

X-Sieve: CMU Sieve 2.2

From: Joan DAEMEN <joan.daemen@st.com>

To: <hash-function@nist.gov>

Cc: "Gilles VAN ASSCHE" <gilles.vanassche@st.com>, <michael.peeters@nxp.com>,

"Guido Marco BERTONI" <guido.bertoni@st.com>
Subject: Hash Algorithm Requirements and Evaluation Criteria
Date: Fri, 27 Apr 2007 16:38:05 +0200
X-Mailer: Microsoft Office Outlook 11
Thread-index: AceI2XZuTE+ru5WCRKGFkLjtctwdHw==
X-O-Spoofed: Not Scanned
X-O-General-Status: No
X-O-Spam1-Status: Not Scanned
X-O-Spam2-Status: Not Scanned
X-O-URL-Status: Not Scanned
X-O-Virus1-Status: No
X-O-Virus2-Status: Not Scanned
X-O-Virus3-Status: No
X-O-Virus4-Status: No
X-O-Virus5-Status: Not Scanned
X-O-Image-Status: Not Scanned
X-O-Attach-Status: Not Scanned
X-SpheriQ-Ver: 4.2.04
X-Proofpoint-Virus-Version: vendor=fsecure engine=4.65.5502:2.3.11,1.2.37,4.0.164
definitions=2007-04-27_05:2007-04-27,2007-04-27,2007-04-27 signatures=0
X-PP-SpamDetails: rule=spampolicy2_notspam policy=spampolicy2 score=0 spamscore=0
ipscore=0 phishscore=0 adultscore=0 classifier=spam adjust=0 reason=mlx engine=3.1.0-
0703060001 definitions=main-0704270063
X-PP-SpamScore: 0
X-NIST-MailScanner: Found to be clean
X-NIST-MailScanner-From: joan.daemen@st.com

Dear NIST,

As a comment on the hash algorithm requirements and evaluation criteria, item C.1, we would
like to point out our work on "Sponge Functions" [accepted for publication at ECRYPT Workshop
on Cryptographic Hash Functions, May 24-25, 2007 in Barcelona].

In this paper, we describe a reference model namely a random sponge that may be used as a
reference for hash functions. As compared to a random oracle, a random sponge may be better
suited as a reference claim for iterated hash functions. In particular, iterated hash functions have
internal collisions, which are modeled by the random sponge but not by the random oracle.

Also, this paper discusses the resistance of random sponges with regard to the attacks listed in
the first bullet of item C.1. Using a random sponge as a reference automatically determines the
claimed resistance against these attacks and against attacks not explicitly listed there.

We suggest NIST to consider the random sponge model as an evaluation criterion, in
replacement or addition to the first two bullets of item C.1.

Best regards,

Guido Bertoni, Joan Daemen, Michael Peeters and Gilles Van Assche

mailto:joan.daemen@st.com
mailto:guido.bertoni@st.com
mailto:michael.peeters@nxp.com
mailto:gilles.vanassche@st.com
mailto:hash-function@nist.gov
mailto:joan.daemen@st.com

Sponge Functions

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

gro.noekeon@noekeon.org

1 STMicroelectronics
2 NXP Semiconductors

Abstract. A good cryptographic hash function should behave like a random oracle: it should
not have weaknesses that a random oracle does not have. Due to the existence of inner collisions,
iterated hash functions can never satisfy this ideal. We propose a construction with a finite
state called a sponge and show that a random sponge can only be distinguished from a random
oracle due to inner collisions. We evaluate the strength of random sponges by computing the
probability of success for a number of attacks as a function of their workload and show that
these results shed a new light on the classical Merkle-Damg̊ard construction. We propose to
use random sponges of given parameters as a reference for specifying security claims for hash
functions, but also MAC functions and some types of stream ciphers. The main goal of sponge
functions is for designers to be able to formulate a compact security claim.

1 Introduction

When designing a hash function, it is important to know which security criteria the result
must satisfy, and when publishing it, the paper should state the security criteria it claims
to satisfy. The established security criteria for a cryptographic hash function are collision-
resistance, pre-image resistance and 2nd pre-image resistance [15]. Often, designers claim
lower bounds for the complexity of the three corresponding attacks. In many cases, however,
no explicit claims are made and the hash function is supposed to offer a security level implied
by the length of its digest. The problem with these criteria is that they do not express what
we have come to expect of a cryptographic hash function. Some applications require that a
hash function is correlation-free [1] or resists length-extension [18]. More recently, a series of
attacks [9, 10, 5, 12] has shown that certain hash function constructions do not offer as much
security as expected, leading to the introduction of yet other criteria, such as chosen target
forced prefix preimage resistance. As was already predicted in [1], there is no reason to assume
that no new criteria will appear, so the design of a hash function seems like a moving target.

Remarkably, a random oracle [3] is a theoretical construction that satisfies all known
security criteria for hash functions and it seems hard to imagine that new security criteria
will be introduced that a random oracle does not satisfy. Hence, we could replace all security
criteria by a single one: a good hash function behaves as a random oracle. But what does this
mean?

Informally speaking, a random oracle maps a variable-length input message to an infinite
output string. It is completely random, i.e., the produced bits are uniformly and independently
distributed. The only constraint is that identical input messages produce identical outputs.
A hash function produces only a fixed number of output bits, say, n bits. So, a hash function
should behave as a random oracle whose output is truncated to n bits. In general, it is easy
to compute the resistance of a random oracle (truncated to n bits) to certain attacks. For
instance, the expected number of calls to the oracle to generate a collision is of the order of
2n/2. To find a (second) pre-image, this number is 2n. The hash function is then considered

mailto:gro.noekeon@noekeon.org

broken if someone finds an attack on the hash function with a complexity smaller than for a
random oracle.

Most practical hash functions are iterated. They operate on a chaining value, which is
iteratively modified by a function taking the message as an argument. This is a very convenient
property, as the whole message can be hashed on the fly. For instance, a network application
can hash the stream of data as it comes, without the need to store it into memory.

Iterated hash functions have state collisions, that is, collisions in the chaining value. The
existence of state collisions yields properties that do not exist for random oracles. For instance,
assume that M1 and M2 are two messages that form a state collision in an iterated hash
function. Then, for any suffix N , the messages M1|N and M2|N will produce identical hash
values. A random oracle does not have this property: even if M1 and M2 produce the same
hash value (of finite length n), M1|N and M2|N produce hash values that are independent
of the hash value obtained from M1 and M2. Note that the state collisions are not a problem
per se, but rather the fact that they lead to the described externally visible behaviour.

In the light of state collisions, the claimed reference model cannot be a random oracle
for iterated hash functions. It is an unreachable goal for an iterated hash function to be
as strong as a random oracle. There are two ways to address this problem. First, one can
abandon iterated hash functions and use non-streamable hash functions such as the zipper
hash construction [14]. This may indeed solve the problem but may be unsuitable for many
applications of hash functions since the entire message must be available in memory.

A second approach is to stick to iterated hash function constructions and learn to live with
state collisions. This is the approach we follow in this paper. In Section 2, we define a new
reference model called sponge functions. In Section 3, we show that a random sponge can only
be distinguished from a random oracle due to inner collisions. In Section 4, we evaluate the
strength of random sponges by computing the probability of success for a number of operations
as a function of their workload. In Section 5, we evaluate the strength of random sponges
when being used as a hash function and compare with classical hash function constructions as
applied in MD4-like [17] designs. In Section 6, we discuss the issue of choosing the type and
parameter values when a random sponge is used as reference for expressing security claims.
In Section B, we explain how a sponge can be used as a reference for MAC function and as
a stream cipher.

2 Definitions

2.1 Sponge function

A sponge has the same interface as a random oracle: it takes a variable-length input and
produces an infinite-length output. Before defining it, let us list the necessary ingredients.

–	 Let A be a group, which we call the alphabet group; the set A will represent both input and
output characters. The group operation is denoted by a + and the neutral element by 0.
Note that, in this context, a “character” can represent anything between a bit (A = Z2),
a trit (A = Z3) and a block of n bits (A = Zn).2

–	 Let C be a finite set whose elements will represent the inner part of the state of a sponge.
–	 Let 0 ∈ C be an arbitrary element of C, which will be part of the initial value of the state

of a sponge.

2

–	 Let p(m) be a mapping from the set of messages m to strings of characters of A. The
mapping p(m) must be injective, and must be such that |p(m)| ≥ 1 and that the last
character of p(m) is never 0.

Note that the set of messages m can remain abstract, as the sponge will only process
strings of characters. Consider the example of messages that are binary strings and A = Zn

2 .
In this case, the mapping p(m) can be reversible padding: a single bit 1 is appended followed
by the minimal number of bits 0 such that the length of the result is a multiple of n.

Definition. A sponge function takes as input a variable-length string p of characters of A and
produces an infinite output string z of characters of A. It is determined by a transformation
f of A×C. The input of the sponge function is p, a string of length |p| ≥ 1 that does not end
with 0; the individual characters of p are denoted pi ∈ A, for 0 ≤ i < |p|.

The sponge function has an internal state S = (SA, SC) ∈ A × C, whose initial value is
(0, 0), where 0 ∈ A is the neutral element of A and 0 ∈ C is as described above. To evaluate
the sponge function, one proceeds in two phases:

–	 Absorbing: For each input character pi, the state is updated as

S ← f(SA + pi, SC).

–	 Squeezing: The infinite-length output z is produced one character zj ∈ A at a time by
evaluating

zj = SA,

and updating the state as

S ← f(S).

Definition. The rate of a sponge is

r = log2 A, with A = |A|.

Definition. The capacity of a sponge is

c = log2 C, with C = |C|.

Definition. A binary sponge is a sponge with rate equal to 1 and an integer capacity.
A useful notation for the sponge function consists in defining the Sf function. For a given

input string p, Sf [p] denotes the value of the state obtained after absorbing p. If S = Sf [p],
we call p a path to S (under f). The Sf = (SA,f , SC,f) function is defined by the following
recursion:

Sf [empty string] = (0, 0),
Sf [x|a] = f(Sf [x] + a) for any string x and any character a,

where the symbol | denotes the concatenation and S + a is defined as S + a = (SA + a, SC).
In general, the j-th character of the output is

zj = SA,f [p|0j], j ≥ 0,

where 0j denotes a string with j consecutive characters equal to 0.

3

The Sf function can be used to express the state that the sponge traverses both as it
'absorbs an input p and as it is being squeezed. The traversed states are Sf [p'] for any p

prefix of p|0∞, including the empty string.
This allows us to explain the rationale behind the p(m) function. First, the fact that the

mapping is injective and p(m) never ends with 0 ensures that we cannot have two messages
m1, m2 that will yield the same input to the Sf function when the sponge is squeezed, i.e.,

(m1, j) ⇒ .= (m2, k) p(m1)|0j = p(m2)|0k

Second, the requirement on the length, namely, |p(m)| ≥ 1, ensures that the f function is
evaluated at least once. Otherwise, if the input is the empty string, we know that the first
output character SA,f [empty string] = 0 independently of f , which is not very satisfactory.

Note that as opposed to most hash functions, a sponge function generates infinite output
strings like a random oracle. This makes it suited to also serve as reference for stream ciphers
and so-called mask generation functions [13, 8].

2.2 State collisions and inner collisions

Definition. A state collision is a pair of different paths p = q to the same state: Sf [p] = Sf [q].
Depending on where the state collision occurs, it models different effects of the finite

internal state. State collisions obtained during the absorbing part may lead to identical hash
function values: Sf [p] = Sf [q] implies that the squeezing part will give the same output values
Sf [p|0j] = Sf [q|0j] for all j. State collisions can also model cycles in the output sequence: if
for some p and d we have Sf [p] = Sf [p|0d], the output sequence displays periodicity.

Definition. An inner collision is a pair of two different paths p = q to the same inner state:
SC,f [p] = SC,f [q].

Clearly, a state collision on p = q implies an inner collision on p = q. The converse is not
true. However, it is very easy to produce a state collision from an inner collision. Given p = q
such that SC,f [p] = SC,f [q], one can produce a state collision on p|a q|b for any a, b ∈ A =
that satisfy SA,f [p] + a = SA,f [q] + b.

2.3 Random sponges

For a given choice of the group A, the set C and the initial value (0, 0), the mapping f entirely
determines the sponge function. There are thus (AC)AC possible such sponge functions.

Definition. A random transformative sponge (or T-sponge for short) with given A, C and
0 ∈ C is a sponge function drawn randomly and uniformly from the set of the (AC)AC sponge
functions.

For reasons that become clear in the sequel, we need to distinguish the subset of (AC)!
sponge functions for which f is a permutation.

Definition. A random permutive sponge (or P-sponge for short) with given A, C and 0 ∈ C is
a sponge function drawn randomly and uniformly from the set of the (AC)! sponge functions
for which f is a permutation.

We will use the term random sponge when we make statements that are true for both a
random T-sponge and a random P-sponge.

4

3 Distinguishing a random sponge

We now show that if a random sponge is used in a black-box setting, an adversary can only
distinguish it from a random oracle by the presence or absence of inner collisions.

The setting is as follows. The adversary has access to a black box, which is either a random
sponge (RS) (with a given A, C and 0 ∈ C) or a random oracle (RO). The a priori probability

1of the black box being either a RO or a RS is . The adversary queries the black box (BB) 2
as many times as she wishes, even adaptively, by sequentially asking for a set of messages

(1) m . . .m(q) the first |z(i)| characters of output:

(1)),z(1) = BB(p
(2)),z(2) = BB(p

. . .

z(q) = BB(p(q)),

with p(i) = p(m(i)). She then has to guess whether the black box is a random oracle or a
random sponge.

Let us precisely relate the queries and the absence of inner collision. For a given set of
queries, a random sponge traverses some states when it absorbs the input strings and when it
is then being squeezed. There may be states that are equally traversed for different queries,
e.g., if p(i) and p(j)|0|z(j)|−1 have a common prefix. We denote the set of paths to states
traversed during the distinguishing experiment by P. We have:

P = x is a prefix of p(i)|0|z(i)|−1 for some 1 ≤ i ≤ q .

In the context of a given set of queries, no inner collision means that

�p = q ∈ P : SC,f [p] = SC,f [q].

The following theorem on the output of a random sponge in the case that there are no inner
collisions holds both for random T-sponges and random P-sponges:

Theorem 1. The output characters returned by a random sponge to a sequence of queries
are uniformly and independently distributed if no inner collisions occur during the queries.

(i)Proof. Consider the output character z of the i-th query: SA,f [x] with x = p(i)|0j and let j
Px be the set of paths to the states traversed in the queries 1 to i − 1 and in the current query
for the previous output characters. We denote the set of states and inner states corresponding
to Px by Sx and Sx respectively. C

The requirement that no inner collision takes place during the generation of the output
character SA,f [x] restricts the value of the inner state SC,f [x] to be different from all values
in SC

x .
For a random T-sponge the value of Sf [x] must be in A×(C \Sx) due to this requirement. C

By construction these values are equiprobable. For a random P-sponge the invertibility of f
imposes that Sf [x] must be different from all states traversed already (except (0, 0)), so here
the set Sf [x] is chosen from is (A× (C \Sx)) \Sx. Using Sx ⊂ A×Sx this can be simplified to C C
A×(C \Sx). Hence in both cases all values in A are equiprobable for SA,f [x] and independent C
of the states previously traversed. D

5

In the distinguishing experiment, the adversary may distinguish the random sponge by the
consequences of a state collision. Specifically, a state collision at the end of the absorbing phase
or during the squeezing phase leads to collisions in the output strings. As a state collision
implies an inner collision, we can upper bound the success probability of a distinguishing
attack by the probability an inner collision occurs in a given query.

The success probability depends on the guessing rule used by the adversary. Let RRS be
the set of observations for which she guesses that the black box is a random sponge. The
probability of success reads 1 1

P (success) = + P (r observed|RS) − P (r observed|RO).
2 2

r∈RRS

To maximize the success probability, the adversary has to choose

RRS = {r : P (r observed|RS) ≥ P (r observed|RO)}.

The only thing the adversary can do is to base his decision on the detection of an inner
collision. We know that P (IC|RO) = 0 by definition and P (no IC|RS) = 1 − P (IC|RS) < 1
so that P (no IC|RS) < P (no IC|RO), and the optimal detection rule comes down to RRS =
{IC detected}. We have thus proven the following theorem.

Theorem 2. The probability P (success) of correctly distinguishing a random sponge from a
random oracle is upper bounded as

1 1
P (success) ≤ + P (IC|RS).

2 2
The value of P (IC|RS) depends on A, C and N = |P| ≤ |p(i)| + |z(i)|, the total number i

of input and output characters in the query. As the distinguishing experiment can be emulated
by using the experiment in Section A.2, the success probability for inner collisions given in
Section 4 forms an upper bound for the distinguishing attack.

4 Intrinsic strength of random sponges

Indistinguishability in the black box model is not sufficient. When being used as a hash
function, a sponge must offer (collision, (2nd-)preimage, etc.) resistance against adversaries
who can see the inner state. More particularly, the function must not have any externally
visible weaknesses even with respect to an adversary who can see the inner state.

With the purpose to quantify the resistance of random sponges against such adversaries,
we compute the success probabilities of four operations that are not by themselves attacks but
that can be used in the context of attacks and as such provide upper bounds to the resistance
a sponge function can offer:

–	 Inner collision: finding two different paths p = q to the same inner state: SC,f [p] = SC,f [q].
–	 Path to an inner state: given SC , finding a path p to SC , i.e., SC,f [p] = SC .
–	 Output cycles: finding an input string p and an integer d such that Sf [p] = Sf [p|0d].
–	 Binding an output string to a state: given a string t = t0, t1, . . . tm, finding a state value

S such that the sponge generates t as output, i.e., SA = t0, fA(S) = t1, fA(f(S)) = t2 . . .,
fA(fm−1(S)) = tm. Here we can distinguish two cases:

6

•	 Short output string (mr < c): the number of possible output strings of m+1 characters
is below the number of possible inner states. It is likely that an inner state value can
be found, but the expected number of solutions is ≈ 2c−mr .

•	 Long output string (mr > c): the number of possible output strings of m+1 characters
is above the number of possible inner states. For a randomly chosen output string, the
probability that an inner state value may be found is ≈ 2c−mr. If one is found, it is
likely that the inner state value is unique.

Note that the applicability of these operations is due to the fact that a sponge operates on a
finite state and that subsequently they also apply to iterated constructions such as iterated
hash functions and certain types of MAC functions and stream ciphers. They do not apply
to a random oracle.

We adopt the following model. In the beginning, the adversary has no information about
f . The only way she can gain information on f is to make calls to f (and f−1). We obtain
expressions for the optimal probability of success P (success) as function of N , where N is the
number of calls the adversary can make to f in the case of a T-sponge and the total number
of calls she can make to f and f−1 in the case of a P-sponge. This probability is equal to the
number of transformations (or permutations) f for which the attack has succeeded, divided
by the total number of transformations (or permutations) of given dimensions. So a success
probability of 1 % means that for 99 % of the possible choices of f the attack does not work.

The expressions for P (success) for the different operations are of the form 1 − exp(f(N))
with f(N) a polynomial in N of degree one or two. To simplify notation, we define the cost
function cp(N) of an attack by cp(success) = − log(1 − P (success)). This gives:

P (success) = 1 − exp (−cp(success)) .

For values of N such that cp(success) « 1 we can use the log(1+E) approximation: log(1+E) ≈
E when E « 1, yielding:

P (success) ≈ cp(success) .

For the derivation of the success probabilities and the optimum attack strategies, we refer to
Appendix A. Table 1 lists the resulting cost functions for the four operations and the two
types of random sponges for large values of C. This is justified as small values of C lead to
weak sponge functions.

Case Inner path output output binding

collision finding cycle rm > c rm < c

N(N +1) N(N +1)N A−1 N A−1 NT-sponge
2C C 2AC A	 C A	 Am

2N (N+1) − N(N−1) N(N +4) N N A−1 N A−1 NP-sponge −
2C 2AC 4C 4AC AC A	 C A	 Am

Table 1. Cost functions for different operations.

When we consider values of N that are much larger than 1, we can neglect the linear
terms in the cost functions that are quadratic. Moreover we can express the cost functions in
terms of the capacity c = log2(C) and rate r = log2(A) and let y = log2(N). Table 2 gives
the resulting cost functions for binary sponges (r = 1) and high rate (r » 1) sponges. The

7

Case Inner path output output binding

collision finding cycle rm > c rm < c

22y−(c+1) 22y−(c+r+1) 2y−rm 2y−c 2y−cHigh rate T-sponge

22y−(c+1) 22y−(c+2) 2y−(c+1)2y−c 2y−mBinary T-sponge

22y−(c+1) 22y−(c+2) 2y−rm 2y−(c+r) 2y−cHigh rate P-sponge

22y−(c+2) 22y−(c+3) 2y−(c+1) 2y−(c+1) 2y−mBinary P-sponge

Table 2. Cost functions for different operations with y = log2(N).

work factor W , the expected number of calls N for the attack to succeed, is given by:

∞

W = N(P (N) − P (N − 1)) .
N=1

If we approximate P (N) by a continuous function and fill in the cost function, this becomes ∞ ∞dP dcp(x)
W = x dx = x exp(−cp(x))dx .

dx dx0 0

Filling in the cost functions listed in Table 2 leads to integrals that can be readily solved.
For the linear cost functions, i.e., cp(y) = 2y−x, we obtain W = 2x. For the quadratic cost

π2x/2 ≈ 21+x/2functions, i.e., cp(y) = 22y−x, we obtain W =
√

.
Clearly, the most important parameter is the capacity c. The impact of the rate r on the

success probabilities is rather limited, with the exception of the detection of output cycles.
The difference in resistance between a random T-sponge and a random P-sponge is mainly
in path finding and in the length of output cycles. In a random T-sponge, finding a path has
expected workload 2c, while in a random P-sponge, this is only about 22+c/2. On the other
hand, a random T-sponge is expected to end up in a cycle after about 2(c+r+3)/2 characters
while for a random P-sponge this is 2c+r−1 .

5 Sponge as a hash function

We will now consider a number of classical hash function attacks and show how the operations
discussed in the previous section limit the resistance of a sponge against these attacks. For
simplicity, we consider the case of a high rate r and use y to indicate the workload N = 2y of
the attack. We each time compare with the behaviour of a random oracle where its output is
truncated to n bits. It is important to distinguish between n, the digest length in bits, and c,
the capacity.

5.1 Output collisions

If we have an inner collision p, q, we can have a state collision with p|a, q|b, for any a and b
that verify SA,f [p] + a = SA,f [q] + b. Then, any pair of inputs p|a|m, q|b|m leads to an output
collision, independent of the digest length n. In a random sponge, the expected workload to
generate an inner collision is of the order 2(c+3)/2. In a random oracle truncated to n bits,

8

the expected workload to generate an output collision is of the order 2(n+3)/2. So, a random
sponge truncated to n bits with n < c offers a similar level of resistance against output
collisions than a random oracle truncated to n bits. If n > c, the best strategy to generate
an output collision is to use an inner collision; if n < c, going via an inner collision does not
lead to a smaller expected workload.

As for multicollisions [9], an 2s-fold multicollision in a random sponge can be realized by
the chaining of s inner collisions and hence has expected workload s2(c+3)/2. For a truncated
random oracle this complexity is of the order 2n(2s−1)/2s

. So taking c > 2n, a random sponge
is not weaker than a random oracle in this respect.

5.2 2nd Pre-image

Assume we are looking for a 2nd pre-image for a message p of length C. In a sponge, we have
'a 2nd pre-image if we can find a 2nd path to the inner state T = SC,f [p '] with p the prefix of

p where only the last character pC−1 is removed. Given this path q, we have Sf [q|x] = Sf [p]
with x = −SA,f [q] + SA,f [p '] + pC−1. We have computed the cost function for this problem
in Appendix A.3 for a random T-sponge and we found an expected workload of the order
2c/C if C < 2c/2. Note that its expected workload must be at least that of generating an inner
collision as a 2nd pre-image implies an inner collision.

In a truncated random oracle the expected workload is of the order 2n and is independent of
C. Hence if we impose a limit to the length Cmax, a truncated random T-sponge offers a similar
level of resistance against 2nd pre-images as a truncated random oracle if n < c − log2(Cmax).

It is now interesting to take a look at the 2nd pre-image attack presented in [10] and
the herding attack presented in [12] that both apply to iterated hash functions. If we apply
these attacks to a random T-sponge with c = n we obtain expected attack complexities lower
than those obtained in [10] and [12]. The finite state of the iterated hash function makes
that generating pre-images becomes easier as the first pre-image becomes longer. Including
length-coding in the message padding somewhat improves the resistance, but not as expected.
However, having an inner state that is twice as large as the digest, i.e., c > 2n is a more
fundamental solution to these problems.

2c/2For a random P-sponge, the expected workload is between 2(c+4)/2 if C « and a
minimum of 2(c+3)/2 due to the fact that a 2nd pre-image implies an inner collision. So for
small values of C, the workload is close to that of finding a path to an inner state; for values
of C near 2c/2, the workload comes close to that of generating an inner collision, but stays
smaller.

In general, a truncated random sponge offers a similar level of resistance against 2nd pre-
images as a truncated random oracle if c > 2n as a 2nd preimage implies an inner collision
and the expected workload of generating an inner collision is 2(c+3)/2 .

5.3 Pre-image

In a sponge, a pre-image can be obtained by binding an output string to a state and subse­
quently finding a path to that state. Note that n = (m + 1)r.

For a P-sponge we bind the output to a state S. Then we compute T = f−1(S) and
subsequently we find a path p to TC . This gives a path to S given by the found path to T ,
namely p|(−SA,f [p] + TA). The expected workload for finding a pre-image for a truncated
random P-sponge in this way is hence 2n−r + 2c/2 if n < c. If n > c it may be that the

9

output has no pre-image. If it has one, the expected workload is 2c−1 + 2c/2. The expected
workload to find a pre-image in a truncated random oracle is 2n. It follows that a truncated
random P-sponge offers a similar resistance against pre-images as a truncated random oracle
if n < c/2.

For a T-sponge, after having bound the output to a state S, we cannot compute a state
T = f−1(S). Therefore we need to bind the output to a state T directly. Instead of guessing
the inner part of the state corresponding with the first output symbol t0, we need to guess
a state T such that fA(T) = t0. This multiplies the number of trials by 2r and the expected
workload now becomes 2n for n < c + r and 2c+r for n > c + r. The expected workload for
finding a pre-image is hence 2n +2c−1 for n < c + r and 2r+c +2c−1 for n > c + r. A truncated
random T-sponge offers a similar resistance against pre-images as a truncated random oracle
if n < c.

5.4 Length extension

Length extension is the property that given a digest h(p) of an input p, but not the input
'itself, one can compute the digest of an input p|p with known p '. In a sponge, it is possible

to do this if one can determine from the output the state Sf [p] with p = p(m) for a message
m. One can then compute Sf [p|p '] and generate the output by squeezing this. The length
extension only works if the state value bound to the output is equal to Sf [p] and not some
other state value that gives rise to the same output. If the output is longer than c+r it is very
likely that there is only a single corresponding state value. Otherwise the expected number
of solutions is 2c+r−n and length extension is only successful if the right solution is taken.
For length extension it makes no sense to compare the security level with that of a random
oracle, as a random oracle does not exhibit the length extension weakness at all.

5.5 Correlation immunity

Correlation immunity is the absence of large correlation between input and output of a hash
function. Clearly, such measurable correlation would enable to distinguish the sponge function
from a random oracle. As we have shown in Section 3 that a random sponge can only be
distinguished on the basis of the presence or absence of inner collisions, large correlations
will not appear in a random sponge as long as y < c/2. A similar reasoning applies for large
differential properties between input and output.

5.6 Discussion

In all attacks discussed, it is clear the smaller the capacity, the more vulnerable the sponge
function becomes with respect to the attacks exploiting the fact that the sponge function
operates on a finite state. Let us now take a look at the current mainstream hash function
design practice with this in mind.

Most existing hash functions make use of a so-called compression function consisting of a
block cipher structure with a feedforward loop added to it. In this compression function the
block cipher encrypts the chaining value with a message block as key. Prior to hashing, the
message is padded with the message length encoded in the padding and the digest is the final
value of the chaining value. This is known as the Merkle-Damg̊ard construction and it has
provable collision resistance if the compression function is collision-resistant [7, 16].

10

The Merkle-Damg̊ard construction limits the value of the capacity that can be claimed
to that of the digest length n. In a Merkle-Damg̊ard hash function a collision in the output
is an inner collision and length-extension is trivial due to the fact that the digest reveals the
complete inner state. So while Merkle-Damg̊ard imposes c = n, our analysis shows that for a
given digest length n, it is best to have a capacity c that is as large as possible.

A possible direction for Merkle-Damg̊ard hash functions is to design compression functions
operating on a larger state and just truncate the final chaining value to the desired digest
length. The disadvantage of this final truncation is that the reduction proof for collision-
resistance is no longer valid. This does not seem such a disaster as there is no evidence that a
collision-resistant fixed-length compression function would be easier to design than a collision-
resistant hash function in the first place. While current mainstream hash functions appear to
have an intrinsic digest length, doing truncation allows to use the same hash function for all
digest length smaller than a maximum. By adopting a squeezing phase rather than just taking
the digest as a part of the chaining value, any digest length could be supported. Clearly, the
resistance of the hash function is limited by the size of the inner state.

Finally, note that for a random sponge the resistance against attacks does not lie in the
resistance against attacks of an underlying primitive, but rather in the absence of specific
properties in the used primitive. Our analysis shows that the vast majority of existing trans­
formations (or even permutations) will give a sponge with excellent resistance as long as the
capacity is large enough.

6 Security claims

6.1 Expressing a security claim

The random sponge can be used as a reference model for the security claim of a hash function
design. To do so, the following parameters should be given:

–	 the capacity c of the sponge;
–	 the rate r of the sponge;
–	 whether the sponge is a random T-sponge or a random P-sponge;
–	 an optional limitation on the input length (e.g., an upper bound on the number of input

bits);
–	 an optional limitation on the output length (e.g., a range of output lengths).

Then, the security claim is that the designed hash function should not exhibit externally
visible weaknesses that the reference model does not have. By an externally visible weakness,
we mean that the weakness has to be expressed in terms of input and output strings only. A
property is not an attack if it needs to refer to the inside of the construction. (As such, the
four operations discussed in Section 4 are not attacks by themselves.)

6.2 Choosing a reference

When a designer decides to express the security properties of his design with respect to a
random sponge, he must choose between a T-sponge and a P-sponge and decide values for its
capacity and rate. For a given capacity and rate, a random T-sponge almost systematically
offers a higher or equal security level than a random P-sponge. The exception is the length
of output cycles. One may conclude that for hash functions, a random T-sponge is a better
model, leading to a more demanding security claim.

11

However, when we look at the practice of hash function design, almost all hash functions
are designed to be all-purpose. This is especially the case for standard hash functions. The
same hash function should be usable in wide range of applications and it should satisfy all
security criteria simultaneously. If one expresses the security claim of such a hash function
with respect to a random sponge, be it a T-sponge or P-sponge, the value of the capacity used
in the claim shall be high enough to offer a sufficient resistance against collisions. In a sponge
this is limited by the resistance against inner collisions, for which the expected complexity
is of the order 2c/2, both for a random T-sponge and for a random P-sponge. This imposes
the same lower bound on c, both for a P-sponge and for a T-sponge: c should be chosen
sufficiently large so that generating inner collisions will not become even remotely feasible in
the timeframe that the hash function will be used. So even if a random P-sponge is used as
a reference, its weaker resistance against 2nd preimages than a T-sponge will not be within
reach as long as generating inner collisions is out of reach.

Nowadays, a capacity of c = 256 seems to offer already a comfortable security margin.
By further taking c = 512, one can say that when truncated to n = 256 bits, the sponge
function offers the same resistance as a random oracle with respect to the known attacks that
are also applicable to random oracles. The value of the rate of the reference sponge is not so
important. In our opinion it would be best to choose among r = 1 and r equal to the length
of the input blocks.

While for Merkle-Damg̊ard hash functions a random T-sponge seems to be the right ref­
erence, there are several designs where a random P-sponge is more appropriate. This includes
designs such as Panama [6] and more recently RadioGat´ un [4] and Grindahl [11]. Basically,
these functions operate by the repeated iteration of a single invertible round function on a
large state. As the round function is a permutation, one can use a meet-in-the-middle ap­
proach to find a path to an inner state. This makes random P-sponges the natural reference
in security claims of this kind of functions. Typically, the capacity in the claim will be much
smaller than the size of the state, making up of the partial control an attacker has on the
evolution of the internal state.

6.3 Flat sponge claim

If we examine our analysis for sponge functions, we see that all attacks that exploit the
finite state of the random sponge have a success probability (resp. expected workload) that
stays below (resp. above) that of finding inner collisions. To further simplify the choice of
parameters for the reference model, one could take this fact to flatten the differences between
T-sponges and P-sponges and formulate an even simpler claim.

The flat sponge claim is the following. Given the capacity c (and possibly a limitation on
the input and/or output sizes), the success probablity of any attack should be smaller than

22y−(c+1)or equal to the maximum of that for a random oracle and 1 − exp , with N = 2y

the number of calls to the round function (or its inverse).

7 Sponges, MAC functions and stream ciphers

From Appendix B it appears that a sponge function where the first part of the input is kept
secret and used as a key offers a high level of security if the capacity is large enough. This
makes random sponges also suitable to be used as reference for MAC functions and stream
ciphers.

12

On the other hand, when we have a function that is as secure as a random sponge with
given capacity, we can turn it into a secure MAC function and a stream cipher by simply taking
a secret key as the first part of the input. For existing hash functions with the Merkle-Damg̊ard
structure this is not the case as they have weaknesses that prevent these constructions to be
secure. These weaknesses are compensated by having more complicated constructions such as
HMAC [2] and MGF1 defined in PKCS #1 [13].

8 Conclusions

We have introduced sponge functions and have shown that random sponges are well suited
to serve as reference for expressing security claims for hash functions, MAC functions and
stream ciphers. They are only distinguishable from random oracles by the detection of inner
collisions and the probability of inner collisions can be made arbitrarily small by increasing
a security parameter, called the capacity. We have evaluated the strength of random sponges
with respect to a series of attacks and show that their strength can be augmented by increasing
their capacity. Thanks to the sponge, designers can make compact security claims.

References

1.	 R. Anderson, The classification of hash functions, Proceedings of the IMA Conference in Cryptography

and Coding, 1993, 1993.

2.	 M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication, Advances in

Cryptology – Crypto ’96 (N. Koblitz, ed.), LNCS, no. 1109, Springer-Verlag, 1996, pp. 1–15.

3.	 M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols,

ACM Conference on Computer and Communications Security 1993 (ACM, ed.), 1993, pp. 62–73.

4.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, RadioGat´ aun, belt-and-mill hash function,
Second Cryptographic Hash Workshop, Santa Barbara, August 2006, http://radiogatun.noekeon.org.

5.	 J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, Merkle-Damg̊ard revisited: How to construct a hash

function, Advances in Cryptology – Crypto 2005 (V. Shoup, ed.), LNCS, no. 3621, Springer-Verlag, 2005,

pp. 430–448.

6.	 J. Daemen and C. S. K. Clapp, Fast hashing and stream encryption with PANAMA, Fast Software En­
cryption 1998 (S. Vaudenay, ed.), LNCS, no. 1372, Springer-Verlag, 1998, pp. 60–74.

7.	 I. Damg̊ard, A design principle for hash functions,, Advances in Cryptology – Crypto ’89 (G. Brassard,

ed.), LNCS, no. 435, Springer-Verlag, 1989, pp. 416–427.

8.	 IEEE, P1363-2000, standard specifications for public key cryptography, 2000.
9.	 A. Joux, Multicollisions in iterated hash functions. application to cascaded constructions, Advances in

Cryptology – Crypto 2004 (M. Franklin, ed.), LNCS, no. 3152, Springer-Verlag, 2004, pp. 306–316.

10.	 J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less than 2n work, Advances

in Cryptology – Eurocrypt’2005 (R. Cramer, ed.), LNCS, no. 3494, Springer-Verlag, 2005, pp. 474–490.
11.	 L. Knudsen, C. Rechberger, and S. Thomsen, Grindahl - a family of hash functions, Fast Software En­

cryption 2007 (A. Biryukov, ed.), LNCS, Springer-Verlag, 2007, to appear.
12.	 T. Kohno and J. Kelsey, Herding hash functions and the nostradamus attack, Advances in Cryptology –

Eurocrypt’2006 (S. Vaudenay, ed.), LNCS, no. 4004, Springer-Verlag, 2006, pp. 222–232.
13.	 RSA Laboratories, PKCS # 1 v2.1 RSA Cryptography Standard, 2002.
14.	 M. Liskov, Constructing secure hash functions from weak compression functions: The case for non­

streamable hash functions.
15.	 A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryptography, CRC Press,

1997.
16.	 R. Merkle, One way hash functions and des,, Advances in Cryptology – Crypto ’89 (G. Brassard, ed.),

LNCS, no. 435, Springer-Verlag, 1989, pp. 428–446.
17.	 R. Rivest, The MD4 message digest algorithm, Advances in Cryptology – Crypto’90 (A. Menezes and

S. Vanstone, eds.), LNCS, no. 537, Springer-Verlag, 1991, pp. 303–311.
18.	 Wikipedia, Cryptographic hash function, 2007, http://en.wikipedia.org/wiki/Cryptographic hash function.

13

http://en.wikipedia.org/wiki/Cryptographic
http:http://radiogatun.noekeon.org

A Computations

In this appendix we compute the success probabilities of the four operations introduced in
Section 4.

A.1 Graph representation

One can associate a graph with a sponge function with AC nodes and AC edges: the sponge
graph. The nodes are the state values and for every couple (S, T) with T = f(S) there is
a directed edge from S to T . From each node starts exactly one edge. For a P-sponge, in
each node arrives exactly one edge. The nodes can be partitioned by the value of the inner
state and we call the subset of all nodes with the same inner state value a supernode. Edges
between nodes are therefore also edges between supernodes. There are C supernodes, one
for each inner state value. The A nodes within a supernode are identified by their SA value,
which we will call their index.

One can absorb an input string p by following edges starting from supernode 0, the root.
First we draw an edge from (p0, 0). This edge arrives in node with index SA,f [p0] of supernode
SC,f [p0]. Then we draw an edge from the node within that supernode with index SA,f [p0]+ p1

and the node where it arrives is Sf [p0p1]. For pi, we draw an edge from the node with
index SA,f [p0p1 . . . pi−1] + pi within supernode SC,f [p0p1 . . . pi−1]. It follows that the graphic
representation of a path to an inner state is a sequence of directed edges from the root to the
corresponding supernode. Given the graphic representation, one can reconstruct the value of
p. The i-th character of the path p is determined by the edges arriving at and starting from
the i-th supernode on the path: it is the index of the node where the outgoing edge starts
minus the index of the node where the incoming edge arrives. The first symbol of the path p0

corresponds with the root where there is no incoming edge and it is just equal to the index
of the node where the first edge starts.

In the following, we represent the information the adversary has learned in the experiment
in a graph that represents the part of the sponge graph known to her. We call this the adversary
graph.

In the beginning, the adversary has no information about f and her graph has no edges.
The only way she can gain information on f is to make calls to f (and f−1). Without loss
of generality, we assume the adversary makes no queries corresponding with known edges.
Hence, a call to f corresponds to adding to the adversary graph an edge starting from a given
node and a call to f−1 with adding an edge arriving in a given node.

In the adversary graph, we say that a supernode TC is reachable from a supernode SC if
there is a sequence of directed edges from SC to TC (in the right direction) or if T = S. We
call the supernodes that are reachable from the root, rooted supernodes and denote their set
by R, with R = |R|. We also call all nodes in a rooted supernode rooted.

A.2 Inner collisions

The adversary has an inner collision if she finds two paths from the root to some supernode.
We consider the i-th call of the adversary and express the probability that it leads to an
inner collision on the condition that no inner collisions were discovered yet. As can be seen
in Figure 1 this implies that the new edge must connect a rooted supernode to a supernode
from which a rooted supernode can be reached. We call a supernode from which a rooted

14

supernode can be reached in the adversary graph an R-reaching supernode and their set by
V with V = |V|. Clearly, R ⊆ V. Initially, V = R = {0} and R = V = 1. Right before adding
the i-th edge, the graph contains i − 1 edges and R ≤ V ≤ i.

Random T-sponge The adversary can only add edges starting from chosen nodes. If the
new edge starts from a rooted node, the probability of success is V/C. Moreover it adds one
to R and hence also to V . If the new edge starts from a non-rooted node, the probability of
success is 0. It leaves R invariant and may add one to V if it arrives in a node in V. It follows
that the success probability of future edges is optimized by always adding edges starting from
rooted nodes. The exact shape of the rooted tree is not important. So applying this strategy,
right before adding the i-th edge, we have R = V = i yielding:

NN i
P (no IC) = (1 −).

C
i=1

If N « C, we can use the log(1 + E) approximation: log(1 + E) ≈ E when E « 1. This gives: N
i N(N + 1)

P (IC) ≈ 1 − exp − = 1 − exp − .
C 2C

i=1

The expression we obtain for the success probabilities of the attacks in the following subsec­
tions have the same shape. Keeping in mind that cost function cp(N) of an attack is given by
cp(success) = − log(1 − P (success)), we have

P (success) = 1 − exp (−cp(success)) .

Note that when cp(success) « 1, applying log(1 + E) approximation yields P (success) ≈
cp(success). In this case, we have:

N(N + 1)
cp(IC) ≈ .

2C

Random P-sponge The adversary can add edges starting from chosen nodes and edges
arriving in chosen nodes. An edge starting from a chosen node can only arrive in a node that
has no incoming edge yet; an edge arriving in a chosen node can only start from an edge that
has no outgoing edge yet.

If an edge is added starting from a chosen node that is rooted, the probability of success
is (A−1)V +1 : the number of nodes in V with no incoming edge divided by the total number AC−i
of nodes with no incoming edge. If an edge is added arriving in a chosen node in V, the
probability of success is similarly (A−1)R+1 .AC−i

The higher the values of R and V , the better the future probabilities of success, so one
may do other things to augment R or V faster. An edge starting from a chosen node that
is not rooted cannot lead to an inner collision. It leaves R invariant and may add one to V .
But an edge arriving in a chosen node in V adds one to V with certainty, so this always leads
to better success probabilities. Similarly, an edge arriving in a chosen node that is not in V
cannot lead to an inner collision but it may adds one to R. An edge starting from a chosen
node that is rooted adds one to R with certainty, so this always always leads to better success
probabilities.

15

0
R

VnR

(a)

Fig. 1. Adding an edge (a) resulting in an inner collision. Edge (a) must start in R and arrive in V.

At any time, R ≤ V ≤ i. Globally, the optimal strategy is one in which the probability of
success of the i-th call is (A−1)i+1 . When adding an edge arriving in a chosen node in V that AC−i
does not lead to an inner collision, R is not affected and hence it leads to R < i, while in the
optimal strategy R = i. It follows that in the optimal strategy only a single edge arriving in
a chosen node in V may be added and all other edges are just edges added to rooted nodes.
We obtain:

N N i 1N (A − 1)i + 1 N 1 − −C ACP (no IC) = 1 − = .
AC − i 1 − i

i=1 i=1 AC

Using the log(1 + E) approximation this gives:

N
i − 1 i N(N + 1) N(N − 1)

cp(IC) ≈ − + = − .
AC C 2C 2AC

i=1

A.3 Finding a path to an inner state

Given a target inner state TC , the adversary must find a path p such that SC,f [p] = TC . We
consider the i-th call of the adversary and express the probability that it leads to a path on
the condition that no path was found yet. As it can be seen in Figure 2 this implies that the
new edge must connect a rooted supernode to a supernode from which TC can be reached.
We call a supernode (and its nodes) from which the target can be reached a target-reaching
supernode (and nodes) and their set by V with V = |V|. Initially, V = {TC}, R = {0} and
R = V = 1. Right before the i-th call, the graph contains i − 1 edges and R ≤ i, V ≤ i and
R + V ≤ i + 1.

Random T-sponges The adversary can only add edges starting from chosen nodes. If
an edge is added starting from a chosen node that is rooted, the probability of success is
V/C. Otherwise, the probability of success is 0, it leaves R invariant and adds one to V
with probability V/C. It follows that to optimize the probability of success it is best to

16

systematically add edges starting from chosen nodes that are rooted. So applying this strategy,
right before the i-th call, we have R = i and V = 1 yielding:

NN 1
P (no path) = (1 −) .

C
i=1

Using the log(1 + E) approximation for C » 1, this yields:

cp(path) ≈
N

.
C

We will now discuss a variant of the operation: finding a second path to an inner state
if there is already a path of length C. This is relevant when generating 2nd pre-images when
being used as a hash function. We consider the probability to find a 2nd path after adding N
edges, also counting the C edges corresponding with the absorbing of message p. After adding
these C edges, R and V each contain the set of C supernodes on the path from the root to T .
For N > C this gives NN 1

P (no 2nd path) = (C −) ,
C

i=C

and subsequently, if C « C

cp(2nd path) ≈
CN

.
C

Random P-sponges The adversary can add edges starting from chosen nodes and edges
arriving in chosen nodes. An edge starting from a chosen node can only arrive in a node that
has no incoming edge yet, an edge arriving in a chosen node can only start from an edge that
has no outgoing edge yet.

If the edge starts from a chosen node that is rooted, the probability of success is (A−1)V +1 ,AC−i
if the supernodes of V with the edges form a tree. This is the number of nodes in V with no
incoming edges divided by the total number of nodes with no incoming edges. This adds 1 to
R if there is no inner collision and leaves V invariant.

If an edge is added arriving in a chosen target-reaching node, the probability of success
is similarly (A−1)R+1 , in the assumption that there are no inner collisions. This adds 1 to VAC−i
if the new edge does no start from a target-reaching node and leaves R invariant. We will
assume that there are no inner collisions and that the supernodes of V form a tree and later
see whether this assumption is justified. In any case, the absence of inner collisions results in
the largest success probabilities and hence upper bounds the success probability.

The higher the values of R and V , the better the future probabilities of success. It follows
that adding an edge arriving in target-reaching nodes augments the probability of success
when later adding edges starting from rooted nodes and vice versa.

An edge starting from a chosen node that is not rooted cannot lead to a path to TC . It
leaves R invariant and may add one to V with small probability. With the eye on increasing
the success probability of future calls, adding an edge starting from a rooted node is always
better. Similarly, an edge arriving in a chosen node that is not in V cannot lead to a path to
TC . It adds one to R with small probability and adding an edge arriving in a target-reaching
node is always better.

We introduce a variable ρi that is 1 if the i-th edge added is one starting from a chosen
node that is rooted and −1 otherwise and denote the values of R and V right before adding

17

the i-th edge by Ri and Vi. Then the probability that the i-th edge added does not result in
a path becomes

(A − 1) Vi + 1−ρi Ri + 1 1 − i+1 − A−11+
2
ρi

2 (Vi + Ri − ρi(Ri − Vi))AC 2AC1 − =
AC − i 1 − i

AC

Using the log(1 + E) approximation we obtain:

N 1 A − 1
cp(path) ≈ + (Vi + Ri − ρi(Ri − Vi))

AC 2AC
i=1

We have Vi + Ri ≤ i + 1, where equality applies if there are no inner collisions in R and if
the supernodes of V form a tree. We assume Vi + Ri = i + 1 and later verify whether this

i−1assumption was justified. Moreover, we have Ri − Vi = j=1 ρi. This gives: ⎛ ⎞
N i−1

N A − 1
cp(path) ≈ + ⎝N2 + 3N + 1 − 2ρiρj⎠

AC 4AC
i=1 j=1

We can now work out the last term using:

N i−1 N N N

2ρiρj = ρiρj − ρiρi = (RN+1 − VN+1)2 − N
i=1 j=1 i=1 j=1 i=1

Filling this in gives:

N(N + 4) − (RN+1 − VN+1)2 N2 − (RN+1 − VN+1)2

cp(path) ≈ −
4C 4AC

This is maximized if RN+1 = VN+1 for N even and if |RN+1 − VN+1| = 1 for N odd, i.e., if
R and V have the same number of nodes just before the path is found. As it is not known in
advance when the path will be found, the best strategy is to add edges starting from chosen
nodes in R and edges arriving in chosen nodes in R in an alternating fashion, guaranteeing
(RN − VN)2 ≤ 1. For even N this gives:

N(N + 4) N2

cp(path) ≈ − .
4C 4AC

√
the probability of success becomes significant when N is of the order of 2 C and hence when √
R and V are of the order C. This implies that for these values of N there may be inner
collisions but their small number compared to R make that their presence does not affect the
success probability significantly.

A.4 Detecting cycles in the output

The goal is to detect cycles in outputs corresponding to valid input strings. The adversary can
take an input string p and absorb it, resulting in a node Sf [p]. From this node, the output
characters SA,f [p|0j] are generated by following a chain of nodes connected by edges, i.e.,
Sf [p|0j] = f(Sf [p|0j−1], where we define a chain as a sequence of nodes connected by directed

18

0

T

(a)

R

V

Fig. 2. Adding an edge (a) resulting in a path. Edge (a) must start in R and arrive in V.

'edges. The first node in the chain is the node U = Sf [p '] + p|p|−1 with p equal to p with the
last character p|p|−1 removed.

The adversary finds a cycle by creating nodes in such a chain by adding edges to the last
node of the chain until the new edge arrives in a node in the chain. The shortest valid input
strings have length 1 containing a non-zero character. Before adding the i-th edge, the chain
contains i nodes.

Random T-sponges The probability that the new edge arrives in one of the nodes of the
chain is i/(AC). Using the log(1 + E) approximation, this results in:

N(N + 1)
cp(output cycle) ≈ .

2AC

Random P-sponges At any moment, there is only a single node in the chain that has no
incoming edge, the first one. The probability that the new edge arrives in a node in the chain
is hence 1/(AC). This results in:

cp(output cycle) ≈
N

.
AC

A.5 Binding an output string to a state

The goal is to find a state S such that SA = t0, fA(S) = t1, fA(f(S)) = t2, fA(fm−1(S)) = tm.
As SA = t0, only the inner part SC is unknown.

19

The probability, over the transformations (or permutations) f and over SC ∈ C, that the
following condition is verified:

fA(f i−1(t0, SC)) = ti, ∀i ∈ {1 . . .m}, (1)

depends not only on the length of t, |t| = m + 1, but also on the structure of t. First of
all, a string showing perodicity d has slightly more probability, as cycles help to satisfy the
condition (1).

In a random T-sponge the values of ti affect the success probability due to the existence
of cycles. The probability that a value S is in a cycle of length d is approximately 1/AC (if√
d « AC) and the probability that this cycle leads to the correct output sequence is 1/Ad−1 .

In a random P-sponge the values of ti affect the success probability in the following way.
When several ti have the same value, either the corresponding SC values are different or there
is a cycle. This effect is strongest if A is small, e.g. in binary P-sponges. In the absence of a
cycle, where one would expect a probability for the i-th check to be successful equal to 1/A,
this probability is only C−q with q the number of tj values with j < i that have the same AC−i
value as ti. The effect therefore grows in importance if the ti are more biased. Clearly, for
large values of C, this can be neglected and we can approximate the success probability by
A−1. The probability that a value S leads to a cycle of period d is 1/AC (see Section A.4) and
the probability that this cycle leads to the correct output sequence is approximately 1/Ad−1 .

Both for a random T-sponge and a random P-sponge, the probability that a cycle occurs
for a candidate inner state is 1/AC and for a given transformation (or permutation) the
probability that there is not a single state leading to the cycle of period d is approximately
1 − 1/A. The expected number of such state values is hence so small that this effect can be
neglected.

The adversary can make random guesses of SC until he finds one such that fA(t0, SC) = t1.
From there, he can evaluate fA(f(t0, SC)) and check if it is equal to t2. If so, he continues,
possibly until he reaches the last character of the sequence; if not, he starts again from a
new guess for SC . At each step, in the absence of a cycle and neglecting biases, the adversary
has a probability of A−1 to get the correct next character. Once an incorrect character is
encountered, the adversary starts with the next guess for SC . Clearly, the average number of

Acalls to f to eliminate a guess is .A−1

If Am < C the probability for a guess to be successful is:

P (success with guess) = 1 − (1 − A−m) .

Taking into account the number of calls to f for a guess, we obtain the following cost function,
both for a random T-sponge as for a random P-sponge.

A − 1
cp(state binding) ≈ N/Am .

A

When mr > c the expected number for N is larger than the number of inner state values
and an inner state value that leads to the given output sequence only exists for a fraction of
the possible transformations (or permutations). The case mr > c implies that the adversary
has to try a large fraction of the values SC ∈ C. By construction, he cannot look for more
than C values of SC . If the sponge transformation (or permutation f) is fixed but a priori
unknown to the adversary, we can distinguish two situations:

20

1. The adversary is certain that the string t has been observed from the output of the sponge
Sf .

2. The adversary does not know if the string t has been observed from the output of the
sponge Sf .

In the first case, he will surely find a satisfactory SC . If mr » c, it is highly probable that
only one such candidate exists. In the second case, he may not necessarily find a satisfactory
SC , and his chances decrease as m increases. For mr > c, the cost function becomes:

A − 1 N
cp(success with guess) =≈ .

A C

B Other applications of sponges

We can use a sponge as a MAC function by just taking as input the concatenation of a secret
key and the message, taking the truncated output as the MAC and hiding the inner state
from the adversary. Similarly, a sponge can be used as a stream cipher. The input is the
concatenation of a secret key and a diversifier, the output is the keystream and the inner
state is hidden from the adversary. We denote the length of the key (in characters) by k. In
both cases, the first part of the input to the sponge is the secret key. We call this a keyed
sponge.

The keyed sponge model does not allow related-key attacks. To extend the model to also
allow related-key attacks, one can have inputs to the sponge consisting of two parts: the input
string an a k-character key offset. The keyed sponge first adds the key offset characterwise to
the key, concatenates the input string to the result and absorbs that into the sponge.

In describing attacks on a keyed sponge, the adversary can make two types of queries. The
first type are calls to f and in the case of a P-sponge also f−1. The total number of such calls
is denoted by N = 2y, that represents what is usually called the computational complexity
of the attack. The second type are queries to the keyed sponge similar to those in Section 3.
The sum of the number of input characters and output characters (and key offset characters)
is denoted by M = 2q. M represents what is usually called the data complexity of the attack:
the amount of data computed with the key.

We can have several scenarios. The most powerful is a distinguishing attack. In this case
the adversary can make queries to a black box that is either a random oracle or a keyed
sponge as in Section 3. What is different from the setting in Section 3 is that additionally the
adversary can make calls to f (and f−1). The adversary can distinguish in three ways:

–	 State binding: the adversary asks the black box for an output sequence longer than c + r
characters and binds a state to the output sequence using the white box. For this attack
to work, we need M > c + r and for a random sponge it has cp(success) ≈ 2y−c .

–	 Key guessing: the adversary asks the black box for output sequences with a total of more
than k characters. She then uses the white box to generate the same output sequences
where the value of the key is guessed. For this attack to work, we need M ≈ k and for a
random sponge it hash cp(success) ≈ 2y−k .

–	 Observing inner collisions: the adversary asks the black box for output sequences until he
observes an inner collision. This attack has cp(success) ≈ 22q−(c+1).

Note that this analysis is valid both for the fixed-key and the related-key case. There appear
to be no other methods to distinguish the keyed sponge from a random oracle.

21

Another scenario is stream prediction when being used as a stream cipher, or MAC forgery
when being used as a MAC. In both cases, the adversary shall predict the output of the keyed
sponge to an input using only its outputs to a set of other inputs. Here again we see the
three approaches. After key guessing the adversary can produce the output corresponding to
any input. After state binding, the adversary can generate the output to any string p that
has a prefix in the input strings for which the adversary knows the output string. In case
of P-sponge, the adversary can even generate the output to any string p. If the adversary
observes an inner collision in the black box, MAC forgery is easy. If two input strings K|p
and K|q collide and the adversary knows the output corresponding to input string K|p|m,
he also knows the output corresponding to input string K|q|m. When being used as a stream
cipher, it depends on the range of allowed IV values. If an inner collision occurs before the last
character of the IV has been absorbed, the same technique can be applied as in the case of
MAC forgery. If a cycle is detected in an output sequence (special case of inner collision) the
complete output sequence is known based on a single period. Finally, in the case of a MAC
function one can simply guess the MAC value, hence the resistance against MAC forgery is
also limited by the length of the MAC n: the adversary can correctly guess the MAC to a
message with probability 2−n .

22

