2. a pair of non-matching inputs	 w and w for F 
such that F (w) =  pcv(F (w ')), 

3. a preimage of (g0, h0) for F , or  

4. a preimage of pcv(g0, h0) for F 

with the probability Advcoll (A). B asks q pairs of H 
queries to f in total. 

Proof. B first runs A. Suppose that A finds a collid­
'ing pair m, m for H . Then, it is easy to see that B 

finds a colliding pair of inputs for F or a preimage of 
(g0, h0) for  F by tracking the computation of H(m) 
and H(m ') backwards. The colliding pair is either 
matching or non-matching. During the process, B 
needs no other queries than those made by A. 

Suppose that a colliding pair of matching inputs 
are obtained for F from the collision of H found by 

' A. Let  (g, h, m) and  (g ' , h , m  ') be the colliding pair. 
Then, (g, h) =  pcv(g ' , h  ') (and  (g ' , h  ') =  pcv(g, h)). 
(g, h) and  (g ' , h  ') are both outputs of F , or  at  most  
one of them is the initial value (g0, h0) of  H since 

'(g, h) = (g ' , h  '). Thus, a pair of inputs w and w are 
also found for F from the collision of H such that 
F (w) =  pcv(F (w ')) or F (w) =  pcv(g0, h0). 

Suppose that (g, h) =  F (w) and  (g ' , h  ') =  F (w '). 
'Then, a pair of w and w are non-matching since 

'(g, h) =  pcv(g ' , h  ') = (h , g  ').	 D 

As in the proof of Theorem 1, the following lemmas 
give upper bounds of the success probabilities of the 
events listed in Lemma 5. 



  

Lemma 6 Let F be a compression function specified 
in Definition 4. Let Bc be an optimal algorithm to 
find a colliding pair of non-matching inputs for F . 
Suppose that Bc asks q pairs of queries to f in total. 
Then, the success probability of Bc is at most q(q − 
1)/22n . 

Proof. Omitted. It is similar to that of Lemma 2. D 

Lemma 7 Let F be a compression function specified 
'in Definition 4. Let B be an optimal algorithm to c 'find a pair of non-matching inputs w and w for F 

'such that F (w) =  pcv(F (w ')). Suppose that B asks c 
q pairs of queries to f in total. Then, the success 

'probability of B is at most 2q(q − 1)/22n .c 

'Proof. For 2 ≤ j ≤ q, let  C ' j be the event that Bc 'finds a pair of non-matching inputs w and w such 
that F (w) =  pcv(F (w ')) with the j-th pair of queries 
wj and p(wj ). Namely, it is the event that 

F (wj ) =  pcv(F (wj ' )) or pcv(F (p(wj ' ))) 

or 

F (p(wj )) = pcv(F (wj' )) or pcv(F (p(wj' ))) 

for some j ' < j. Thus,  

4(j − 1)
Pr[C ' j ] ≤ 

22n 
. 

'Let C ' be the event that B finds a pair of non-c 'matching inputs w and w such that F (w) =  
pcv(F (w ')). Then, 

q q 
4(j − 1) 2q(q − 1)

Pr[C '] ≤ Pr[Cj 
' ] ≤ = .

22n 22n 
j=2 j=2 

D 

Lemma 8 Let F be a compression function specified 
in Definition 4. Let Bp be an optimal algorithm to 
find a preimage of a given output (g, h) for F , where  

ng, h ∈ {0, 1} . Suppose that Bp asks q pairs of queries 
to f in total. Then, the success probability of Bp is 
at most 2q/22n . 

Proof. Omitted. It is similar to that of Lemma 4. D 

Theorem 2 Let H be a hash function composed of a 
compression function F specified in Definition 4 and 
an initial value (g0, h0). Then,  

3 q2 + q ( q )2 
Advcoll (q) ≤ ≤ .H 22n 2n−1 

Proof. For Lemma 5, suppose that A is an optimal 
collision-finding algorithm for H which asks q pairs 
of queries to f in total. Then, from Lemmas 6, 7 and 
8, 

Advcoll (q) =  Advcoll (A)H H 

≤ 
q (q − 1) 

22n 
+ 

2 q (q − 1) 
22n 

+ 
2 q 
22n 

+ 
2 q 
22n 

≤ 
3 q2 + q 

22n 
≤
( q 

2n−1 

)2 
. 

D 

Theorem 2 is also valid as long as its upper bound 
is less than 1. 

Remark 1 For q <  2n−1, Theorem 2 gives a smaller 
upper bound than Theorem 1. Their difference is 
significant. The upper bound of Theorem 2 is at most 
(q/2n−1)2 . On the other hand, the upper bound of 
Theorem 1 is about q/2n if q/2n « 1. For example, 
let n = 128 and q = 280 . Then, the upper bound of 
Theorem 1 is about 2−48, while the upper bound of 
Theorem 2 is less than 2−94 . 

Remark 2 Contrasting Lemma 1 and Lemma 5, it is 
easy to see that the upper bound of Theorem 2 is 
obtained based not solely on the security of the com­
pression function but on its iteration. 

Remark 3 Suppose that we use the Merkle-Damg̊ard 
strengthening for padding. Then, in the proofs of 
Theorems 1 and 2, we need not consider the event 
that a preimage of the initial value of the hash func­
tion is found for the compression function. However, 
the probability of this event is negligible compared to 
that of collision for the compression function. 

3.3	 Indistinguishability in the Itera­
tion 

We introduce a new security notion which is called 
indistinguishability in the iteration. 



 

3.3.1 Definition 

Let F be a compression function specified 
in Definition 1. The following experiment 
DistinguishCF(A, F ) is introduced to quantify 
the indistinguishability in the iteration of F . The  
adversary A is a distinguishing algorithm of F . 
A has an oracle O. In this experiment, a ran­
domly chosen bit d ∈ {0, 1} is given to O first. If 
d = 1,  then  O chooses f ∈ F 2n+b,n randomly in 
advance. Then, O returns F (w) = (f(w), f(p(w))) 
to each query w from A. If  d = 0,  then  O chooses 
R ∈ F 2n+b,2n randomly in advance. Then, O returns 
R(w) to  each  query  w from A. A makes a chosen 
message attack and tries to tell whether O uses 
F or R. However, A is only allowed to select his 

(1) (2) (3)
j-th query wj = (w , w , w ) from  the  set  of  j j j 

(1) (2)(w , w , w(3))’s such that 
j−1 

 

(w(1), w(2)) ∈ (v(1)
, v

(2)) ∧ w(3) ∈ {0, 1}b ,y y 
y=0 

(1) (2)where (v , v ) is  O’s answer to the g-th query for y y 
(1) (2)

g ≥ 1 and  (v , v ) is some fixed initial value of a 0 0 
hash function H . Thus,  F is assumed to be used only 
in the iteration of H . 

DistinguishCF(A, F ) 
r

d ← {0, 1}; 
r' O(d);d ← A

' if d = d return 1; else return 0; 

Succind-it Let (A) be the probability that F 
DistinguishCF(A, F ) returns 1. Without loss of gen­
erality, it can be assumed that Succind-it (A) ≥ 1/2F 'because the probability that d = d is 1/2 even if A 

'chooses d randomly. It can also be assumed that A 
does not ask the same query twice. Let 

Advind-it (A) def Succind-it =	 (A) − 1/2 .F F 

Definition 5 For q ≥ 1, let { }
Advind-it Advind-it (q) = max (A) ,F	 FA 

where A makes at most q queries to O. 

As long as Advind-it (q) is small enough, the com-F 
pression function F behaves like a random function 
in the iterated hash function. The following theo­
rem presents an upper bound on Advind-it (q) with  F 
additional restriction on the permutation p. 

Theorem 3 Let F be a compression function speci­
fied in Definition 1. Suppose that the permutation p is 
represented by p(g, h, m) = (pcv(g, h), pm(m)), where  

2n 2n	 bpcv : {0, 1} → {0, 1} and pm : {0, 1}b → {0, 1} . 
Suppose that pcv has no fixed points. Then, 

( )21 q
Advind-it(q) ≤ .F 2n2 

Proof. Let A be an optimal distinguishing algorithm 
for F which makes q queries to O. Let  wj be the j-th 
query by A and T = {wj | 1 ≤ j ≤ q} ∩ {p(wj ) | 1 ≤ 
j ≤ q}. 

Suppose that d = 1. Then, O returns F (wj ) =  
(f(wj ), f(p(wj ))) for wj . If  T = φ, then  F is com­
pletely indistinguishable from R. It is because each 
one of f(wj ) and  f(p(wj )) for 1 ≤ j ≤ q appears only 
once and it is chosen randomly by O. 

Let Empty be the event that T = φ. Then, 

Succind-it (A)F 

= Pr[d = d	 ']
 
' '
= Pr[d = d ∧ Empty] +  Pr[d = d ∧ ¬Empty] 

= Pr[d = d ' |Empty] Pr[Empty] +  

Pr[d = d ' | ¬Empty] Pr[¬Empty] 
1 ≤ + Pr[¬Empty] .
2 

Let vj be the initial value if j = 0 and the answer 
of O to the j-th query by A if j ≥ 1. For 1 ≤ j ≤ q, 
let C ' be the event that vj ∈ {p (vy) | 0 ≤ g ≤ j−1}.j	 cv

Then, 

Pr[C ' j ] ≤ 2
j 
2n . 

Thus, 

Pr[¬Empty] ≤ Pr[C ' 1 ∨ · · · ∨ C ' q−1]
 
q−1 

1 q
( )2 
≤ Pr[C ' j ] ≤ 

2 2n 
j=1 

which implies that Advind-it (q) ≤ (q/2n)2/2. DF 

Theorem 3 is valid as long as its upper bound is 
less than 1. 



 

4	 DBL Hash Function in the 
Ideal Cipher Model 

4.1 Compression Function 

In this section, the collision resistance of a DBL hash 
function composed of a compression function using a 
block cipher is analyzed. The compression function 
specified in the following definition is considered. 

b 2nDefinition 6 Let F : {0, 1}2n × {0, 1} → {0, 1}
be a compression function such that (gi, hi) =  

nF (gi−1, hi−1, mi), where gi, hi ∈ {0, 1} and mi ∈ 
b{0, 1} . F consists of an (n, n + b) block cipher e as 

follows: 

gi = FU(gi−1, hi−1, mi)
 
= e(hi−1�mi, gi−1) ⊕ gi−1
 

hi = FL(gi−1, hi−1, mi)
 
= e(hi−1�mi, gi−1 ⊕ c) ⊕ gi−1 ⊕ c , 
  

where � represents concatenation and c ∈ {0, 1}n − 
{0n} is a constant. 

The compression function in Definition 6 is also 
shown in Fig. 1. It can be regarded as a variant 
of the compression function specified in Definition 4, 
where f and p are specified as follows: 

f(gi−1, hi−1, mi) =  e(hi−1�mi, gi−1) ⊕ gi−1 , 

p(gi−1, hi−1, mi) = (gi−1 ⊕ c, hi−1, mi) . 

g e 

e 

gi−1 i 

hi−1 
mi 

c hi 

Figure 1: The compression function in Definition 6 

F requires two invocations of e to produce an out­
put. However, these two invocations need only one 
key scheduling of e. If  F is implemented using the 
AES with 192-bit key-length, then n = 128, b = 64  

and the rate is 1/4. If implemented using the AES 
with 256-bit key-length, then n = b = 128 and the 
rate is 1/2. 

4.2 Collision Resistance 

Let F be a compression function specified in Defini­
tion 6. Two queries to the oracles e and e−1 in total 
are required to compute the output of F for an input. 

−1It is apparent from Fig. 1 that a query to e or e
and the corresponding reply for FU (FL) uniquely de­
termine the query to e for FL (FU). Moreover, these 
two queries are only used to compute the outputs of 
F for a matching pair of inputs. Thus, it is assumed 

−1that a pair of queries to e, e required to compute 
an output of F are asked at a time. 

4.2.1 Definition 

The following experiment FindColHF(A, H) is similar 
to the one in Sect. 3 except that the adversary A is 

−1a collision-finding algorithm with the oracles e, e . 

FindColHF(A, H) 
r

e ← Bn,n+b; 
r e,e (m, m ') ← A −1 

; 
' if m = m ∧ H(m) =  H(m ') return 1; 

else return 0; 

Advcoll Let (A) be the probability that H 
FindColHF(A, H) returns 1. The probability is 
taken over the uniform distribution on Bn,n+b and 
random choices of A. 

Definition 7 For q ≥ 1, let 
{ }

Advcoll Advcoll (q) = max (A) ,H	 HA 

where A makes at most q pairs of queries to e, e−1 in 
total. 

Without loss of generality, it is assumed that A asks 
at most only once on a triplet of a key, a plaintext 
and a ciphertext obtained by a query and the corre­
sponding reply. 

4.2.2 Analysis 

The following theorem shows the collision resistance 
of a hash function composed of F in Definition 6. 



  

 

Theorem 4 Let H be a hash function composed of 
the compression function F specified in Definition 6 
and an initial value (g0, h0). Then, for every 1 ≤ q ≤ 
2n−2 , 

( )22 + q
Advcoll 3 q

(q) ≤ ≤ 
q

.H 22(n−1) 2n−2 

Proof. Let A be a collision-finding algorithm of H 
which asks q pairs of queries to e, e−1 in total. Then, 

−1there exists an algorithm B with the oracles e, e
which succeeds in finding 

1. a colliding pair of non-matching inputs for F , 

'2.	 a pair of non-matching inputs w and w for F 
such that F (w) = (FU(w ') ⊕ c, FL(w ')), 

3. a preimage of (g0, h0) for  F , or  

4. a preimage of (g0 ⊕ c, h0) for  F 

with the probability Advcoll (A). B asks q pairs of H 
queries to e, e−1 in total. 

Since gi = e(hi−1�mi, gi−1)⊕gi−1, gi depends both 
on the plaintext and the ciphertext of e. Either the 
plaintext or the ciphertext is fixed by a query and 
the other is determined randomly by the answer from 
the oracle. Thus, gi is randomly determined by the 
answer. hi is also randomly determined by the other 
answer. 

Let (kj 
1�kj 

2, xj , yj) and  (kj 
1�kj 

2, xj ⊕ c, zj ) represent  
the triplets of e obtained by the j-th pair of queries 
and the corresponding answers. 

For (1): Let  Bc be an optimal algorithm to find a 
colliding pair of non-matching inputs for F . Suppose 
that Bc asks q pairs of queries to e, e−1 in total. 

For every 2 ≤ j ≤ q, let  Cj be the event that Bc 

finds a colliding pair of non-matching inputs for F 
with the j-th pair of queries. Namely, it is the event 

'that, for some j < j, 

F (xj , kj 
1, k2) =j 

F (xj' , kj 
1 
' , kj 

2 
' ) or  F (xj' ⊕ c, kj 

1 
' , kj 

2 
' ) 

or 

F (xj ⊕ c, kj 
1, k2) =j 

F (xj ' , kj
1 
' , kj

2 
' ) or  F (xj ' ⊕ c, kj

1 
' , kj

2 
' ) , 

which is equivalent to 

(yj ⊕ xj , zj ⊕ xj ⊕ c) =  

(yj' ⊕ xj' , zj' ⊕ xj' ⊕ c) or  

(zj' ⊕ xj' ⊕ c, yj' ⊕ xj' ) . 

Thus, 

2(j − 1)
Pr[Cj ] ≤ 

(2n − (2j − 2))(2n − (2j − 1)) 
2(j − 1)≤	 .

(2n − (2j − 1))2 

Let C be the event that Bc finds a colliding pair of 
non-matching inputs for F . Then, for 1 ≤ q ≤ 2n−2 , 

q q 
2(j − 1)

Pr[C] ≤ Pr[Cj ] ≤ 
(2n − (2j − 1))2 

j=2 j=2 

q 
2(j − 1) q(q − 1)≤ ≤ .
22(n−1) 22(n−1) 

j=2 

For (2): Let  B ' be an optimal algorithm to find a c 
'pair of non-matching inputs w and w for F such 

that F (w) = (FU(w ') ⊕ c, FL(w ')). Suppose that B ' c 
asks q pairs of queries to e, e−1 in total. 

Let C ' j be the event that Bc 
' finds a pair of non-

matching inputs for F such as given above with the 
j-th pair of queries. Namely, it is the event that, for 

' some j < j, 

F (xj , kj 
1, k2) =j 

(FU(xj' , kj 
1 
' , kj 

2 
' ) ⊕ c, FL(xj' , kj 

1 
' , kj 

2 
' )) or 

(FU(xj' ⊕ c, kj 
1 
' , kj 

2 
' ) ⊕ c, FL(xj' ⊕ c, kj 

1 
' , kj 

2 
' )) , 

or 

F (xj ⊕ c, kj 
1, k2) =j 

(FU(xj' , kj 
1 
' , kj 

2 
' ) ⊕ c, FL(xj' , kj 

1 
' , kj 

2 
' )) or 

(FU(xj' ⊕ c, kj
1 
' , kj

2 
' ) ⊕ c, FL(xj' ⊕ c, kj

1 
' , kj

2 
' )) . 

It is equivalent to 

(yj ⊕ xj , zj ⊕ xj ⊕ c) =  

(yj' ⊕ xj' ⊕ c, zj' ⊕ xj' ⊕ c) , 

(zj' ⊕ xj' , yj' ⊕ xj' ) , 

(zj' ⊕ xj' ⊕ c, yj' ⊕ xj' ⊕ c) or  

(yj' ⊕ xj' , zj' ⊕ xj' ) . 



 

 

Thus, 

4 (j − 1)
Pr[C ' ] ≤ .j (2n − (2j − 1))2 

'Let C ' be the event that B finds a pair of non-c 'matching inputs w and w for F such that F (w) =  
(FU(w ') ⊕ c, FL(w ')). Then, for 1 ≤ q ≤ 2n−2 , 

q 
2 q (q − 1)

Pr[C '] ≤ Pr[C ' ] ≤ .j 22(n−1) 
j=1 

For (3): Let  Bp be an optimal algorithm to find a 
preimage of (g0, h0) for  F . Suppose that Bp asks q 
pairs of queries to e, e−1 in total. 

For 1 ≤ j ≤ q, let  Pj be the event that Bp finds 
a preimage of (g0, h0) for  F with the j-th pair of 
queries, that is, F (xj , kj 

1, kj 
2) = (g0, h0) or  F (xj ⊕ 

c, kj 
1, k2) = (g0, h0). Thus, j 

2
Pr[Pj ] ≤ .

(2n − (2j − 1))2 

Let P be the event that Bp finds a preimage of (g0, h0) 
for F . Then, for 1 ≤ q ≤ 2n−2 , 

q 
2 q

Pr[P] ≤ Pr[Pj ] ≤ .
22(n−1) 

j=1 

'For (4): Let  B be an optimal algorithm to find a p 
'preimage of (g0 ⊕ c, h0) for  F . Suppose that B asksp 

q pairs of queries to e, e−1 in total. 
'Let P ' be the event that B finds a preimage of p 

(g0 ⊕ c, h0) for  F . Then, for 1 ≤ q ≤ 2n−2 , 

2 q
Pr[P '] ≤ .

22(n−1) 

Finally, suppose that A is an optimal collision-
finder for H . Then, from the discussions so far, 

Advcoll (q) =  Advcoll (A)H H 

≤ Pr[C] +  Pr[C '] +  Pr[P] +  Pr[P '] ( )23 q2 + q q≤ ≤
22(n−1) 2n−2 

for 1 ≤ q ≤ 2n−2 . D 

Remark 3 in Sect. 3 also holds for Theorem 4. 

4.3 Other Schemes 

In this section, we present some other schemes tak­
ing into consideration the construction with AES. For 
simplicity, AES with 192/256-bit key-length is called 
AES-192/256, respectively. 

The compression function F given in Definition  6  
can be composed of AES-192/256. It can be regarded 
as a function based on the Davies-Meyer scheme. 

The following compression function can be com­
posed of AES-256. It can be regarded as a function 
based on the Matyas-Meyer-Oseas scheme. 

n 2nLet F1 : {0, 1}2n × {0, 1} → {0, 1} be a com­
pression function (gi, hi) =  F1(gi−1, hi−1, mi) such  
that 

gi = e(gi−1�hi−1, mi) ⊕ mi 

hi = e(gi−1�(hi−1 ⊕ c), mi) ⊕ mi , 

nwhere gi, hi, mi ∈ {0, 1} and c ∈ {0, 1}n − {0n} is a 
constant. F1 is also given in Fig. 2. 

The following compression function can be com­
posed of AES-192. It can also be regarded as a func­
tion based on the Matyas-Meyer-Oseas scheme. 

2nLet F2 : {0, 1}2n × {0, 1}n/2 → {0, 1} be a com­
pression function (gi, hi) =  F2(gi−1, hi−1, mi) such  
that 

(2) (1) (1)
gi = e(g �hi−1, mi�g ) ⊕ (mi�g )i−1 i−1 i−1

(2) (1) (1)= e(g �hi−1, (mi�g ) ⊕ c) ⊕ (mi�g ) ⊕ c ,hi i−1 i−1 i−1

(1) (2)n n/2where gi, hi ∈ {0, 1} , g , g , mi ∈ {0, 1} , gi = i i 
(1) (2)

g �g , and  c ∈ {0, 1}n − {0n} is a constant. F2 isi i 
also given in Fig. 3. 

Variants of F , F1, F2 are shown in Figures 4, 5, 
6, respectively. They can be regarded as functions 
based on the Miyaguchi-Preneel scheme. 

It is easy to obtain theorems similar to Theorem 4 
for collision resistance of hash functions composed of 
compression functions presented here. 

5 Concluding Remark 

In this article, it has been discussed how to construct 
DBL hash functions with a smaller compression func­
tion or a block cipher. 

Recently, Pramstaller and Rijmen presented a col­
lision attack on the scheme in Sect. 4 with DESX as 



an underlying block cipher [25]. Their result does not 
contradict Theorem 4. It is a warning that we should 
be careful when we choose an underlying block cipher. 
It also shows a limitation of the random oracle/ideal 
cipher model. Related topics are discussed in [1, 9]. 

e 

e 

c	 

gmi i 

gi−1 

hi−1 

hi 

Figure 2: The compression function F1 
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Figure 3: The compression function F2 
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