
 
 

  
 

         
 

 
 

 
  

 
 
 

 
 

 
 
 

 
 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

X-Sieve: CMU Sieve 2.2 

From: Joan DAEMEN <joan.daemen@st.com> 

To: <hash-function@nist.gov>
 
Cc: "Gilles VAN ASSCHE" <gilles.vanassche@st.com>, <michael.peeters@nxp.com>, 


"Guido Marco BERTONI" <guido.bertoni@st.com> 
Subject: Hash Algorithm Requirements and Evaluation Criteria 
Date: Fri, 27 Apr 2007 16:38:05 +0200 
X-Mailer: Microsoft Office Outlook 11 
Thread-index: AceI2XZuTE+ru5WCRKGFkLjtctwdHw== 
X-O-Spoofed: Not Scanned 
X-O-General-Status: No 
X-O-Spam1-Status: Not Scanned 
X-O-Spam2-Status: Not Scanned 
X-O-URL-Status: Not Scanned 
X-O-Virus1-Status: No 
X-O-Virus2-Status: Not Scanned 
X-O-Virus3-Status: No 
X-O-Virus4-Status: No 
X-O-Virus5-Status: Not Scanned 
X-O-Image-Status: Not Scanned 
X-O-Attach-Status: Not Scanned 
X-SpheriQ-Ver: 4.2.04 
X-Proofpoint-Virus-Version: vendor=fsecure engine=4.65.5502:2.3.11,1.2.37,4.0.164 
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Dear NIST, 

As a comment on the hash algorithm requirements and evaluation criteria, item C.1, we would 
like to point out our work on "Sponge Functions" [accepted for publication at ECRYPT Workshop 
on Cryptographic Hash Functions, May 24-25, 2007 in Barcelona]. 

In this paper, we describe a reference model namely a random  sponge that may be used as a 
reference for hash functions. As  compared to a random oracle, a random sponge may be better 
suited as a reference claim for iterated hash functions. In particular, iterated hash functions have 
internal collisions, which are modeled by the random sponge but not by the random oracle.  

Also, this paper discusses the resistance of random sponges with regard to the attacks listed in 
the first bullet of item C.1. Using a random sponge as a reference automatically determines the 
claimed resistance against these attacks and against attacks not explicitly listed there. 

We suggest NIST to consider the random sponge model as an evaluation criterion, in 
replacement or addition to the first two bullets of item C.1. 

Best regards, 

Guido Bertoni, Joan Daemen, Michael Peeters and Gilles Van Assche  
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Sponge Functions 

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1 

gro.noekeon@noekeon.org 

1 STMicroelectronics 
2 NXP Semiconductors 

Abstract. A good cryptographic hash function should behave like a random oracle: it should 
not have weaknesses that a random oracle does not have. Due to the existence of inner collisions, 
iterated hash functions can never satisfy this ideal. We propose a construction with a finite 
state called a sponge and show that a random sponge can only be distinguished from a random 
oracle due to inner collisions. We evaluate the strength of random sponges by computing the 
probability of success for a number of attacks as a function of their workload and show that 
these results shed a new light on the classical Merkle-Damg̊ard construction. We propose to 
use random sponges of given parameters as a reference for specifying security claims for hash 
functions, but also MAC functions and some types of stream ciphers. The main goal of sponge 
functions is for designers to be able to formulate a compact security claim. 

1 Introduction 

When designing a hash function, it is important to know which security criteria the result 
must satisfy, and when publishing it, the paper should state the security criteria it claims 
to satisfy. The established security criteria for a cryptographic hash function are collision-
resistance, pre-image resistance and 2nd pre-image resistance [15]. Often, designers claim 
lower bounds for the complexity of the three corresponding attacks. In many cases, however, 
no explicit claims are made and the hash function is supposed to offer a security level implied 
by the length of its digest. The problem with these criteria is that they do not express what 
we have come to expect of a cryptographic hash function. Some applications require that a 
hash function is correlation-free [1] or resists length-extension [18]. More recently, a series of 
attacks [9, 10, 5, 12] has shown that certain hash function constructions do not offer as much 
security as expected, leading to the introduction of yet other criteria, such as chosen target 
forced prefix preimage resistance. As was already predicted in [1], there is no reason to assume 
that no new criteria will appear, so the design of a hash function seems like a moving target. 

Remarkably, a random oracle [3] is a theoretical construction that satisfies all known 
security criteria for hash functions and it seems hard to imagine that new security criteria 
will be introduced that a random oracle does not satisfy. Hence, we could replace all security 
criteria by a single one: a good hash function behaves as a random oracle. But what does this 
mean? 

Informally speaking, a random oracle maps a variable-length input message to an infinite 
output string. It is completely random, i.e., the produced bits are uniformly and independently 
distributed. The only constraint is that identical input messages produce identical outputs. 
A hash function produces only a fixed number of output bits, say, n bits. So, a hash function 
should behave as a random oracle whose output is truncated to n bits. In general, it is easy 
to compute the resistance of a random oracle (truncated to n bits) to certain attacks. For 
instance, the expected number of calls to the oracle to generate a collision is of the order of 
2n/2. To find a (second) pre-image, this number is 2n. The hash function is then considered 
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broken if someone finds an attack on the hash function with a complexity smaller than for a 
random oracle. 

Most practical hash functions are iterated. They operate on a chaining value, which is 
iteratively modified by a function taking the message as an argument. This is a very convenient 
property, as the whole message can be hashed on the fly. For instance, a network application 
can hash the stream of data as it comes, without the need to store it into memory. 

Iterated hash functions have state collisions, that is, collisions in the chaining value. The 
existence of state collisions yields properties that do not exist for random oracles. For instance, 
assume that M1 and M2 are two messages that form a state collision in an iterated hash 
function. Then, for any suffix N , the messages M1|N and M2|N will produce identical hash 
values. A random oracle does not have this property: even if M1 and M2 produce the same 
hash value (of finite length n), M1|N and M2|N produce hash values that are independent 
of the hash value obtained from M1 and M2. Note that the state collisions are not a problem 
per se, but rather the fact that they lead to the described externally visible behaviour. 

In the light of state collisions, the claimed reference model cannot be a random oracle 
for iterated hash functions. It is an unreachable goal for an iterated hash function to be 
as strong as a random oracle. There are two ways to address this problem. First, one can 
abandon iterated hash functions and use non-streamable hash functions such as the zipper 
hash construction [14]. This may indeed solve the problem but may be unsuitable for many 
applications of hash functions since the entire message must be available in memory. 

A second approach is to stick to iterated hash function constructions and learn to live with 
state collisions. This is the approach we follow in this paper. In Section 2, we define a new 
reference model called sponge functions. In Section 3, we show that a random sponge can only 
be distinguished from a random oracle due to inner collisions. In Section 4, we evaluate the 
strength of random sponges by computing the probability of success for a number of operations 
as a function of their workload. In Section 5, we evaluate the strength of random sponges 
when being used as a hash function and compare with classical hash function constructions as 
applied in MD4-like [17] designs. In Section 6, we discuss the issue of choosing the type and 
parameter values when a random sponge is used as reference for expressing security claims. 
In Section B, we explain how a sponge can be used as a reference for MAC function and as 
a stream cipher. 

2 Definitions 

2.1 Sponge function 

A sponge has the same interface as a random oracle: it takes a variable-length input and 
produces an infinite-length output. Before defining it, let us list the necessary ingredients. 

–	 Let A be a group, which we call the alphabet group; the set A will represent both input and 
output characters. The group operation is denoted by a + and the neutral element by 0. 
Note that, in this context, a “character” can represent anything between a bit (A = Z2), 
a trit (A = Z3) and a block of n bits (A = Zn).2 

–	 Let C be a finite set whose elements will represent the inner part of the state of a sponge. 
–	 Let 0 ∈ C be an arbitrary element of C, which will be part of the initial value of the state 

of a sponge. 
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–	 Let p(m) be a mapping from the set of messages m to strings of characters of A. The 
mapping p(m) must be injective, and must be such that |p(m)| ≥ 1 and that the last 
character of p(m) is never 0. 

Note that the set of messages m can remain abstract, as the sponge will only process 
strings of characters. Consider the example of messages that are binary strings and A = Zn 

2 . 
In this case, the mapping p(m) can be reversible padding: a single bit 1 is appended followed 
by the minimal number of bits 0 such that the length of the result is a multiple of n. 

Definition. A sponge function takes as input a variable-length string p of characters of A and 
produces an infinite output string z of characters of A. It is determined by a transformation 
f of A×C. The input of the sponge function is p, a string of length |p| ≥ 1 that does not end 
with 0; the individual characters of p are denoted pi ∈ A, for 0 ≤ i < |p|. 

The sponge function has an internal state S = (SA, SC ) ∈ A × C, whose initial value is 
(0, 0), where 0 ∈ A is the neutral element of A and 0 ∈ C is as described above. To evaluate 
the sponge function, one proceeds in two phases: 

–	 Absorbing: For each input character pi, the state is updated as 

S ← f(SA + pi, SC ). 

–	 Squeezing: The infinite-length output z is produced one character zj ∈ A at a time by 
evaluating
 

zj = SA,
 

and updating the state as
 
S ← f(S).
 

Definition. The rate of a sponge is 

r = log2 A, with A = |A|. 

Definition. The capacity of a sponge is 

c = log2 C, with C = |C|. 

Definition. A binary sponge is a sponge with rate equal to 1 and an integer capacity. 
A useful notation for the sponge function consists in defining the Sf function. For a given 

input string p, Sf [p] denotes the value of the state obtained after absorbing p. If S = Sf [p], 
we call p a path to S (under f). The Sf = (SA,f , SC,f ) function is defined by the following 
recursion: 

Sf [empty string] = (0, 0), 
Sf [x|a] = f(Sf [x] + a) for any string x and any character a, 

where the symbol | denotes the concatenation and S + a is defined as S + a = (SA + a, SC). 
In general, the j-th character of the output is 

zj = SA,f [p|0j ], j ≥ 0,
 

where 0j denotes a string with j consecutive characters equal to 0.
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The Sf function can be used to express the state that the sponge traverses both as it 
'absorbs an input p and as it is being squeezed. The traversed states are Sf [p'] for any p

prefix of p|0∞, including the empty string. 
This allows us to explain the rationale behind the p(m) function. First, the fact that the 

mapping is injective and p(m) never ends with 0 ensures that we cannot have two messages 
m1, m2 that will yield the same input to the Sf function when the sponge is squeezed, i.e., 

(m1, j)  ⇒  .= (m2, k) p(m1)|0j = p(m2)|0k 

Second, the requirement on the length, namely, |p(m)| ≥ 1, ensures that the f function is 
evaluated at least once. Otherwise, if the input is the empty string, we know that the first 
output character SA,f [empty string] = 0 independently of f , which is not very satisfactory. 

Note that as opposed to most hash functions, a sponge function generates infinite output 
strings like a random oracle. This makes it suited to also serve as reference for stream ciphers 
and so-called mask generation functions [13, 8]. 

2.2 State collisions and inner collisions 

Definition. A state collision is a pair of different paths p  = q to the same state: Sf [p] = Sf [q]. 
Depending on where the state collision occurs, it models different effects of the finite 

internal state. State collisions obtained during the absorbing part may lead to identical hash 
function values: Sf [p] = Sf [q] implies that the squeezing part will give the same output values 
Sf [p|0j ] = Sf [q|0j ] for all j. State collisions can also model cycles in the output sequence: if 
for some p and d we have Sf [p] = Sf [p|0d], the output sequence displays periodicity. 

Definition. An inner collision is a pair of two different paths p  = q to the same inner state: 
SC,f [p] = SC,f [q]. 

Clearly, a state collision on p   = q implies an inner collision on p = q. The converse is not 
true. However, it is very easy to produce a state collision from an inner collision. Given p  = q 
such that SC,f [p] = SC,f [q], one can produce a state collision on p|a  q|b for any a, b ∈ A = 
that satisfy SA,f [p] + a = SA,f [q] + b. 

2.3 Random sponges 

For a given choice of the group A, the set C and the initial value (0, 0), the mapping f entirely 
determines the sponge function. There are thus (AC)AC possible such sponge functions. 

Definition. A random transformative sponge (or T-sponge for short) with given A, C and 
0 ∈ C is a sponge function drawn randomly and uniformly from the set of the (AC)AC sponge 
functions. 

For reasons that become clear in the sequel, we need to distinguish the subset of (AC)! 
sponge functions for which f is a permutation. 

Definition. A random permutive sponge (or P-sponge for short) with given A, C and 0 ∈ C is 
a sponge function drawn randomly and uniformly from the set of the (AC)! sponge functions 
for which f is a permutation. 

We will use the term random sponge when we make statements that are true for both a 
random T-sponge and a random P-sponge. 
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3 Distinguishing a random sponge 

We now show that if a random sponge is used in a black-box setting, an adversary can only 
distinguish it from a random oracle by the presence or absence of inner collisions. 

The setting is as follows. The adversary has access to a black box, which is either a random 
sponge (RS) (with a given A, C and 0 ∈ C) or a random oracle (RO). The a priori probability 

1of the black box being either a RO or a RS is . The adversary queries the black box (BB) 2 
as many times as she wishes, even adaptively, by sequentially asking for a set of messages 

(1) m . . .m(q) the first |z(i)| characters of output: 

(1)),z(1) = BB(p
(2)),z(2) = BB(p

. . . 

z(q) = BB(p(q)), 

with p(i) = p(m(i)). She then has to guess whether the black box is a random oracle or a 
random sponge. 

Let us precisely relate the queries and the absence of inner collision. For a given set of 
queries, a random sponge traverses some states when it absorbs the input strings and when it 
is then being squeezed. There may be states that are equally traversed for different queries, 
e.g., if p(i) and p(j)|0|z(j)|−1 have a common prefix. We denote the set of paths to states 
traversed during the distinguishing experiment by P. We have:   

P = x is a prefix of p(i)|0|z(i)|−1 for some 1 ≤ i ≤ q . 

In the context of a given set of queries, no inner collision means that 

�p = q ∈ P : SC,f [p] = SC,f [q]. 

The following theorem on the output of a random sponge in the case that there are no inner 
collisions holds both for random T-sponges and random P-sponges: 

Theorem 1. The output characters returned by a random sponge to a sequence of queries 
are uniformly and independently distributed if no inner collisions occur during the queries. 

(i)Proof. Consider the output character z of the i-th query: SA,f [x] with x = p(i)|0j and let j 
Px be the set of paths to the states traversed in the queries 1 to i − 1 and in the current query 
for the previous output characters. We denote the set of states and inner states corresponding 
to Px by Sx and Sx respectively. C 

The requirement that no inner collision takes place during the generation of the output 
character SA,f [x] restricts the value of the inner state SC,f [x] to be different from all values 
in SC

x . 
For a random T-sponge the value of Sf [x] must be in A×(C \Sx ) due to this requirement. C 

By construction these values are equiprobable. For a random P-sponge the invertibility of f 
imposes that Sf [x] must be different from all states traversed already (except (0, 0)), so here 
the set Sf [x] is chosen from is (A× (C \Sx )) \Sx. Using Sx ⊂ A×Sx this can be simplified to C C 
A×(C \Sx ). Hence in both cases all values in A are equiprobable for SA,f [x] and independent C 
of the states previously traversed. D 
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In the distinguishing experiment, the adversary may distinguish the random sponge by the 
consequences of a state collision. Specifically, a state collision at the end of the absorbing phase 
or during the squeezing phase leads to collisions in the output strings. As a state collision 
implies an inner collision, we can upper bound the success probability of a distinguishing 
attack by the probability an inner collision occurs in a given query. 

The success probability depends on the guessing rule used by the adversary. Let RRS be 
the set of observations for which she guesses that the black box is a random sponge. The 
probability of success reads  1 1 

P (success) = + P (r observed|RS) − P (r observed|RO).
2 2

r∈RRS 

To maximize the success probability, the adversary has to choose 

RRS = {r : P (r observed|RS) ≥ P (r observed|RO)}. 

The only thing the adversary can do is to base his decision on the detection of an inner 
collision. We know that P (IC|RO) = 0 by definition and P (no IC|RS) = 1 − P (IC|RS) < 1 
so that P (no IC|RS) < P (no IC|RO), and the optimal detection rule comes down to RRS = 
{IC detected}. We have thus proven the following theorem. 

Theorem 2. The probability P (success) of correctly distinguishing a random sponge from a 
random oracle is upper bounded as 

1 1 
P (success) ≤ + P (IC|RS).

2 2  
The value of P (IC|RS) depends on A, C and N = |P| ≤ |p(i)| + |z(i)|, the total number i 

of input and output characters in the query. As the distinguishing experiment can be emulated 
by using the experiment in Section A.2, the success probability for inner collisions given in 
Section 4 forms an upper bound for the distinguishing attack. 

4 Intrinsic strength of random sponges 

Indistinguishability in the black box model is not sufficient. When being used as a hash 
function, a sponge must offer (collision, (2nd-)preimage, etc.) resistance against adversaries 
who can see the inner state. More particularly, the function must not have any externally 
visible weaknesses even with respect to an adversary who can see the inner state. 

With the purpose to quantify the resistance of random sponges against such adversaries, 
we compute the success probabilities of four operations that are not by themselves attacks but 
that can be used in the context of attacks and as such provide upper bounds to the resistance 
a sponge function can offer: 

–	 Inner collision: finding two different paths p = q to the same inner state: SC,f [p] = SC,f [q]. 
–	 Path to an inner state: given SC , finding a path p to SC , i.e., SC,f [p] = SC . 
–	 Output cycles: finding an input string p and an integer d such that Sf [p] = Sf [p|0d]. 
–	 Binding an output string to a state: given a string t = t0, t1, . . . tm, finding a state value 

S such that the sponge generates t as output, i.e., SA = t0, fA(S) = t1, fA(f(S)) = t2 . . ., 
fA(fm−1(S)) = tm. Here we can distinguish two cases: 
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•	 Short output string (mr < c): the number of possible output strings of m+1 characters 
is below the number of possible inner states. It is likely that an inner state value can 
be found, but the expected number of solutions is ≈ 2c−mr . 

•	 Long output string (mr > c): the number of possible output strings of m+1 characters 
is above the number of possible inner states. For a randomly chosen output string, the 
probability that an inner state value may be found is ≈ 2c−mr. If one is found, it is 
likely that the inner state value is unique. 

Note that the applicability of these operations is due to the fact that a sponge operates on a 
finite state and that subsequently they also apply to iterated constructions such as iterated 
hash functions and certain types of MAC functions and stream ciphers. They do not apply 
to a random oracle. 

We adopt the following model. In the beginning, the adversary has no information about 
f . The only way she can gain information on f is to make calls to f (and f−1). We obtain 
expressions for the optimal probability of success P (success) as function of N , where N is the 
number of calls the adversary can make to f in the case of a T-sponge and the total number 
of calls she can make to f and f−1 in the case of a P-sponge. This probability is equal to the 
number of transformations (or permutations) f for which the attack has succeeded, divided 
by the total number of transformations (or permutations) of given dimensions. So a success 
probability of 1 % means that for 99 % of the possible choices of f the attack does not work. 

The expressions for P (success) for the different operations are of the form 1 − exp(f(N)) 
with f(N) a polynomial in N of degree one or two. To simplify notation, we define the cost 
function cp(N) of an attack by cp(success) = − log(1 − P (success)). This gives: 

P (success) = 1 − exp (−cp(success)) . 

For values of N such that cp(success) « 1 we can use the log(1+E) approximation: log(1+E) ≈ 
E when E « 1, yielding: 

P (success) ≈ cp(success) . 

For the derivation of the success probabilities and the optimum attack strategies, we refer to 
Appendix A. Table 1 lists the resulting cost functions for the four operations and the two 
types of random sponges for large values of C. This is justified as small values of C lead to 
weak sponge functions. 

Case Inner path output output binding 

collision finding cycle rm > c rm < c 

N(N +1) N(N +1)N A−1 N A−1 NT-sponge 
2C C 2AC A	 C A	 Am 

2N (N+1) − N(N−1) N(N +4) N N A−1 N A−1 NP-sponge −
2C 2AC 4C 4AC AC A	 C A	 Am 

Table 1. Cost functions for different operations. 

When we consider values of N that are much larger than 1, we can neglect the linear 
terms in the cost functions that are quadratic. Moreover we can express the cost functions in 
terms of the capacity c = log2(C) and rate r = log2(A) and let y = log2(N). Table 2 gives 
the resulting cost functions for binary sponges (r = 1) and high rate (r » 1) sponges. The 
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Case Inner path output output binding 

collision finding cycle rm > c rm < c 

22y−(c+1) 22y−(c+r+1) 2y−rm 2y−c 2y−cHigh rate T-sponge 

22y−(c+1) 22y−(c+2) 2y−(c+1)2y−c 2y−mBinary T-sponge 

22y−(c+1) 22y−(c+2) 2y−rm 2y−(c+r) 2y−cHigh rate P-sponge 

22y−(c+2) 22y−(c+3) 2y−(c+1) 2y−(c+1) 2y−mBinary P-sponge 

Table 2. Cost functions for different operations with y = log2(N). 

work factor W , the expected number of calls N for the attack to succeed, is given by: 

∞ 

W = N(P (N) − P (N − 1)) . 
N=1 

If we approximate P (N) by a continuous function and fill in the cost function, this becomes  ∞  ∞dP dcp(x)
W = x dx = x exp(−cp(x))dx . 

dx dx0 0 

Filling in the cost functions listed in Table 2 leads to integrals that can be readily solved. 
For the linear cost functions, i.e., cp(y) = 2y−x, we obtain W = 2x. For the quadratic cost 

π2x/2 ≈ 21+x/2functions, i.e., cp(y) = 22y−x, we obtain W = 
√ 

. 
Clearly, the most important parameter is the capacity c. The impact of the rate r on the 

success probabilities is rather limited, with the exception of the detection of output cycles. 
The difference in resistance between a random T-sponge and a random P-sponge is mainly 
in path finding and in the length of output cycles. In a random T-sponge, finding a path has 
expected workload 2c, while in a random P-sponge, this is only about 22+c/2. On the other 
hand, a random T-sponge is expected to end up in a cycle after about 2(c+r+3)/2 characters 
while for a random P-sponge this is 2c+r−1 . 

5 Sponge as a hash function 

We will now consider a number of classical hash function attacks and show how the operations 
discussed in the previous section limit the resistance of a sponge against these attacks. For 
simplicity, we consider the case of a high rate r and use y to indicate the workload N = 2y of 
the attack. We each time compare with the behaviour of a random oracle where its output is 
truncated to n bits. It is important to distinguish between n, the digest length in bits, and c, 
the capacity. 

5.1 Output collisions 

If we have an inner collision p, q, we can have a state collision with p|a, q|b, for any a and b 
that verify SA,f [p] + a = SA,f [q] + b. Then, any pair of inputs p|a|m, q|b|m leads to an output 
collision, independent of the digest length n. In a random sponge, the expected workload to 
generate an inner collision is of the order 2(c+3)/2. In a random oracle truncated to n bits, 

8
 



the expected workload to generate an output collision is of the order 2(n+3)/2. So, a random 
sponge truncated to n bits with n < c offers a similar level of resistance against output 
collisions than a random oracle truncated to n bits. If n > c, the best strategy to generate 
an output collision is to use an inner collision; if n < c, going via an inner collision does not 
lead to a smaller expected workload. 

As for multicollisions [9], an 2s-fold multicollision in a random sponge can be realized by 
the chaining of s inner collisions and hence has expected workload s2(c+3)/2. For a truncated 
random oracle this complexity is of the order 2n(2s−1)/2s 

. So taking c > 2n, a random sponge 
is not weaker than a random oracle in this respect. 

5.2 2nd Pre-image 

Assume we are looking for a 2nd pre-image for a message p of length C. In a sponge, we have 
'a 2nd pre-image if we can find a 2nd path to the inner state T = SC,f [p '] with p the prefix of 

p where only the last character pC−1 is removed. Given this path q, we have Sf [q|x] = Sf [p] 
with x = −SA,f [q] + SA,f [p '] + pC−1. We have computed the cost function for this problem 
in Appendix A.3 for a random T-sponge and we found an expected workload of the order 
2c/C if C < 2c/2. Note that its expected workload must be at least that of generating an inner 
collision as a 2nd pre-image implies an inner collision. 

In a truncated random oracle the expected workload is of the order 2n and is independent of 
C. Hence if we impose a limit to the length Cmax, a truncated random T-sponge offers a similar 
level of resistance against 2nd pre-images as a truncated random oracle if n < c − log2(Cmax). 

It is now interesting to take a look at the 2nd pre-image attack presented in [10] and 
the herding attack presented in [12] that both apply to iterated hash functions. If we apply 
these attacks to a random T-sponge with c = n we obtain expected attack complexities lower 
than those obtained in [10] and [12]. The finite state of the iterated hash function makes 
that generating pre-images becomes easier as the first pre-image becomes longer. Including 
length-coding in the message padding somewhat improves the resistance, but not as expected. 
However, having an inner state that is twice as large as the digest, i.e., c > 2n is a more 
fundamental solution to these problems. 

2c/2For a random P-sponge, the expected workload is between 2(c+4)/2 if C « and a 
minimum of 2(c+3)/2 due to the fact that a 2nd pre-image implies an inner collision. So for 
small values of C, the workload is close to that of finding a path to an inner state; for values 
of C near 2c/2, the workload comes close to that of generating an inner collision, but stays 
smaller. 

In general, a truncated random sponge offers a similar level of resistance against 2nd pre-
images as a truncated random oracle if c > 2n as a 2nd preimage implies an inner collision 
and the expected workload of generating an inner collision is 2(c+3)/2 . 

5.3 Pre-image 

In a sponge, a pre-image can be obtained by binding an output string to a state and subse­
quently finding a path to that state. Note that n = (m + 1)r. 

For a P-sponge we bind the output to a state S. Then we compute T = f−1(S) and 
subsequently we find a path p to TC . This gives a path to S given by the found path to T , 
namely p|(−SA,f [p] + TA). The expected workload for finding a pre-image for a truncated 
random P-sponge in this way is hence 2n−r + 2c/2 if n < c. If n > c it may be that the 
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output has no pre-image. If it has one, the expected workload is 2c−1 + 2c/2. The expected 
workload to find a pre-image in a truncated random oracle is 2n. It follows that a truncated 
random P-sponge offers a similar resistance against pre-images as a truncated random oracle 
if n < c/2. 

For a T-sponge, after having bound the output to a state S, we cannot compute a state 
T = f−1(S). Therefore we need to bind the output to a state T directly. Instead of guessing 
the inner part of the state corresponding with the first output symbol t0, we need to guess 
a state T such that fA(T ) = t0. This multiplies the number of trials by 2r and the expected 
workload now becomes 2n for n < c + r and 2c+r for n > c + r. The expected workload for 
finding a pre-image is hence 2n +2c−1 for n < c + r and 2r+c +2c−1 for n > c + r. A truncated 
random T-sponge offers a similar resistance against pre-images as a truncated random oracle 
if n < c. 

5.4 Length extension 

Length extension is the property that given a digest h(p) of an input p, but not the input 
'itself, one can compute the digest of an input p|p with known p '. In a sponge, it is possible 

to do this if one can determine from the output the state Sf [p] with p = p(m) for a message 
m. One can then compute Sf [p|p '] and generate the output by squeezing this. The length 
extension only works if the state value bound to the output is equal to Sf [p] and not some 
other state value that gives rise to the same output. If the output is longer than c+r it is very 
likely that there is only a single corresponding state value. Otherwise the expected number 
of solutions is 2c+r−n and length extension is only successful if the right solution is taken. 
For length extension it makes no sense to compare the security level with that of a random 
oracle, as a random oracle does not exhibit the length extension weakness at all. 

5.5 Correlation immunity 

Correlation immunity is the absence of large correlation between input and output of a hash 
function. Clearly, such measurable correlation would enable to distinguish the sponge function 
from a random oracle. As we have shown in Section 3 that a random sponge can only be 
distinguished on the basis of the presence or absence of inner collisions, large correlations 
will not appear in a random sponge as long as y < c/2. A similar reasoning applies for large 
differential properties between input and output. 

5.6 Discussion 

In all attacks discussed, it is clear the smaller the capacity, the more vulnerable the sponge 
function becomes with respect to the attacks exploiting the fact that the sponge function 
operates on a finite state. Let us now take a look at the current mainstream hash function 
design practice with this in mind. 

Most existing hash functions make use of a so-called compression function consisting of a 
block cipher structure with a feedforward loop added to it. In this compression function the 
block cipher encrypts the chaining value with a message block as key. Prior to hashing, the 
message is padded with the message length encoded in the padding and the digest is the final 
value of the chaining value. This is known as the Merkle-Damg̊ard construction and it has 
provable collision resistance if the compression function is collision-resistant [7, 16]. 
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The Merkle-Damg̊ard construction limits the value of the capacity that can be claimed 
to that of the digest length n. In a Merkle-Damg̊ard hash function a collision in the output 
is an inner collision and length-extension is trivial due to the fact that the digest reveals the 
complete inner state. So while Merkle-Damg̊ard imposes c = n, our analysis shows that for a 
given digest length n, it is best to have a capacity c that is as large as possible. 

A possible direction for Merkle-Damg̊ard hash functions is to design compression functions 
operating on a larger state and just truncate the final chaining value to the desired digest 
length. The disadvantage of this final truncation is that the reduction proof for collision-
resistance is no longer valid. This does not seem such a disaster as there is no evidence that a 
collision-resistant fixed-length compression function would be easier to design than a collision-
resistant hash function in the first place. While current mainstream hash functions appear to 
have an intrinsic digest length, doing truncation allows to use the same hash function for all 
digest length smaller than a maximum. By adopting a squeezing phase rather than just taking 
the digest as a part of the chaining value, any digest length could be supported. Clearly, the 
resistance of the hash function is limited by the size of the inner state. 

Finally, note that for a random sponge the resistance against attacks does not lie in the 
resistance against attacks of an underlying primitive, but rather in the absence of specific 
properties in the used primitive. Our analysis shows that the vast majority of existing trans­
formations (or even permutations) will give a sponge with excellent resistance as long as the 
capacity is large enough. 

6 Security claims 

6.1 Expressing a security claim 

The random sponge can be used as a reference model for the security claim of a hash function 
design. To do so, the following parameters should be given: 

–	 the capacity c of the sponge; 
–	 the rate r of the sponge; 
–	 whether the sponge is a random T-sponge or a random P-sponge; 
–	 an optional limitation on the input length (e.g., an upper bound on the number of input 

bits); 
–	 an optional limitation on the output length (e.g., a range of output lengths). 

Then, the security claim is that the designed hash function should not exhibit externally 
visible weaknesses that the reference model does not have. By an externally visible weakness, 
we mean that the weakness has to be expressed in terms of input and output strings only. A 
property is not an attack if it needs to refer to the inside of the construction. (As such, the 
four operations discussed in Section 4 are not attacks by themselves.) 

6.2 Choosing a reference 

When a designer decides to express the security properties of his design with respect to a 
random sponge, he must choose between a T-sponge and a P-sponge and decide values for its 
capacity and rate. For a given capacity and rate, a random T-sponge almost systematically 
offers a higher or equal security level than a random P-sponge. The exception is the length 
of output cycles. One may conclude that for hash functions, a random T-sponge is a better 
model, leading to a more demanding security claim. 
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However, when we look at the practice of hash function design, almost all hash functions 
are designed to be all-purpose. This is especially the case for standard hash functions. The 
same hash function should be usable in wide range of applications and it should satisfy all 
security criteria simultaneously. If one expresses the security claim of such a hash function 
with respect to a random sponge, be it a T-sponge or P-sponge, the value of the capacity used 
in the claim shall be high enough to offer a sufficient resistance against collisions. In a sponge 
this is limited by the resistance against inner collisions, for which the expected complexity 
is of the order 2c/2, both for a random T-sponge and for a random P-sponge. This imposes 
the same lower bound on c, both for a P-sponge and for a T-sponge: c should be chosen 
sufficiently large so that generating inner collisions will not become even remotely feasible in 
the timeframe that the hash function will be used. So even if a random P-sponge is used as 
a reference, its weaker resistance against 2nd preimages than a T-sponge will not be within 
reach as long as generating inner collisions is out of reach. 

Nowadays, a capacity of c = 256 seems to offer already a comfortable security margin. 
By further taking c = 512, one can say that when truncated to n = 256 bits, the sponge 
function offers the same resistance as a random oracle with respect to the known attacks that 
are also applicable to random oracles. The value of the rate of the reference sponge is not so 
important. In our opinion it would be best to choose among r = 1 and r equal to the length 
of the input blocks. 

While for Merkle-Damg̊ard hash functions a random T-sponge seems to be the right ref­
erence, there are several designs where a random P-sponge is more appropriate. This includes 
designs such as Panama [6] and more recently RadioGat´ un [4] and Grindahl [11]. Basically, 
these functions operate by the repeated iteration of a single invertible round function on a 
large state. As the round function is a permutation, one can use a meet-in-the-middle ap­
proach to find a path to an inner state. This makes random P-sponges the natural reference 
in security claims of this kind of functions. Typically, the capacity in the claim will be much 
smaller than the size of the state, making up of the partial control an attacker has on the 
evolution of the internal state. 

6.3 Flat sponge claim 

If we examine our analysis for sponge functions, we see that all attacks that exploit the 
finite state of the random sponge have a success probability (resp. expected workload) that 
stays below (resp. above) that of finding inner collisions. To further simplify the choice of 
parameters for the reference model, one could take this fact to flatten the differences between 
T-sponges and P-sponges and formulate an even simpler claim. 

The flat sponge claim is the following. Given the capacity c (and possibly a limitation on 
the input and/or output sizes), the success probablity of any attack should be smaller than   

22y−(c+1)or equal to the maximum of that for a random oracle and 1 − exp , with N = 2y 

the number of calls to the round function (or its inverse). 

7 Sponges, MAC functions and stream ciphers 

From Appendix B it appears that a sponge function where the first part of the input is kept 
secret and used as a key offers a high level of security if the capacity is large enough. This 
makes random sponges also suitable to be used as reference for MAC functions and stream 
ciphers. 
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On the other hand, when we have a function that is as secure as a random sponge with 
given capacity, we can turn it into a secure MAC function and a stream cipher by simply taking 
a secret key as the first part of the input. For existing hash functions with the Merkle-Damg̊ard 
structure this is not the case as they have weaknesses that prevent these constructions to be 
secure. These weaknesses are compensated by having more complicated constructions such as 
HMAC [2] and MGF1 defined in PKCS #1 [13]. 

8 Conclusions 

We have introduced sponge functions and have shown that random sponges are well suited 
to serve as reference for expressing security claims for hash functions, MAC functions and 
stream ciphers. They are only distinguishable from random oracles by the detection of inner 
collisions and the probability of inner collisions can be made arbitrarily small by increasing 
a security parameter, called the capacity. We have evaluated the strength of random sponges 
with respect to a series of attacks and show that their strength can be augmented by increasing 
their capacity. Thanks to the sponge, designers can make compact security claims. 
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A Computations 

In this appendix we compute the success probabilities of the four operations introduced in 
Section 4. 

A.1 Graph representation 

One can associate a graph with a sponge function with AC nodes and AC edges: the sponge 
graph. The nodes are the state values and for every couple (S, T ) with T = f(S) there is 
a directed edge from S to T . From each node starts exactly one edge. For a P-sponge, in 
each node arrives exactly one edge. The nodes can be partitioned by the value of the inner 
state and we call the subset of all nodes with the same inner state value a supernode. Edges 
between nodes are therefore also edges between supernodes. There are C supernodes, one 
for each inner state value. The A nodes within a supernode are identified by their SA value, 
which we will call their index. 

One can absorb an input string p by following edges starting from supernode 0, the root. 
First we draw an edge from (p0, 0). This edge arrives in node with index SA,f [p0] of supernode 
SC,f [p0]. Then we draw an edge from the node within that supernode with index SA,f [p0]+ p1 

and the node where it arrives is Sf [p0p1]. For pi, we draw an edge from the node with 
index SA,f [p0p1 . . . pi−1] + pi within supernode SC,f [p0p1 . . . pi−1]. It follows that the graphic 
representation of a path to an inner state is a sequence of directed edges from the root to the 
corresponding supernode. Given the graphic representation, one can reconstruct the value of 
p. The i-th character of the path p is determined by the edges arriving at and starting from 
the i-th supernode on the path: it is the index of the node where the outgoing edge starts 
minus the index of the node where the incoming edge arrives. The first symbol of the path p0 

corresponds with the root where there is no incoming edge and it is just equal to the index 
of the node where the first edge starts. 

In the following, we represent the information the adversary has learned in the experiment 
in a graph that represents the part of the sponge graph known to her. We call this the adversary 
graph. 

In the beginning, the adversary has no information about f and her graph has no edges. 
The only way she can gain information on f is to make calls to f (and f−1). Without loss 
of generality, we assume the adversary makes no queries corresponding with known edges. 
Hence, a call to f corresponds to adding to the adversary graph an edge starting from a given 
node and a call to f−1 with adding an edge arriving in a given node. 

In the adversary graph, we say that a supernode TC is reachable from a supernode SC if 
there is a sequence of directed edges from SC to TC (in the right direction) or if T = S. We 
call the supernodes that are reachable from the root, rooted supernodes and denote their set 
by R, with R = |R|. We also call all nodes in a rooted supernode rooted. 

A.2 Inner collisions 

The adversary has an inner collision if she finds two paths from the root to some supernode. 
We consider the i-th call of the adversary and express the probability that it leads to an 
inner collision on the condition that no inner collisions were discovered yet. As can be seen 
in Figure 1 this implies that the new edge must connect a rooted supernode to a supernode 
from which a rooted supernode can be reached. We call a supernode from which a rooted 
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supernode can be reached in the adversary graph an R-reaching supernode and their set by 
V with V = |V|. Clearly, R ⊆ V. Initially, V = R = {0} and R = V = 1. Right before adding 
the i-th edge, the graph contains i − 1 edges and R ≤ V ≤ i. 

Random T-sponge The adversary can only add edges starting from chosen nodes. If the 
new edge starts from a rooted node, the probability of success is V/C. Moreover it adds one 
to R and hence also to V . If the new edge starts from a non-rooted node, the probability of 
success is 0. It leaves R invariant and may add one to V if it arrives in a node in V. It follows 
that the success probability of future edges is optimized by always adding edges starting from 
rooted nodes. The exact shape of the rooted tree is not important. So applying this strategy, 
right before adding the i-th edge, we have R = V = i yielding: 

NN i 
P (no IC) = (1 − ). 

C 
i=1 

If N « C, we can use the log(1 + E) approximation: log(1 + E) ≈ E when E « 1. This gives:     N 
i N(N + 1) 

P (IC) ≈ 1 − exp − = 1 − exp − . 
C 2C

i=1 

The expression we obtain for the success probabilities of the attacks in the following subsec­
tions have the same shape. Keeping in mind that cost function cp(N) of an attack is given by 
cp(success) = − log(1 − P (success)), we have 

P (success) = 1 − exp (−cp(success)) . 

Note that when cp(success) « 1, applying log(1 + E) approximation yields P (success) ≈ 
cp(success). In this case, we have: 

N(N + 1) 
cp(IC) ≈ .

2C 

Random P-sponge The adversary can add edges starting from chosen nodes and edges 
arriving in chosen nodes. An edge starting from a chosen node can only arrive in a node that 
has no incoming edge yet; an edge arriving in a chosen node can only start from an edge that 
has no outgoing edge yet. 

If an edge is added starting from a chosen node that is rooted, the probability of success 
is (A−1)V +1 : the number of nodes in V with no incoming edge divided by the total number AC−i 
of nodes with no incoming edge. If an edge is added arriving in a chosen node in V, the 
probability of success is similarly (A−1)R+1 .AC−i 

The higher the values of R and V , the better the future probabilities of success, so one 
may do other things to augment R or V faster. An edge starting from a chosen node that 
is not rooted cannot lead to an inner collision. It leaves R invariant and may add one to V . 
But an edge arriving in a chosen node in V adds one to V with certainty, so this always leads 
to better success probabilities. Similarly, an edge arriving in a chosen node that is not in V 
cannot lead to an inner collision but it may adds one to R. An edge starting from a chosen 
node that is rooted adds one to R with certainty, so this always always leads to better success 
probabilities. 
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VnR

(a)

Fig. 1. Adding an edge (a) resulting in an inner collision. Edge (a) must start in R and arrive in V. 

At any time, R ≤ V ≤ i. Globally, the optimal strategy is one in which the probability of 
success of the i-th call is (A−1)i+1 . When adding an edge arriving in a chosen node in V that AC−i 
does not lead to an inner collision, R is not affected and hence it leads to R < i, while in the 
optimal strategy R = i. It follows that in the optimal strategy only a single edge arriving in 
a chosen node in V may be added and all other edges are just edges added to rooted nodes. 
We obtain: 

N N i 1N (A − 1)i + 1 N 1 − −C ACP (no IC) = 1 − = . 
AC − i 1 − i 

i=1 i=1 AC 

Using the log(1 + E) approximation this gives: 

N 
i − 1 i N(N + 1) N(N − 1) 

cp(IC) ≈ − + = − . 
AC C 2C 2AC 

i=1 

A.3 Finding a path to an inner state 

Given a target inner state TC , the adversary must find a path p such that SC,f [p] = TC . We 
consider the i-th call of the adversary and express the probability that it leads to a path on 
the condition that no path was found yet. As it can be seen in Figure 2 this implies that the 
new edge must connect a rooted supernode to a supernode from which TC can be reached. 
We call a supernode (and its nodes) from which the target can be reached a target-reaching 
supernode (and nodes) and their set by V with V = |V|. Initially, V = {TC}, R = {0} and 
R = V = 1. Right before the i-th call, the graph contains i − 1 edges and R ≤ i, V ≤ i and 
R + V ≤ i + 1. 

Random T-sponges The adversary can only add edges starting from chosen nodes. If 
an edge is added starting from a chosen node that is rooted, the probability of success is 
V/C. Otherwise, the probability of success is 0, it leaves R invariant and adds one to V 
with probability V/C. It follows that to optimize the probability of success it is best to 
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systematically add edges starting from chosen nodes that are rooted. So applying this strategy, 
right before the i-th call, we have R = i and V = 1 yielding: 

NN 1 
P (no path) = (1 − ) . 

C 
i=1 

Using the log(1 + E) approximation for C » 1, this yields: 

cp(path) ≈ 
N

. 
C 

We will now discuss a variant of the operation: finding a second path to an inner state 
if there is already a path of length C. This is relevant when generating 2nd pre-images when 
being used as a hash function. We consider the probability to find a 2nd path after adding N 
edges, also counting the C edges corresponding with the absorbing of message p. After adding 
these C edges, R and V each contain the set of C supernodes on the path from the root to T . 
For N > C this gives NN 1 

P (no 2nd path) = (C − ) ,
C 

i=C 

and subsequently, if C « C 

cp(2nd path) ≈ 
CN 

. 
C 

Random P-sponges The adversary can add edges starting from chosen nodes and edges 
arriving in chosen nodes. An edge starting from a chosen node can only arrive in a node that 
has no incoming edge yet, an edge arriving in a chosen node can only start from an edge that 
has no outgoing edge yet. 

If the edge starts from a chosen node that is rooted, the probability of success is (A−1)V +1 ,AC−i 
if the supernodes of V with the edges form a tree. This is the number of nodes in V with no 
incoming edges divided by the total number of nodes with no incoming edges. This adds 1 to 
R if there is no inner collision and leaves V invariant. 

If an edge is added arriving in a chosen target-reaching node, the probability of success 
is similarly (A−1)R+1 , in the assumption that there are no inner collisions. This adds 1 to VAC−i 
if the new edge does no start from a target-reaching node and leaves R invariant. We will 
assume that there are no inner collisions and that the supernodes of V form a tree and later 
see whether this assumption is justified. In any case, the absence of inner collisions results in 
the largest success probabilities and hence upper bounds the success probability. 

The higher the values of R and V , the better the future probabilities of success. It follows 
that adding an edge arriving in target-reaching nodes augments the probability of success 
when later adding edges starting from rooted nodes and vice versa. 

An edge starting from a chosen node that is not rooted cannot lead to a path to TC . It 
leaves R invariant and may add one to V with small probability. With the eye on increasing 
the success probability of future calls, adding an edge starting from a rooted node is always 
better. Similarly, an edge arriving in a chosen node that is not in V cannot lead to a path to 
TC . It adds one to R with small probability and adding an edge arriving in a target-reaching 
node is always better. 

We introduce a variable ρi that is 1 if the i-th edge added is one starting from a chosen 
node that is rooted and −1 otherwise and denote the values of R and V right before adding 
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the i-th edge by Ri and Vi. Then the probability that the i-th edge added does not result in 
a path becomes   

(A − 1) Vi + 1−ρi Ri + 1 1 − i+1 − A−11+
2 
ρi 

2 (Vi + Ri − ρi(Ri − Vi))AC 2AC1 − = 
AC − i 1 − i 

AC 

Using the log(1 + E) approximation we obtain: 

N 1 A − 1 
cp(path) ≈ + (Vi + Ri − ρi(Ri − Vi))

AC 2AC 
i=1 

We have Vi + Ri ≤ i + 1, where equality applies if there are no inner collisions in R and if 
the supernodes of V form a tree. We assume Vi + Ri = i + 1 and later verify whether this 

i−1assumption was justified. Moreover, we have Ri − Vi = j=1 ρi. This gives: ⎛ ⎞ 
N i−1 

N A − 1 
cp(path) ≈ + ⎝N2 + 3N + 1 − 2ρiρj⎠ 

AC 4AC 
i=1 j=1 

We can now work out the last term using: 

N i−1 N N N 

2ρiρj = ρiρj − ρiρi = (RN+1 − VN+1)2 − N 
i=1 j=1 i=1 j=1 i=1 

Filling this in gives: 

N(N + 4) − (RN+1 − VN+1)2 N2 − (RN+1 − VN+1)2 

cp(path) ≈ −
4C 4AC 

This is maximized if RN+1 = VN+1 for N even and if |RN+1 − VN+1| = 1 for N odd, i.e., if 
R and V have the same number of nodes just before the path is found. As it is not known in 
advance when the path will be found, the best strategy is to add edges starting from chosen 
nodes in R and edges arriving in chosen nodes in R in an alternating fashion, guaranteeing 
(RN − VN )2 ≤ 1. For even N this gives: 

N(N + 4) N2 

cp(path) ≈ − .
4C 4AC 

√ 
the probability of success becomes significant when N is of the order of 2 C and hence when √ 
R and V are of the order C. This implies that for these values of N there may be inner 
collisions but their small number compared to R make that their presence does not affect the 
success probability significantly. 

A.4 Detecting cycles in the output 

The goal is to detect cycles in outputs corresponding to valid input strings. The adversary can 
take an input string p and absorb it, resulting in a node Sf [p]. From this node, the output 
characters SA,f [p|0j ] are generated by following a chain of nodes connected by edges, i.e., 
Sf [p|0j ] = f(Sf [p|0j−1], where we define a chain as a sequence of nodes connected by directed 
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Fig. 2. Adding an edge (a) resulting in a path. Edge (a) must start in R and arrive in V. 

'edges. The first node in the chain is the node U = Sf [p '] + p|p|−1 with p equal to p with the 
last character p|p|−1 removed. 

The adversary finds a cycle by creating nodes in such a chain by adding edges to the last 
node of the chain until the new edge arrives in a node in the chain. The shortest valid input 
strings have length 1 containing a non-zero character. Before adding the i-th edge, the chain 
contains i nodes. 

Random T-sponges The probability that the new edge arrives in one of the nodes of the 
chain is i/(AC). Using the log(1 + E) approximation, this results in: 

N(N + 1) 
cp(output cycle) ≈ .

2AC 

Random P-sponges At any moment, there is only a single node in the chain that has no 
incoming edge, the first one. The probability that the new edge arrives in a node in the chain 
is hence 1/(AC). This results in: 

cp(output cycle) ≈ 
N

. 
AC 

A.5 Binding an output string to a state 

The goal is to find a state S such that SA = t0, fA(S) = t1, fA(f(S)) = t2, fA(fm−1(S)) = tm. 
As SA = t0, only the inner part SC is unknown. 
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The probability, over the transformations (or permutations) f and over SC ∈ C, that the 
following condition is verified: 

fA(f i−1(t0, SC)) = ti, ∀i ∈ {1 . . .m}, (1) 

depends not only on the length of t, |t| = m + 1, but also on the structure of t. First of 
all, a string showing perodicity d has slightly more probability, as cycles help to satisfy the 
condition (1). 

In a random T-sponge the values of ti affect the success probability due to the existence 
of cycles. The probability that a value S is in a cycle of length d is approximately 1/AC (if√ 
d « AC) and the probability that this cycle leads to the correct output sequence is 1/Ad−1 . 

In a random P-sponge the values of ti affect the success probability in the following way. 
When several ti have the same value, either the corresponding SC values are different or there 
is a cycle. This effect is strongest if A is small, e.g. in binary P-sponges. In the absence of a 
cycle, where one would expect a probability for the i-th check to be successful equal to 1/A, 
this probability is only C−q with q the number of tj values with j < i that have the same AC−i 
value as ti. The effect therefore grows in importance if the ti are more biased. Clearly, for 
large values of C, this can be neglected and we can approximate the success probability by 
A−1. The probability that a value S leads to a cycle of period d is 1/AC (see Section A.4) and 
the probability that this cycle leads to the correct output sequence is approximately 1/Ad−1 . 

Both for a random T-sponge and a random P-sponge, the probability that a cycle occurs 
for a candidate inner state is 1/AC and for a given transformation (or permutation) the 
probability that there is not a single state leading to the cycle of period d is approximately 
1 − 1/A. The expected number of such state values is hence so small that this effect can be 
neglected. 

The adversary can make random guesses of SC until he finds one such that fA(t0, SC ) = t1. 
From there, he can evaluate fA(f(t0, SC )) and check if it is equal to t2. If so, he continues, 
possibly until he reaches the last character of the sequence; if not, he starts again from a 
new guess for SC . At each step, in the absence of a cycle and neglecting biases, the adversary 
has a probability of A−1 to get the correct next character. Once an incorrect character is 
encountered, the adversary starts with the next guess for SC . Clearly, the average number of 

Acalls to f to eliminate a guess is .A−1
 
If Am < C the probability for a guess to be successful is:
 

P (success with guess) = 1 − (1 − A−m) . 

Taking into account the number of calls to f for a guess, we obtain the following cost function, 
both for a random T-sponge as for a random P-sponge. 

A − 1 
cp(state binding) ≈ N/Am . 

A 

When mr > c the expected number for N is larger than the number of inner state values 
and an inner state value that leads to the given output sequence only exists for a fraction of 
the possible transformations (or permutations). The case mr > c implies that the adversary 
has to try a large fraction of the values SC ∈ C. By construction, he cannot look for more 
than C values of SC . If the sponge transformation (or permutation f) is fixed but a priori 
unknown to the adversary, we can distinguish two situations: 
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1. The adversary is certain that the string t has been observed from the output of the sponge 
Sf . 

2. The adversary does not know if the string t has been observed from the output of the 
sponge Sf . 

In the first case, he will surely find a satisfactory SC . If mr » c, it is highly probable that 
only one such candidate exists. In the second case, he may not necessarily find a satisfactory 
SC , and his chances decrease as m increases. For mr > c, the cost function becomes: 

A − 1 N 
cp(success with guess) =≈ . 

A C 

B Other applications of sponges 

We can use a sponge as a MAC function by just taking as input the concatenation of a secret 
key and the message, taking the truncated output as the MAC and hiding the inner state 
from the adversary. Similarly, a sponge can be used as a stream cipher. The input is the 
concatenation of a secret key and a diversifier, the output is the keystream and the inner 
state is hidden from the adversary. We denote the length of the key (in characters) by k. In 
both cases, the first part of the input to the sponge is the secret key. We call this a keyed 
sponge. 

The keyed sponge model does not allow related-key attacks. To extend the model to also 
allow related-key attacks, one can have inputs to the sponge consisting of two parts: the input 
string an a k-character key offset. The keyed sponge first adds the key offset characterwise to 
the key, concatenates the input string to the result and absorbs that into the sponge. 

In describing attacks on a keyed sponge, the adversary can make two types of queries. The 
first type are calls to f and in the case of a P-sponge also f−1. The total number of such calls 
is denoted by N = 2y, that represents what is usually called the computational complexity 
of the attack. The second type are queries to the keyed sponge similar to those in Section 3. 
The sum of the number of input characters and output characters (and key offset characters) 
is denoted by M = 2q. M represents what is usually called the data complexity of the attack: 
the amount of data computed with the key. 

We can have several scenarios. The most powerful is a distinguishing attack. In this case 
the adversary can make queries to a black box that is either a random oracle or a keyed 
sponge as in Section 3. What is different from the setting in Section 3 is that additionally the 
adversary can make calls to f (and f−1). The adversary can distinguish in three ways: 

–	 State binding: the adversary asks the black box for an output sequence longer than c + r 
characters and binds a state to the output sequence using the white box. For this attack 
to work, we need M > c + r and for a random sponge it has cp(success) ≈ 2y−c . 

–	 Key guessing: the adversary asks the black box for output sequences with a total of more 
than k characters. She then uses the white box to generate the same output sequences 
where the value of the key is guessed. For this attack to work, we need M ≈ k and for a 
random sponge it hash cp(success) ≈ 2y−k . 

–	 Observing inner collisions: the adversary asks the black box for output sequences until he 
observes an inner collision. This attack has cp(success) ≈ 22q−(c+1). 

Note that this analysis is valid both for the fixed-key and the related-key case. There appear 
to be no other methods to distinguish the keyed sponge from a random oracle. 

21
 



Another scenario is stream prediction when being used as a stream cipher, or MAC forgery 
when being used as a MAC. In both cases, the adversary shall predict the output of the keyed 
sponge to an input using only its outputs to a set of other inputs. Here again we see the 
three approaches. After key guessing the adversary can produce the output corresponding to 
any input. After state binding, the adversary can generate the output to any string p that 
has a prefix in the input strings for which the adversary knows the output string. In case 
of P-sponge, the adversary can even generate the output to any string p. If the adversary 
observes an inner collision in the black box, MAC forgery is easy. If two input strings K|p 
and K|q collide and the adversary knows the output corresponding to input string K|p|m, 
he also knows the output corresponding to input string K|q|m. When being used as a stream 
cipher, it depends on the range of allowed IV values. If an inner collision occurs before the last 
character of the IV has been absorbed, the same technique can be applied as in the case of 
MAC forgery. If a cycle is detected in an output sequence (special case of inner collision) the 
complete output sequence is known based on a single period. Finally, in the case of a MAC 
function one can simply guess the MAC value, hence the resistance against MAC forgery is 
also limited by the length of the MAC n: the adversary can correctly guess the MAC to a 
message with probability 2−n . 
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