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Key (Message) Expansion
 

• MD5: Simple bit permutations
 

• SHA0: Linear Code (LFSR style)
 

• SHA1: Linear Code (LFSR with rotations) 


– Not Good Enough ( wt 25 in last 60 words)
 



SHA-1 Code
 

SHA-1: 
• W_i = (W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16}) >>>1
 

<<< 1SHA-1 Backwards: 
W_i <<<1 = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16}
 

Or <<< 1 

W_{i-16} = (W_i <<< 1) xor W_{i-3} xor W_{i-8} xor W_{i-14}
 

Or <<< 1 

W_i = (W_{i+16}<<<1) xor W_{i+13} xor W_{i+8} xor W_{i+2}
 



Improved SHA-1 Code.0
 

• W_i = (W_{i-3} xor W_{i-8} xor W_{1-16})<<< 1      

xor 


W_{i-14}
 

Not easy to prove good lower bound (if any) 
on this code 



Improved SHA-1 Code.1
 

• W_i = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 

xor 

( W_{i-1} xor W_{i-2} xor W_{i-15} ) >>>1
 

• How do you prove a lower bound?
 

• Huge Dimension : 32*16
 

• Computer Assisted Proof 




Novel Technique 

(1) Either all columns are non-zero 
• prove average 3 bits ON per column
 

(2) Or some column is zero, and another 
column is non-zero 
- good code, except for … 

(3) Pathological Cases of low dimension
 



Band of Zero columns 
40
 40
 

Zero Columns 

Decent Code 

Decent 
Code 

Decent Code 

Decent Code 

Decent 
Code 

Decent 
Code 



Over Counting?
 

40 40 

Zero Columns
 



Band of Zero columns 
40
 40
 

Zero Columns 

Decent 
Code 

Decent 
Code 

Decent 
Code 

Decent 
Code 

Decent 
Code 

Decent 
Code 

W_i = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 
xor 

( W_{i-1} xor W_{i-2} xor W_{i-15} ) >>>1 



 W_i = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 
xor 

( W_{i-1} xor W_{i-2} xor W_{i-15} ) >>>1 

x y 
  
If x=0 then
 

y_i = y_{i-3} xor y_{i-8}
 
xor y_{i-14} xor y_{i-16}
 

--- decent code (dimension 16)
 

If x !=0 then
 

y_i has additional terms
 

x_{i-1} xor x_{i-2} xor x_{i-15}
 



 W_i = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 
xor 

( W_{i-1} xor W_{i-2} xor W_{i-15} ) >>>1 

x y 
  If y=0
 
x_{i-1} xor x_{i-2} xor x_{i-15} =0
 

-dimension 14 code
 
-x_0 and x_59 independent of code
 
- pathological cases::
 

x_0 is non-zero and rest of x zero
 
x_59 is non-zero and rest of x zero
 

- it gets worse for the next column 




x’ x y  • W_i = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 

b a 1 0 
* 1 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
.. .. .. .. 
0 0 0 0 
0 0 0 0 
0 0 0 0 

xor ( W_{i-1} xor W_{i-2} xor W_{i-15} ) >>>1 

•	 Thus 

x’_{i-1} xor x’_{i-2} xor x’_{i-15}  = x_{i-16} 

again x’_0 is free, and if x’_{16-15}=1 rest can be zero 

Thus 1+1 =2 free variables per column in pathological 
cases 



Free variables 

Free variables 

!=0 

G 
O 
O 
D 
-
C 
O 
D 
E 

zero 

1 
1 

1 

1 
1 

1 

1 
1 

1 

1 

Z 
E 
R 
O 

Too many free
 

variables
 

2 * #path_columns
 

+14*3
 

2*8+42 = 58
 



SHA1-IME
 
W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 

xor (W_{i-1} xor W_{i-2} xor W_{i-15} ) <<<1,  for i= 16 to 35 

W_i = 
W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16} 

xor (W_{i-1} xor W_{i-2} xor W_{i-15} xor W_{i-20}) <<<1, 
for i= 36 to 79 

Minimum weight
 
82 in last 64 words
 

At least 75 in last 60 words
 
At least 52 in last 48 words
 

TAKES 1 day of computation on 3GHZ pentium
 



Is this good enough?
 

•	 We prove that if a difference vector (which must be a
codeword) is generated by patching together local
collisions ... 
then 

the disturbance vector itself must be codeword 
•	 We also prove more general results  which allow 

arbitrary initial setup 
•	 Also allows muddling in the middle 
•	 Further muddling leads to extremely complex 

code with > 50 terms per parity check equation; 
–	 not systematic either 



Estimated Probability of Success 

• Each local collision succeeds with 

probability 1/4 (in the best case)
 

• Even if we allow conditions on messages
 

• Even in XOR rounds 
• In MAJ rounds  it is 1/16 (in best cases) 
• Assuming first 32 rounds can be handled 

by message modifications… not likely… 
prob of success is at most 2^{-52* 2} 



Overhead over SHA-1
 

• 5% software runtime overhead 
• 10% hardware overhead (gate count) for 

high performance hardware 
implementations 
– comparable to SHA-256 /SHA-1 overhead
 

– Some alternate codes can get rid of this 
overhead also 

• Needs more computationally intensive search 
• 10 days of 3GHZ pentium 



Alternate Code
 

W_i = W_{i-3} xor W_{i-8} xor W_{i-14} xor W_{i-16}
 
xor
 

(W_{i-1} xor W_{i-2} xor W_{i-11} xor W_{i-15}) <<< 13
 

xor
 
(W_{i-1} xor W_{i-2} xor W_{i-11} xor W_{i-15}) >>> 13
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Abstract 

We develop a new computer assisted technique for lower bounding the minimum distance of 
linear codes similar to those used in SHA-1 message expansion. Using this technique, we prove 
that a modified SHA-1 like code has minimum distance at least 82, and that too in just the 
last 64 of the 80 expanded words. Further the minimum weight in the last 60 words (last 48 
words) is at least 75 (52 respectively). We propose a new compression function which is identical 
to SHA-1 except for the modified message expansion code. We argue that the high minimum 
weight of the message expansion code makes the new compression function resistant to recent 
differential attacks. 

Introduction 

Recall the SHA-1 message expansion code: 512 information bits are packed into 16 32-bit words 
(W0, · · ·  ,W15), and 64 additional words are generated by the recurrence: 

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) <<< 1 for  i = 16, · · ·  , 79 (1) 

The 80 words (W0, · · ·  ,W79) can be seen as constituting a code-word in a linear code over F2 with 
the above parity check equations. Unfortunately, this code has a minimum distance or weight of 
no more than 44. Further, the weight restricted to the last 64 words is only 30. This has been 
exploited in [WYY05b] to give a differential attack on SHA-1 with complexity 269 hash operations. 

In this paper, we show that it is possible to devise codes similar to the above code of SHA-1, 
but with a much better minimum distance. We give a computer assisted proof that the following 
code has minimum distance 82, and that too in just the last 64 words:  

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 13) if 16 ≤ i <  36 
Wi =

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 13) if 36 ≤ i ≤ 79 
(2) 

Of course, since the dimension of this code is 32 × 16, a brute force search of 232×16 is infeasible. 
Thus, we have to come up with an intelligent search, and prove that all 232×16 cases have been 
considered. Not all such codes are amenable to such a tractable search, which in our case is about 
248 computer instructions. Thus, we have to carefully pick the coefficients of the above parity check 
equations, so as to keep the search feasible and the minimum distance large. 

We next propose a new variant of SHA-1, which replaces the SHA-1 message expansion code 
with the above code. We argue below that this leads to a compression function which is resistant 
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to recent differential attacks. We also argue in Section 4 that this expansion code is better than the 
expansion code of SHA-256, for which there is no known provable lower bound on the minimum 
distance. Further, in an accompanying paper [JP05b] we argue that the new variant of SHA-1 is 
not only resistant to recent differential attacks, but also resistant to many more natural extensions 
of these attacks. 

A preliminary evaluation has shown that the new proposed compression function has at most a 
5% overhead in speed over SHA-1 in a software implementation, and at most a 10% overhead in 
gate count in a high performance hardware implementation. 

Recent attacks on MD-5 ([Riv92]), SHA-0 and SHA-1 (see [CJ98, BC04b, BC04a, WYY05a, 
WYY05b]) have capitalized on the poor message expansion of these compression functions. Essen­
tially, all three hash functions follow the same underlying design principle: the 512-bit message is 
first expanded linearly into N words, and then the N words are used as step keys (sometimes known 
as round keys) in N steps of a (non-linear) block cipher invoked on an initial vector. The output 
of the block cipher is the output of the compression function. 

The most effective attack against such compression functions is to launch a differential attack, 
where a difference in the messages leads to a zero difference in the output of the block cipher, thus 
leading to a collision. Unfortunately, in MD-5, SHA-0 and SHA-1, it is possible to start with a 
message difference which leads to a small difference in the N expanded keys. This in turn allows 
for a manageable overall differential characteristic of the above kind, hence leading to a collision 
attack. 

In particular, in MD-5 a 3 bit difference in the 512-bit message leads to a difference of only 12 
bits in the expanded (N = 64) keys. In SHA-0, there exists a message difference which leads to a 
28 bit difference in the expanded (N = 80) keys. It turns out that the differential characteristic 
corresponding to the first 16 (and sometimes even first 20) steps can be assured with probability 
1. Thus effectively, only the differences in latter steps contribute to lowering the probability of the 
differential characteristic holding. In SHA-0, the difference in the last 60 keys can be as low as 17 
bits. Similarly, in SHA-1, there exists a message difference which leads to only a 27 bit difference 
in the last 60 keys. 

Thus, the main reason that these hash functions have been undermined is their poor message 
expansion. With the new proposed code, any difference in messages leads to at least 82 bits of 
difference in the latter 64 keys. These (at least) 82 bit differences are injected into the update func­
tion of SHA-1 in the latter 64 steps, and any differential characteristic must account for canceling 
all (or most) of these differences. A useful heuristic that is often used in the analysis of SHA-0 
and SHA-1 is that each bit difference in the key (in the latter 64 rounds) lowers the probability 
of success on average by a factor of 22.5 . Thus, we expect our proposed compression function to 
have a differential collision characteristic of probability close to 2−82×2.5 . We also prove that the 
minimum weight of our proposed code in the last 60 keys is at least 75. The technique is general 
enough to obtain lower bounds on minimum weight of further front truncations. Note that, because 
of the change in the recurrence relation at i = 36, the codewords restricted to say the last 56 words, 
cannot be described as easily as the recurrence relation in Equation 2. 

Organization: The rest of the paper is organized as follows: In section 2 we briefly review 
SHA-0, SHA-1. In section 3 we propose a new code and prove that it has good minimum distance. 
We then use this new code to propose SHA1-IME, a modified version of SHA-1. In section 4 we 
compare SHA1-IME with SHA-256 ([Uni02]) and then make a few concluding remarks. 



2 SHA-0 and SHA-1 

2.1 SHA-0 Message Expansion Code 

In this sub-section we describe the message expansion scheme used in SHA-0. Let (M0, · · ·  ,M15)
be the 512 bits input to SHA, where each Mi is a word of 32 bits. Then the message expansion 
phase of SHA-0 outputs 80 words (W0, · · ·  ,W79) that are computed as follows: 

SHA-0 :
 
Wi = Mi for i = 0, 1, · · ·  , 15, and
 

Wi = Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 for i = 16, · · ·  , 79. 
(3) 

Notice that the above can be seen as a linear code. Also notice that the expansion process 
applied to different bits is independent, that is there is no interleaving. This in fact makes the code 
rather weak and SHA-0 an easier target for the differential collision attack. Not surprisingly then 
that collision (and near-collision) attacks on SHA-0 have been the most successful in recent years 
(see [CJ98, BC04b, WYY05a]). 

2.2 SHA-1 Message Expansion Code 

Two years after the standard was set to SHA-0 [Uni93], an addendum was released in [Uni95], 
altering the message expansion scheme, and thus setting the standard to SHA-1. The change was 
attributed to correcting a technical weakness though no formal justification was given. The change 
may be interpreted as an attempt to improve the code by introducing mild interleaving. Precisely, 
the code in SHA-1 is the following: Let (M0, · · ·  ,M15) be the 512 bits input to SHA-1, where each 
Mi is a word of 32 bits. Then the message expansion phase outputs 80 words (W0, · · ·  ,W79) that 
are computed as follows: 

SHA-1 :
 
Wi = Mi for i = 0, 1, · · ·  , 15, and
 

Wi = (Wi−3⊕Wi−8⊕Wi−14⊕Wi−16) <<< 1  for  i = 16, · · ·  , 79. 
(4) 

The notation “<<< 1” (“<<< i”) denotes a one bit (i bit, respectively) rotation to the left. 
Note that the above code is linear too. Moreover if (W0, · · ·  ,W79) is a codeword, then so is 
(W0 <<< j, · · ·  ,W79 <<< j) for all j = 1, 2, · · ·  , 31. This can further be interpreted as follows: 
view the code-word as 

(W0
0,W1

0 , · · ·  ,W 0
0 , · · ·  ,W 1 

79 ),79,W
1 

79, · · ·  ,W 32 

where Wi
j denotes the jth bit of Wi. Then it is clear that this code is invariant under a rotation 

of 80 bits. These linear codes, a natural generalization of cyclic codes, are known as quasi-cyclic 
codes in the literature. Quasi-cyclic codes have been studied extensively over the last 40 years. 
(See [TW67, Che92, Lal03, LS05] and the references therein.) 



 

Unfortunately, the interleaving process in SHA-1 is not quite good. This is observed indepen­
dently in [RO05] and in [MP05]. To explain it further we rewrite Equation 4 as follows: 

∀i, 0 ≤ i ≤ 63, Wi = Wi+2 ⊕ Wi+8 ⊕ Wi+13 ⊕ (Wi+16 >>> 1), (5) 

where “>>> 1” (“>>> i”) denotes a one bit (i bit respectively) rotation to the right. The 
above clearly shows that a difference created in the last 16 words propagates to only up to 4 
different bit positions. This observation allows the authors in [BC04a, RO05, MP05] to generate 
low-weight differential patterns. These patterns are then used to create collisions or near-collisions 
in reduced version of SHA-1 with complexity better than the birthday-paradox bound. Extending 
this further [WYY05b] reports the first attack on the full 80-step SHA-1 with complexity close to 
269 hash functions. In there, the authors critically observe that the code not only has small weight 
codewords (≤ 44, [RO05, WYY05b]) but also that these small weight codewords are even sparser 
in the last 60 words (for example, [WYY05b] reports a codeword with weight 27 in the last 60 
words; also see [JP05a]). 

3	 SHA1-IME: A modified SHA proposal with a provably good 
code 

In this section we propose a new hash function SHA1-IME (IME stands for “Improved Message 
Expansion”). We use the same state update transformation as in SHA-1 or SHA-0. However, we 
replace the SHA-1 message expansion code by an equally simple code that has minimum distance 
provably at least 82, and that too in the last 64 words. The code, we denote it by C, can  be  
described as follows: Let M0, · · ·  ,M15 be the input message blocks. Then 

SHA1-IME : 
for i = 0, 1, · · ·  , 15, Wi = Mi and 
for i =  16 to 79  

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 13) if 16 ≤ i <  36 
Wi = 

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 13) if 36 ≤ i ≤ 79 
(6) 

We now briefly describe the state update function used in SHA-1 (for details see [Uni95]). It 
comprises of total 80 steps divided in four rounds. Five 32-bits registers, conveniently denoted as 
A, B, C, D and E, are used. Their initial state is fixed and we denote it by (A0, B0, C0,D0, E0)
(and in general, (Ai, Bi, Ci,Di, Ei) after i steps). At step i, Wi is used to alter the state of these 
registers. Each step uses a fixed constant Ki and a bit-wise boolean function fi that depends on 
the specific round. Formally, 



for i = 0 to 79,
 
Ai+1 = Wi + (Ai <<< 5) + fi(Bi, Ci,Di) +  Ei + Ki,
 
Bi+1 = Ai,
 
Ci+1 = Bi <<< 30,
 
Di+1 = Ci,
 
Ei+1 = Di,
 

Round Step(i) fi(X, Y, Z) 
1 0-19 XY ∨ XZ  
2 20-39 X ⊕ Y ⊕ Z 
3 40-59 XY ⊕ XZ ⊕ Y Z  
4 60-79 X ⊕ Y ⊕ Z 

where ‘+' denotes the binary addition modulo 232 . 

We propose the following modified version of SHA-1 : SHA1-IME. In the message expansion 
phase it uses the code described in Equation 6. Then it uses the same state update function. 
How does SHA1-IME perform compared to existing SHA-1? It is virtually the same. We used a 
Pentium(R) 4, 3.06 GHz machine to execute 228 many hash functions. The existing SHA-1 took 

time in sec: 567.016000, time per sha1:2.112299e-06 

whereas SHA1-IME took 

time in sec: 585.719000, time per sha2: 2.181973e-06 

We stress that the performance of the new hash operation remains virtually the same. 

3.1 Intuition behind the code 

As mentioned in subsection 2.2, Equation 5 shows that the SHA-1 code does not propagate well 
across different bit positions. One way to remedy this situation is to let Wi = (Wi+2 >>> 
1) ⊕ Wi+8 ⊕ Wi+13 ⊕ (Wi+16 >>> 1). Now Equation 4 becomes Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−16) <<< 
1 ⊕ Wi−14. Thus, whether you consider the evaluation in the forward direction or in the reverse 
direction, the spread of differences to the neighboring columns (i.e. neighboring bits) is more fre­
quent. However, it is not enough to just have a good intuition about the code, but one also needs 
to prove a good lower bound on the minimum weight of such codes. 

The strategy we use to prove lower bounds on such codes is to divide the proof into two main 
cases. We argue that either there are no zero columns in a codeword (a column in the codeword is 
the codeword projected on a particular bit position) or starting from an all zero column, the first 
neighboring non-zero column is actually a codeword in a good code, and so on. 

Elaborating on the first case, i.e., when there are no zero columns, if every column has at least 
3 bits ON, we are done. So, assume that there is some column which has 1 or 2 bits ON. Thus, 
there are (64 × 63)/2 + 64 choices for picking these bits in the column. Having picked these bits, 
the neighboring column is completely specified by at most 16 bits in that column. Now the two 
columns together have either weight 6, in which case we are maintaining an average of 3 per column, 
or the weight of these two columns is at most 5. Thus, our search is quite restricted. We continue 
in this fashion, noting that the code has to be designed carefully so as to satisfy a property as in 
Claim 3.3. 

As for the second case, we consider a contiguous band of zero columns, bordered on both sides 
with non-zero columns (we prove that they cannot be same; in fact we prove by a rank argument 



that there must be at least four consecutive non-zero columns). We have to assure that when a 
column is zero, and the neighboring column is non-zero (whether to the right or left), the resulting 
code for the neighboring column is a good code, i.e., with a good minimum weight. Note that this 
is important since we may possibly have at most 5-6 non-zero columns. Therefore it is desired that 
the disturbance propagates fast across columns. Unfortunately, this is impossible for the codes we 
are considering so far. 

Consider a SHA-1 like code, with dimension 16 × 32, and which is invariant under column 
rotations. Moreover, suppose that the code is of the form ⎛⎛ ⎞ ⎞ 

16 16 � � ⎝⎝ ⎠Wi = aj Wi−j + bjWi−j ⎠ <<< 1 , 
j=1 j=1 

where a1, · · ·  , a16, b1, · · ·  , b16 are boolean. If a16 and b16 are equal, then there is a codeword which 
is zero everywhere, except for W0 which is the all 1 32-bit word. Thus for the sake of the argument, 

'assume that b16 = 0  and  a16 = 1. However in this case, suppose j < 16 is the largest j such that 
bjl is non-zero. First note that if a column, say Ci, is zero, then in the column to its right, say 
Ci−1 , Ci−1 '(for k = 0  to  15  − j ) can take any value (i.e., are free variables), and the rest of the k 
column Ci−1 can be all zero. Further, the propagation to columns Ci−2 , Ci−3 etc. can be rather 
weak. 

A similar situation arises when the code is evaluated in the backward direction. The trick is to 
keep the above free variables few in number, so that the subspace of such pathological cases is of 
a relatively small dimension. This small dimension is absolutely necessary to keep the exhaustive 
search over this space tractable. One way to get rid of these pathological free variables is to include 
a term like Wi−20, as we do in our code. This in fact gets rid of all the pathological variables in 
the forward direction and thereby yields a fast expansion. In the backward direction at least one 
pathological free variable per column remains, and we must search over such subspaces. 

3.2 A lower bound on the minimum distance 

In this subsection, we give a computer assisted proof to conclude that the code proposed in Equa­
tion 6 has minimum distance at least 82 in just the last 64 words. First of all observe that C 
(described in Equation 6) too is a quasi-cyclic code. To see this observe that viewed appropriately 
a rotation by 80 bits leaves the code invariant. Establishing lower bound on the minimum distance 
of a quasi-cyclic code is a hard problem and has drawn considerable attention (see [Che92, Lal03]). 
Unfortunately, when the index (that is the minimum amount of rotation that leaves the code in­
variant) is as large as 80 (or even 64), the presently known bound seems computationally infeasible. 
In general, it is known that computing minimum weight of an arbitrary linear code is NP-hard (see 
[Var97]), and that approximating within a constant factor is NP-hard under randomized reduction 
(see [DMS03]). An interesting approach is taken in [RO05] where they restrict their search by keep­
ing most columns zero. This allows them to find a codeword with low weight for SHA-1; however, 
they do not give a technique to lower bound the minimum weight of such codes. 

Secondly, observe that the code C in SHA1-IME uses a left rotation by 13 bit. However, it is 
easy to see that as long as the amount of rotation is relatively prime to 32, the code remains the 
same up to a permutation of its columns. In particular, its minimum weight does not change if 
left rotate by 13 is replaced by a left rotate by 1. Therefore instead of C, we consider the following 



 

 

'code C which is equivalent up to a permutation in the codeword positions : Let M0, · · ·  ,M15 be 
the message blocks. Then 

for i = 0, 1, · · ·  , 15, Wi = Mi and 
for i =  16 to 79  

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1) if 16 ≤ i <  36 
Wi = 

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1) if 36 ≤ i ≤ 79 
(7) 

In fact the following explicit permutation applied to the columns in C yields C ' : 

π : {0, 1, · · ·  , 31} → {0, 1, · · ·  , 31} where j �→ (5 · j) mod  32  

since 5 is the inverse of 13 modulo 32. 

Since we will be arguing about the weight of this code in the last 64 words, we instead consider 
the following code C64 : Let M0, · · ·  ,M15 be the message blocks. Then 

for i = 0, 1, · · ·  , 15, Wi = Mi and 
for i =  16 to 63  

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ (Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 1  if  16  ≤ i <  20 
Wi = 

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ (Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) <<< 1  if  20  ≤ i ≤ 63 
(8) 

We first prove that this is indeed sufficient. 

Lemma 3.1 If the code C64 described above has minimum weight at least 82, then C has minimum 
weight at least 82 in its last 64 words. 

Proof : Consider any nonzero codeword in C ' , say  U = (U0, · · ·  , U79). Denote  X = (U0, · · ·  , U15)
and Y = (U16 · · ·  , U31) and Z = (U32 · · ·  , U79). Therefore U = (X,Y,Z). From Equation 7 observe 

'that the code C is completely determined by specifying any consecutive 16 word block provided 
the block starts anywhere in 0 to 20, since the rest can then be obtained by solving the recurrence 
relation. We therefore choose to specify Y = (U16, · · ·  , U31), that  is  we  treat  Y as the message 
symbols. Note that a fixed choice of Y also fixes X and Z. Following this observation it is now 
clear that (Y,Z) is a codeword in C64 . 

Assume that the minimum weight of C64 is d. Then we need to show that any non-zero code-
word in C ', has weight at least d in its last 64 words. This follows provided X being non-zero 
implies Y is non-zero. However, Y being zero implies X is zero, as X is a linear function of X. 

'Therefore the minimum weight of C64 is exactly the minimum weight of code C in its last 64 words. 
'Since C and C is the same code up to a permutation of the co-ordinate positions, the minimum 



'weight of C64 is exactly the minimum weight of code C in its last 64 words. (Observe that the 
permutation permutes only the columns, that is ith word in C translates into the ith permuted word 
of C '.) 

Next we prove a lower bound on the minimum distance of C64 . We break down the proof into 
several sub-cases. In each sub-case, we argue often following an exhaustive search over a small 
space that the minimum weight of the code is at least 82. We mention that a naive algorithm may 
require to search a space as large as 232×16 which is clearly not feasible. Therefore the novelty in our 
approach lies in a careful sub-division of the problem into a small number of tractable cases. We 
mention that this approach is very general and may be used to give lower bounds on the minimum 
distance of similar quasi-cyclic codes or nearly-quasi-cyclic codes. 

Theorem 3.2 The code C64 as defined by Equation 8 has minimum distance at least 82. 

Proof : It is easy to notice that the code C64 is a quasi-cyclic code by noting that it is invariant 
under a 64 bit cyclic shift. From now onwards, we view the codewords of C64 as a matrix that 
has 32 columns where each column is 64-bit long. The quasi-cyclic property then just mean that 
the code is invariant under column rotations. Unless otherwise specified, the arithmetic in the 
superscript will be modulo 32. 

Now consider any non-zero codeword. Since the code is a linear code, it suffices to prove that it 
has weight at least 82. We break down the proof into two main cases depending upon whether or 
not a codeword has zero columns. 

1. (All Columns Non-Zero Case:) Consider any such codeword. Also, consider any non-zero 
column, w.l.o.g., let it be C0 . Denote the columns, to the left of it by C1, C2 , · · ·  , C31. Note  
that all Ci’s are non-zero. In this case the following claim holds. 

Claim 3.3 For any non-zero column Ci, there  exists  k, 0 ≤ k ≤ 7 such that the combined 
weight of columns Ci, Ci+1 , · · ·  , Ci+k is at least 3 · (k + 1). 

Proof : This is easily verified by a computer program. We mention that for k ≤ 6, an average 
of 3 cannot be assured (see Appendix B for an example). 

Next we create a partition of the 32 columns into several groups. We pick a non-zero column 
Ci . Now following Claim 3.3, there exists (k + 1)-columns  (0  ≤ k ≤ 7) such that the average 
weight of each column is at least 3. Consider the smallest k that achieves this. Then put these 
(k + 1) columns Ci, Ci+1 , · · ·  , Ci+k into a group. Call these columns good columns and the 
group a good group. We then choose Ck+i+1 and form another group. We continue like this 
till no more good groups can be created. The remaining columns are then grouped together. 
Call this group a bad group. Note that the bad group has average weight at least 1. Now let 
e be the size of this bad group. Then we have (32 − e) good columns. Also following Claim 
3.3, e could be at most 7. Therefore the total weight of the codeword is at least 

3 · (32 − e) +  e = 96  − 2 · e ≥ 82. 

2. (At Least One Column Zero Case:) Assume that there is at least one zero column. 
W.l.o.g. let C0 be a zero column such that the column to the left of it is non-zero (note 



 

 

 

that such a column always exists since we are considering a non-zero codeword). Denote the 
columns to the left of C0 as C1, C2 , · · ·  (see figure). 

Also, going towards the right of C0, denote the first 
non-zero column by E1 and thereafter E2, E3 , · · · . 
Denote the column to the left of E1 by E0. (Note  
that it may be possible that C0 and E0 are the same 
column.) We argue that a few columns to the left 
and right of a band of zero columns must contribute 
a total weight of at least 82. 
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It will be immaterial in our analysis below if there are some non-zero columns between C0 

and E0 . All we require in our analysis is that C0 and E0 are zero. 

Next consider C1, C2 , · · · . How soon can the sequence yield a zero column, i.e., what is the 
smallest value of j such that Cj = E0? In order to answer this question, first note that since 
C0 is everywhere zero, C1 is essentially generated by the code whose parity check equations 
over F2 are given as follows: Denote C1 = (y0, · · ·  , y63). Then  

∀i, 16 ≤ i ≤ 63, 0 =  yi + yi−3 + yi−8 + yi−14 + yi−16. (9) 

Similarly for a fixed C1, the  column  C2 is generated by the code whose parity check equations 
over F2 are given as follows: Denote C2 = (x0, · · ·  , x63). Then  

xi + xi−3 + xi−8 + xi−14 + xi−16 + yi−1 + yi−2 + yi−15 for 16 ≤ i ≤ 19
0 =  (10) 

xi + xi−3 + xi−8 + xi−14 + xi−16 + yi−1 + yi−2 + yi−15 + yi−20 for 20 ≤ i ≤ 63 

On the other hand E1 is generated by the code whose parity check equations over F2 are 
given as follows: Denote E1 = (w0, · · ·  , w63). Then  

wi−1 + wi−2 + wi−15 for 16 ≤ i ≤ 19
0 =  (11) 

wi−1 + wi−2 + wi−15 + wi−20 for 20 ≤ i ≤ 63 

Similarly for a fixed E1, the  column  E2 is generated by the code whose parity check equations 
over F2 are given as follows: Denote E2 = (z0, · · ·  , z63). Then  

wi + wi−3 + wi−8 + wi−14 + wi−16 + zi−1 + zi−2 + zi−15 for 16 ≤ i ≤ 19
0 =  

wi + wi−3 + wi−8 + wi−14 + wi−16 + zi−1 + zi−2 + zi−15 + zi−20 for 20 ≤ i ≤ 63 
(12) 

The following claim shows that at least four consecutive columns have to be non-zero. 

Claim 3.4 If C0 is everywhere zero, and C1 is non-zero, then so is C2, C3 and C4 . 

Proof : Suppose for a j it is the case that Cj = E1, i.e., Cj+1 is all zero. Then a homogeneous 
system of linear equations over F2 can be set up. Consider the 64 × j variables in column 
C1 through Cj. There are 48 equations for each of the columns C1 through Cj. Also,  there  
are 48 more equations for Cj+1 . It is well known that such a system can have a non-trivial 
solution if and only if the rank of the co-efficient matrix is strictly smaller than the number 



of variables. It can easily be verified by a computer program that for j = 1, 2, 3, the system 
has full rank, that is exactly 64 × j. This can also be proved algebraically for j = 1, 2. We 
give a simple algebraic proof in the appendix (see Appendix A). 
This proof also highlights that for the rank to be full the recurrence relation must satisfy nice 
properties. Ranks of all linear systems considered in this paper have been computed using 
Gaussian elimination. We now divide the proof into two cases. 

(a) (Number Of Consecutive Non-Zero Columns Is At Most Five):
 
By the claim above, we can safely assume that
 
we have at least four consecutive non-zero
 

> 90columns. Also, if we assume C4 = E1, then  
the number of nontrivial solutions can be at 
most 216 − 1 (since the co-rank or nullity of 
the matrix is 16, as verified by implementing 
a Gaussian elimination program). Similarly, 
assuming C5 = E1, the number of nontrivial 
solutions can be at most 232 − 1. We do 
an exhaustive search to conclude that the 
minimum weight in the latter case is at 
least 90. (Note that this latter case alone is 
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Case 2(a)
 
sufficient.)
 

(b) (Number Of Consecutive Non-Zero Columns Is At Least Six): If case 1 and 
case 2(a) do not hold then, the only case that remains to be considered is the one where 
at least six consecutive columns are non-zero. Note that C1, C2, C3 are then distinct 
from E1, E2, E3 . We use a computer program to verify that in this case the combined 
weight of C1, C2 and C3 is at least 42. 
Now recall Equation 11, the constraints induced on E1 . A quick observation reveals 
that its free variables are the first 15 bits and the very last bit. Depending on the values 
taken by E1s first 15 bits we sub-divide our proof into two cases: 

i. (Non-Pathological Case:) Here not all the first 15 bits of E1 are zero. 
> 42 > 40} }

This is the simpler case. In this case, the
 
recurrence induces a good expansion. By an
 
exhaustive search we obtain that in this case
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the combined weight of E1, E2 and E3 is at C2 R E2 

least 40. Since the combined weight of C1, C2 

and C3 is at least 42, and that Ci, Ei are all 
C1 O 

E1 

distinct, together they establish this case. C0 E0 

Case 2(b)i 
ii. (Pathological Case:) Here we assume that the first 15 variables of E1 are all zero. 

This is the most subtle and difficult case. Going back to Equation 11, we note that 
in this case it must hold that w63 = 1 and for all 0 ≤ i ≤ 62, wi = 0.  We  call  such  
w pathological. 
Now consider Equation 12. We can have two cases here. 
In the first case, assume that the first 15 variables of z are zero. In that case, it 



must hold that z62 = 1. (Plugging in i =  16 to 62 in Equation 12 will  yield  zj = 0 
  
for all 15 ≤ j ≤ 61 since wi = 0 for these values.) Also note that z63 is free. In this
 
case, we also call z pathological. In fact this may continue along the diagonal i.e.,
 
E3, E4 , · · ·  may be pathological. If that happens then it is easy to show that the
 
first non-zero bits of E3 will be its 61st bit, that of E4 will be 60th bit and so on.
 
Also each column will have a free variable in its 63rd bit.
 
In the second case, we assume that not all of its first 15 variables are zero. We call
 
such z’s to be non-pathological.
 
We now sub-divide into many small cases depending primarily on the number of
 
pathological columns (and thus on the number of free variables).
 
A. (# Pathological Columns ≤ 8) We break this case into two sub-cases. That 

each of these sub-cases holds has been verified using a computer program. 
(I). 6th and earlier non-pathological columns are non-zero : 

In this case, we verify that the combined 
weight of the pathological columns and 
the first three non-pathological columns to 
the right of the pathological columns is at 
least 40. This ensures that in this case the 
minimum weight is at least 82. 
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Case 2(b)(ii)(A)(I) 
We mention that the search space dimension can be estimated as 

# of Pathological variables + # of Non-Pathological Columns × 16, 

which is  at most 40 in this  case. 
  
We next consider the case where the non-pathological columns are same as one
 
of C1, C2 or C3 .
 

(II).	 6th or earlier non-pathological column is identically zero: Firstly note 
that it suffices to check the case where the 6th non-pathological column is iden­
tically zero (that is E3 = C3), since other cases do fall in this case. 
Now we consider the parity check equations
 
induced on the pathological columns and
 
the six non-pathological columns. Note
 
that C1 satisfies Equation 9 and that E1 

satisfies Equation 11. Also note that in
 
between columns satisfy equations similar
 
to Equations 10 and 12. These equations 
then set up a homogeneous system of linear 
equations whose nullity can be verified (by a 
computer program) to be at most 40. 
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Case 2(b)(ii)(A)(II) 
Let the number of pathological columns be p and the number of non-pathological 
columns be n. Specifically then the nullity of the system can then be shown to 
be exactly (see Appendix A Claim A.3) 

p + 64  × n − 48 × (n + 1)  =  p + 16  · n − 48, 



which is at most 40 in this case. We do an exhaustive search over the null space 
to establish that the min-weight is at least 82. 

B. (8 < # Pathological Columns ≤ 16) We also break this case into two sub-
cases. That each of these sub-cases holds has been verified using a computer 
program. 

(I). 5th and earlier non-pathological columns are non-zero 

In this case, we verify that the combined 
weight of the pathological columns and 
the first two non-pathological columns to 
the right of the pathological columns is at 
least 40. This ensures that in this case the 
minimum weight is at least 82. 
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Case 2(b)(ii)(B)(I) 
Therefore the case that remains to be considered is the one where the non-
pathological columns are same as one of C2 or C3 which leads us to the next 
case. 

(II). 5th or earlier non-pathological column is identically zero: 

Firstly, note that it suffices to check the
 
case when the 5th non-pathological column 
is identically zero (that is E2 = C3), since 
other cases do fall in this case. As in the
 
2nd sub-case of the previous case (i.e., Case 
2(b)(ii)(A)(II)), we verify that the min-weight
 
is at least 82.
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Case 2(b)(ii)(B)(II) 

C. (16	 < Pathological Columns ≤ 28) First of all, notice that 28 columns is 
enough, since by our assumption there is at least one zero column and three 
non-pathological column (i.e., C1, C2, C3). Now, we also break this case into 
two sub-cases. That each of these sub-cases holds has been verified using a 
computer program. 

(I). 4th and earlier non-pathological columns are non-zero 



In this case, we verify that the combined 
weight of the pathological columns and the 
first non-pathological column to the right of 
the pathological columns is at least 40. This 
ensures that in this case the minimum weight 
is at least 82. 
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Case 2(b)(ii)(C)(I) 
Therefore the case that remains to be considered is the one where the 1st non-
pathological column is the same as C3 . 

(II). 4th non-pathological column is identically zero: 

As in the 2nd sub-case of the previous case
 
(or Case 2(b)(ii)(A)(II)), we verify that the
 
min-weight is at least 82.
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Case 2(b)(ii)(C)(II) 

We remark that the minimum weight of this code can at most be 82 and therefore our result 
is tight. We found the following codeword while searching for Case 2(b)(ii)(A)(II). Below we only 
give eight columns that includes six non-zero and two zero columns. The rests are all zero columns. 
Below the columns are placed horizontally. 

0000000000000000 0000000000000000 0000000000000000 0000000000000000 
0011110010011110 1000000001101001 1101001001010110 0000110010010000 
1011000101000100 0010111101001000 1011100010101100 1101000000101111 
1010101000111011 0010100100110010 1000000101001000 0110011000000000 
0000000000000000 0000000000000000 0000000000000000 0000000000000100 
0000000000000000 0000000000000000 0000000000000000 0000000000000011 
0000000000000000 0000000000000000 0000000000000000 0000000000000001 
0000000000000000 0000000000000000 0000000000000000 0000000000000000 

3.3 The Last Sixty Words 

In this subsection, we prove that the minimum weight of the code C in the last 60 words is at 
least 75. In general, our proof strategy is robust, i.e., it can in principle be adapted to estimate 
the minimum weight of this code in the last 4 · n (where n is an integer) number of steps, though 
the dimension of the search space increases by an additive factor of (64 − 4 · n) and  may make it  
computationally infeasible. On the other hand, when n gets smaller, say n ≤ 12, we may only need 



to show an average 2 per column viz a viz Claim 3.3. Since most of our search is conducted using 
early-stopping, the large dimension is not expected to be a problem. 

Next, observe that the minimum weight of the code C64 in the last 60 words yields a lower bound 
on the minimum weight of the code C in the last 60 words. Reviewing the proof of Theorem 3.2, 
it may be observed that in case 2 (i.e., At Least One Column Zero Case) we either consider a 
codeword (case 2(b)(ii)(A)(II), case 2(b)(ii)(B)(II) and case 2(b)(ii)(C)(II)) or consider few columns 
(in the remaining cases) which can always be extended to get a valid codeword. Therefore in these 
cases just counting the weight of the last 60 words gives a lower bound on the minimum weight 
of the code in the last 60 words. However, the same is not true for case 1 (i.e., All Columns 
Non-zero Case). We handle this case carefully. This then allows us to prove the following 
theorem. 

Theorem 3.5 The code C64 , as defined by Equation 8, has minimum weight at least 75 in its last 
60 words. 

Proof : Consider any column of length 64 bits. A column restricted to its bottom most 60 bits will 
henceforth be referred to as a reduced column (see figure). 

Unless otherwise mentioned, we will use the same name, eg., C0, to  
denote a column and its reduced column. We divide the proof into 
three main cases. 
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A Reduced Column 

1. (All Columns Are Non-zero But Reduced Column Can Be Zero Case): Consider 
any such codeword. Also consider any non-zero column, w.l.o.g., let it be C0. Denote  the  
columns, to the left of C0 by C1, C2 , · · ·  , C31 . Note that by assumption all columns are 
non-zero. 
Then observe that due to this assumption no
 
two consecutive reduced columns can be zero
 

0 

0 

0 

4bits 

everywhere. To see this let C0 and C1 be the 
columns such that their reduced columns are 
everywhere zero. Let C1 be the column left to 

60 bits 
C0. Denote  C0 by x = (x0, x1, · · ·  , x63) and 
C1 by y = (y0, y1, · · ·  , y63). Note that by the 
assumption xi = yi = 0  for  all  i = 4, · · ·  , 63. 
Now consider the parity check equations of 
C64 and set i = 20. 

We get 
y20 + y17 + y12 + y6 + y4 + x19 + x18 + x5 + x0 = 0, 



which implies x0 = 0. Similarly by setting i = 21, 22, 23, it can be seen that x is everywhere 
zero. 

We can therefore safely assume that no two consecutive reduced columns are zero. Then, the 
following can be easily verified by a computer program. 

Claim 3.6 For any non-zero column Ci, there  exists  k, 0 ≤ k ≤ 7 such that the combined 
weight of the reduced columns Ci, Ci+1 , · · ·  , Ci+k is at least 3 · (k + 1). 

Note that although we restrict ourselves to at most 2 bits ON in reduced C0, we must consider 
all 16 possibilities for the first 4 bits of C0 to be able to define reduced column C1 (from 
16 bits in reduced column in C1 and all the bits in C0). Despite this the search is easily 
conducted. 

Then, following the same line of argument as in Case 1 (All Columns Non-Zero Case) 
of Theorem 3.2, it can be shown that the total weight of the reduced columns is at least 78. 
This is because 25 columns yield at least 75 and the remaining seven columns yield at least 
3 (since two consecutive reduced columns contribute at least 1). 

2. (At Least One Column Zero Case): This case can be handled as the Zero Case in the 
proof of theorem 3.2. We consider the same number of cases and we count only the last 60 
bits in a column. We skip the details and summarize below the results we obtain. 

(a)	 Number Of Consecutive Non-Zero Columns Is At Most Five: 

The combined weight of the 5 non-zero col­
umn is then at least 78. 
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Case 3(a) 

(b)	 Number Of Consecutive Non-Zero Columns Is At Least Six: The  combined  
weight of three reduced columns to the left of a zero band is at least 38. 

i. (Non-Pathological Case) The combined weight of three reduced columns to 
the right of a zero band is at least 38. 



> 38 >
 37}
 }

 

Therefore the combined weight of three 
3 E3ZCreduced columns to the left of a zero column E 

2 R E2and	 that of three reduced columns to the C 
Oright of a zero column yields (assuming they 1C E1 

are distinct) at least 75. 
C0 E0 

Case 3(b)(i) 

ii. (Pathological Case) 

A. # of Pathological columns ≤ 8 

(I).	 6th and earlier non-pathological columns are non-zero : The  com­
bined weight of the pathological reduced columns and the first three non-
pathological reduced columns to the right of the pathological columns is at 
least 37. 

(II).	 6th or earlier non-pathological column is zero: The combined mini­
mum weight of these reduced columns is at least 75. 

B. 8 < # of Pathological columns ≤ 16 

(I).	 5th and earlier non-pathological columns are non-zero : The  com­
bined weight of the pathological reduced columns and the first two non-
pathological reduced columns to the right of the pathological columns is at 
least 37. 

(II).	 5th or earlier non-pathological column is zero: The combined mini­
mum weight of these reduced columns is at least 75. 

C. 16 < # of Pathological columns ≤ 28 

(I).	 4th and earlier non-pathological columns are non-zero : The  com­
bined weight of the pathological reduced columns and the first non-pathological 
reduced columns to the right of the pathological columns is at least 37. 

(II).	 4th or earlier non-pathological column is zero: The combined mini­
mum weight of these reduced columns is at least 75. 

Therefore, in all these cases the combined weight of the reduced column is at least 75. This estab­
lishes the theorem. 
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Case 2(b)(ii)(A)(II) Case 2(b)(ii)(B)(II) Case 2(b)(ii)(C)(II)
 

Various Cases in the proof of Theorem 3.5
 
(weights referred to the combined weights of the reduced columns)
 

Note that our result is tight. The codeword we cite in the previous subsection achieves this 
bound. 

3.4 The Last Forty-Eight Words 

In this subsection, we prove that the code C64 has minimum weight at least 52 in its last 48 words. 
As mentioned previously, this proof is more computation intensive as the dimension of the search 
space increases by an additive factor of 16. The good thing is that we need to show an average 2 
per column, viz a viz Claim 3.3. This makes our search, conducted using early-stopping, feasible 
in spite of the apparent large dimension. 

It is easy to observe that the minimum weight of the code C64 in the last 48 words yields 
a lower bound on the minimum weight of the code C in the last 48 words. The proof uses the 
same technique as in the proof of Theorem 3.5. Recall that in that proof (that is the proof of 
Theorem 3.5) there are cases where we either consider a codeword or consider few columns which 
can always be extended to get a valid codeword. In those cases, just counting the weight of the last 
48 words suffices to give a lower bound on the minimum weight of the code in the last 48 words. 
In the remaining case, mimicking the proof of Theorem 3.5, we consider reduced columns (here 
restricted to last 48 entries). We then can verify that under the assumption that all columns are 



non-zero, the reduced columns cannot be too sparse. This then allows us to prove the following 
theorem. 

Theorem 3.7 The code C64 as defined by Equation 8 has minimum weight at least 52 in its last 
48 words. 

Proof : Consider any column of length 64 bits. Here a column restricted to its bottom most 48 bits
 
will henceforth be referred as a reduced column.
 
Unless otherwise mentioned, we will use the same name, eg., C0, to denote a column and its reduced
 
column. We divide the proof into two main cases, depending on the existence of a zero column.
 

1. (All Columns Are Non-Zero But Reduced Column Can Be Zero Case ): Consider 
any such codeword. Also consider any non-zero reduced column, w.l.o.g., let it be C0. Denote  
the reduced columns, to the left of C0 by C1, C2 , · · ·  , C31 . Note that if five consecutive 
reduced columns are zero, then the first column must be everywhere zero. 

4bits 

This is easily obtained by setting i suitably 
in the parity check equations of the code 
C64 (see figure). We handle that case latter. 
Therefore we can safely assume that no five 48 bits 

consecutive reduced columns are zero. 

0 
0 0 

0 0 0 
0 0 0 0 

0 0 0 0 0 

Then the following is easily verified by a computer program. 

Claim 3.8 For any non-zero column Ci, there  exists  k, 0 ≤ k ≤ 6 such that the combined 
weight of the reduced columns Ci, Ci+1 , · · ·  , Ci+k is at least (k+1). Furthermore, there exists 
£, 0 ≤ £ ≤ 8 such that the combined weight of the reduced columns Ci, Ci+1 , · · ·  , Ci+£ is at 
least 2 · (£ + 1). 

Note that although we restrict ourselves to at most 1 bit ON in reduced C0, we must consider 
all 216 possibilities for the first 16 bits of C0 to be able to define reduced column C1 (from 16 
bits in reduced column in C1 and all the bits in C0). Since we rely heavily on early stopping, 
these bits must be guessed in a lazy fashion to make the search feasible. Then following the 
same  line of  argument as  in Case 1 (All Columns Non-Zero Case) of Theorem 3.5, it can 
be shown that the total weight of the reduced columns is at least 53 (since 24 columns yield 
at least 48 and the remaining eight columns yield at least 8, or 25 columns yield at least 50 
and the remaining 7 yields 7, or 26 columns yield 52 and remaining 6 at least 1). 

2.	 At Least One Column Zero Case: In this case the first column must be everywhere zero. 
This case can then be handled as the Zero Case in the proof of theorem 3.2. We consider 
the same number of cases and we count only the last 48 bits in a column. We remark that in 
each such cases, it can be shown that the weight in the last 48 rounds is at least 52. We skip 
the details. 



 

4 Conclusion  

4.1 Alternate codes 

Notice that the code C64 has a sliding window of size 20, that is to encode a message using this 
code, an LFSR would require 20 registers. The following code has a sliding of size 17. This may be 
useful for direct LFSR-type hardware implementation, since this would require three less registers 
than what the code C64 requires. 

Remark 4.1 We mention here that using our technique, it can be shown that the following code 
has similar good minimum weight parameters as that of C64 . 

Alternative1 : 
for i = 0, 1, · · ·  , 15, Wi = Mi and 
for i = 16  to 63 

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11) <<< 13) if 16 ≤ i <  17 
Wi = 

Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11 ⊕ Wi−17) <<< 13) if 17 ≤ i ≤ 63 
(13) 

We expect the following code too to have equally good properties as the codes we have consid­
ered/mentioned previously. However, because of additional pathological variables, the analysis 
becomes more complex and we defer the complete analysis to a later time. 

Remark 4.2 (W0, · · ·  ,W79) are computed from the message (M0, · · ·  ,M15) as follows: 

Alternative2 : 
for i = 0, 1, · · ·  , 15, Wi = Mi and 
for i = 16  to 63 

Wi =	 Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11 ⊕ Wi−15) <<< 1) 
⊕ ((Wi−1 ⊕ Wi−2 ⊕ Wi−11 ⊕ Wi−15) >>> 1) (14) 

4.2 Our proposed code vs. SHA-256 code 

The code in SHA-256 ([Uni02]) is the following: Let (W0, · · ·  ,W15) be the 512 bits input to SHA­
256, where each Wi is a word of 32 bits. Then the message expansion phase outputs (W0, · · ·  ,W63)
where 

∀i, 16 ≤ i ≤ 63, Wi = σ1(Wi−2) +  Wi−7 + σ0(Wi−15) +  Wi−16, (15) 

where σ0 and σ1 are as follows: 

σ0(x) 
def
= (x >>> 7) ⊕ (x >>> 18) ⊕ (x >>  3). 



σ1(x) 
def
= (x >>> 17) ⊕ (x >>> 19) ⊕ (x >>  10); 

In the above, “>> i” denotes a right shift by i bit and ‘+’ denotes binary addition modulo 232 . 
Note that the binary addition makes the code non-linear. We do not see how to lower bound the 
minimum weight of the above code. In spite of the complex description, we do not know how to 
formally argue about the security that this code offers. 

One property that the SHA-256 code has which might be useful against [CJ98] and [WYY05b] 
attacks is that the code is not quasi-cyclic. These attacks require that a codeword rotated (along 
columns) is again a codeword. Similarly, the attacks require that the codewords shifted (along 
rows) is again a codeword. In fact, even our proposed code, although quasi-cyclic, is not invariant 
under shifts along rows. This is because the recurrence relation changes from step 36 onwards. 
However, claiming security on this basis maybe short-lived, and arguably there is no substitute to 
actually proving that the code has a high minimum weight. 

4.3 Modifying SHA-256 

It should be noted that SHA-256, unlike SHA-1, has only 64 steps. There are two reasons why 
the designers of SHA-256 probably considered it safe to reduce the number of steps: firstly, since 
SHA-256 produces a 128 bit output, its non-linear block cipher has eight 32 bit registers instead of 
the five that SHA-1 has. This in turn means that any disturbance introduced using the expanded 
message words Wi carries on for at least eight rounds (instead of five), and hence the probability 
of forcing local collisions goes down. Secondly, the SHA-256 message expansion code itself is more 
involved and possibly has better minimum distance (though as discussed in the previous subsection, 
there is no proof of that). 

Utilizing the first observation, we believe that a provably good message expansion into 64 words 
does indeed render the “modified” SHA-256 secure against differential attacks. For the code we 
can use a back truncation of the code C analyzed in this paper, i.e. given by equation (2) but with 
i <= 63. Of course, one would need to analyze this code from scratch, as the minimum weight 
numbers for the code C do not automatically yield numbers for the back truncation. 

Another interesting code, which we plan to analyze in the future, is a code similar to Alternative 
2 above but with a sliding window of size 20. Recall (see the last para of section 3.1) that increasing 
the window size allows us to get rid of certain pathological variables, and makes the search feasible. 
Moreover, it also simplifies the analysis considerably. In particular, the code we plan to analyze 
and recommend for SHA-256 is: 

⎧ ⎪Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⊕((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 13) ⎪ ⎪ ⎪ ⎪ ⎨ ⊕((Wi−1 ⊕ Wi−2 ⊕ Wi−15) >>> 13) if 16 ≤ i <  36 

Wi = (16) ⎪ ⎪ ⎪ ⎪Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⊕((Wi−1 ⊕ Wi−2 ⊕ Wi−15) <<< 13) ⎪ ⎩⊕((Wi−1 ⊕ Wi−2 ⊕ Wi−15 ⊕ Wi−20) >>> 13) if 36 ≤ i ≤ 63 

As before, we would need to lower bound its minimum weight in the last 48 (and possibly last
 



32) words. One crucial observation we make is that in analyzing C, we could estimate the dimension 
of the subspace such that C5 = E1 (see case 2(a) in the proof of Theorem 3.2) to be about 32 
(in fact exactly 32). This follows by just observing the number of variables, and the homogeneous 
equations involved. However, when the length of the code is reduced as above, this subspace has 
dimension at least 48. But, by mixing three columns at a time as in the above code, the number 
of equations in that case (i.e., in case 2(a) in the proof of Theorem 3.2) goes up considerably, and 
the null space has a more reasonable dimension of about 16. 
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A  Rank  proofs  

Claim A.1 If C0 is zero, and C1 is non-zero, then C2 is non-zero. 

Proof : Assume otherwise i.e., that C2 is zero. Consider the following 48 × 64 dimensional parity 
check matrices (essentially Equations 9 and 11) over F2 

⎛ 
1010000010000100100000 · · ·  000000000000000000 

⎞ 

⎜ 0101000001000010010000 · · ·  000000000000000000 ⎟ ⎜ ⎟ ⎜ ⎜ . . . · · ·  
. . . 

⎟ ⎟ ⎜ ⎟ ⎝ 0000000000000000000000 · · ·  010100000100001001 ⎠ 

H1 



⎛ ⎞
0100000000000011000000 · · ·  000000000000000000000
 ⎜ 0010000000000001100000 · · ·  000000000000000000000 ⎟
 ⎜ ⎟ ⎜ ⎟0001000000000000110000 · · ·  000000000000000000000 ⎜ ⎟ ⎜ ⎟0000100000000000011000 · · ·  000000000000000000000 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟1000010000000000001100 · · ·  000000000000000000000 ⎜ ⎟ ⎜ ⎟0100001000000000000110 · · ·  000000000000000000000 ⎜ ⎟ ⎜ ⎟. .⎜ . . ⎟.. · · ·  ⎜ ⎟ ⎝ ⎠0000000000000000000000 · · ·  100001000000000000110 

H2 

( )
H1Then we need to show that H = has full rank. To do that it is enough to show that 
H2 

there are 64 linearly independent rows. We consider the 48 rows of H1 and 16 additional rows, 
namely 5th through 20th rows of H2. We reduce the problem to showing that a certain equation 
over polynomial ring F2[x] does not have solutions in a restricted set of polynomials. We associate  63with the vector c = (c0, · · ·  , c63) in F64 the polynomial c(s) = i in F2[s]. Then the following 2 i=0 cis
polynomials can be associated with the 1st and 5th rows of matrix H1 and H2, respectively: 

p(s) 
def 16 + s 13 + s= s 8 + s 2 + 1, 

r(s) 
def 19 + s 18 + s= s 5 + 1. 

i−1Further note that the ith (note 1 ≤ i ≤ 48) row of H1 then gets associated with s p(s). Similarly 
the jth (note we restrict ourselves to 5 ≤ j ≤ 20) row of H2 then gets associated with sj−5r(s). 
Therefore, observe that if the 80 rows that we are considering were dependent then we can translate 
that to a non-zero solution of the following polynomial equation: 

p(s)α(s) +  β(s)r(s) = 0, 

with additional constraints that degree(α) ≤ 47 and degree(β) ≤ 15. However, it is well known 
that p(s) is irreducible, therefore if such a equation holds then it must be the case that p(s) divides 
r(s). However, it is easy to check that p(s) does not divide r(s), thus leading to a contradiction. 
Therefore H has full rank. 

Claim A.2 If C0 is zero, and C1 is non-zero, then C2, C3 is non-zero. 

Proof : Consider the following polynomials : 

p(x) 
def 16 + x 13 + x= x 8 + x 2 + 1, 

q(x) 
def 15 + x 14 + x,= x 

r(x) 
def 19 + x 18 + x 4= x 5 + 1 =  x · q(x) + 1. 

Let H1 and H2 be as above. 



First of all note that H2 has full rank. (This is clear from the matrix. Otherwise, note that we 
could have  an identity  

q(x) · a(x) +  r(x) · b(x) = 0  

with degree(a) ≤ 3 and degree(b) ≤ 43. Since degree(q · a) < degree(r), this cannot happen.) Now 
we will show that the rank of the matrix ⎛ ⎞ 

H2 0 ⎝ ⎠H1 H2 

0 H1 

is at least 128. Since H1 has full rank, observe that ( )
H1 H2 

0 H1 

has rank at least 96. So consider the following 92 independent rows from the above matrix, namely 
5th row onwards. We also argue that another additional 5th through 40th rows of the top H2 are 
also independent. If not, then they would satisfy the following polynomial equations 

with restrictions 
degree(α) ≤ 47, 

α(x)p(x) +  β(x)r(x) = 0 (17) degree(β) ≤ 43, and 

x 4β(x)p(x) +  γ(x)r(x) = 0 (18) degree(γ) ≤ 35. 

Since p(x) is an irreducible polynomial, and p(x) � r(x), observe from Equation 17 that p(x)|β(x). 
Hence, set β(x) =  µ(x)p(x). Substituting in Equation 18 we get 

4 x p(x)2 µ(x) +  γ(x)r(x) = 0. 

4Since p(x) is irreducible, and p(x) � r(x), and x � r(x), it must hold that x p(x)2|γ(x).  But that is  
4impossible, since degree(γ) ≤ 35 < 36 =degree(x p(x)2). 

Recall that we used E0 to denote a column that is zero everywhere. Also, recall that the columns 
left to E0 are denoted E1, E2 and so on. In the following claim, we will assume 3 ≤ n. 

Claim A.3 Let E1, E2 , · · ·  , Ep be p pathological columns. Also, let Ep+1, Ep+2 , · · ·  , Ep+n be n 
non-pathological columns. Further assume that Ep+n+1 = C0 is everywhere zero. If the nullity of 
the parity check equations resulting from these columns with p = 0  is 16 ·n− 48, then the nullity of 
the parity check equations resulting from these columns with any p ≤ 28 is 

p + 16  · n − 48. 

Proof : Let  Ni,j, (1 ≤ i ≤ n, 0 ≤ j ≤ 63) denote the entries in the non-pathological columns. Also 
let Pi,j , (1 ≤ i ≤ p, for each i, 64 − i ≥ j ≤ 63) be the pathological variables. We will denote 
Ni = (Ni,0, · · ·  , Ni,63) and Pi = (Pi,64−i, · · ·  , Pi,63). Let  H1|i denote the matrix H1 restricted to the 
last i columns. (Note that only the last i rows will be non-zero.) Also let H2|i denote the matrix 
H2 restricted to the last i columns. (Note that only the last i−1 rows will be non-zero.) Note that 



�

�

(P1, · · ·  , Pp, N1, · · ·  , Nn) must belong to the null space of the following matrix: ⎛	 ⎞ 
H1|1 H2|2 ⎜	 ⎟H1|2 H2|3 ⎜	 ⎟ ⎜ . .	 ⎟ .	 .⎜ . .	 ⎟ ⎜	 ⎟ ⎜	 ⎟H1|p−1 H2|p⎜	 ⎟ ⎜	 ⎟H =	 H1|p H2 ⎜	 ⎟ ⎜	 ⎟H1	 H2 ⎜	 ⎟ ⎜	 ⎟.	 .⎜	 . . ⎟.	 . ⎜	 ⎟ ⎝	 ⎠H1	 H2 

H1 

Note that when we restrict H1 or H2 to the last few columns, the top rows in that restricted 
entries may become zero row. We remove such rows if the entire row in the above matrix H 
becomes everywhere zero. Note that with this modification, the following sub-matrix is already in 
the echelon form: ⎫ ⎛	 ⎞ 

H1|1 H2|2	 ⎪ ⎪ ⎪ ⎜	 ⎟ ⎬H1|2 H2|3 ⎜	 ⎟H1 =  ⎜	 ⎟ (p − 1) blocks ⎝	 . . . . . . ⎠ ⎪ ⎪ ⎪ ⎭ 
H1|p−1 H2|p 

(Observe that first block corresponding to (H1|1 H2|2) reduces to (1 10), and that corresponding to ( )
10	 100

(H1|2 H2|3) reduces to .)
01	 110 

Furthermore, since by assumption the following sub-matrix has full rank: ⎫ 
H2 ⎪ 

⎛	 ⎞ ⎪ ⎪ ⎜	 ⎟ ⎪H1 H2	 ⎪ ⎜	 ⎟ ⎬ ⎜ . .	 ⎟H2 =  ⎜ . . . .	 ⎟ (n + 1)  blocks  ⎜	 ⎟ ⎪ ⎪ ⎪⎝	 ⎠H1	 H2 ⎪ ⎪ ⎭ 
H1 

the matrix H has full rank. Note here that in the top 48 − p rows, H1|p is entirely zero. However 
these rows in H are independent since H2 has full rank. In the remaining rows H1|p is in echelon 
form and hence independent. Note that it has number of rows i.e., constraints: 

p−1	 
p(p − 1)

48 × (n + 1) +  i = 48(n + 1) +  .
2 

i=1 

Also, note the number of variables i.e., columns is 
p 

p(p + 1)  
64 × n + i = 64  · n + .

2 
i=1 

Thus the nullity of the system is (	 )
p(p + 1) 	  p(p − 1)

64 · n + − 48(n + 1) +  = p + 16  · n − 48.
2	 2 

This completes the proof. 



B Examples  

We cite below an example where over 7 columns an average of 3 does not hold. Below we only give 
8 columns and the columns are placed horizontally. Note that the 8 columns yield 29, whereas the 
first 7 columns yield only 14. 

0000000000000000000000000000000000000000000000000000000001000000 
0000000000000000000000000000000000000000000000000000000000110110 
0000000000000000000000000000000000000000000000000000000000010100 
0000000000000000000000000000000000000000000000000000000000001110 
0000000000000000000000000000000000000000000000000000000000000100 
0000000000000000000000000000000000000000000000000000000000000011 
0000000000000000000000000000000000000000000000000000000000000001 
1000101010000000001001000010000010000100101100000010001000010000 
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Abstract 

We s h o w that if a collision in SHA-1 is obtained as in the Chabaud and Joux attack (which i s 

also the basis for Wang et al attack) by putting together local collisions from step t onwards, then 

the disturbance vector must be a projection of a codeword from step t + 5 o n wards. We conclude 

that SHA1-IME (proposed by J u t l a a n d Patthak) is resistant to all recent diferential attacks 

and their natural extensions, as the code has minimum weight 7 5 ( 5 2 ) e v en when restricted to 

the last 60 (48 respectively) steps. 

Introduction 

We briefy recall the message expansion code and the state update transforms of SHA-1 [Uni95]. 

Let M0Y   YM  15 

be the input message blocks. Then 

SHA-1 : 

for i = 0Y 1Y   Y 15Y Wi 

= Mi 

and 

for i = 16 to 79 

Wi 

= ( Wi;3 

E Wi;8 

E Wi;14 

E Wi;16) <<< 1 (1) 

where <<< 1 denotes a one bit rotation to left. The state update functions are given as follows: 

for i = 0 to 79: 

Ai+1 

= Wi 

+( Ai 

<<< 5) + fi(Bi 

Y C i 

Y D i) + Ei 

+ Ki 

Y 

Bi+1 

= AiY 

Ci+1 

= Bi 

<<< 30Y 

Di+1 

= CiY 

Ei+1 

= Di 

Y 

Round Step(i) fi(X Y YY Z ) 

1 0-19 X Y _ X Z 

2 20-39 X E Y E Z 

3 40-59 X Y E X Z E Y Z 

4 60-79 X E Y E Z 

where `+0 denotes the binary addition modulo 232 . The output of the compression function is the 

string of fve w ords A80Y B 80Y C 80Y D 80 

and E80. 

mailto:anindya@cs.utexas.edu
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Before we g o i n to the collision resistance properties of SHA-1 and SHA1-IME [JP05], lets explore 

their properties as one-way functions. Specifcally, it is desired that no program should be able to 

solve fo r m in reasonable time and with high probability, given a random output haY pY /Y {Y vi, i.e. 

A80(m) = a ^ B80(m) = p ^ C80(m) = / ^ D80(m) = { ^ E80(m) = v 

It is widely believed that the above property of one-wayness holds for SHA-1, and we briefy 

describe the heuristic argument which is used in making this assumption. Before that, we must 

note that actually proving the above one-way claim, even in an asymptotic sense is an extremely 

difcult problem. One approach could b e to show that (in an asymptotic version of the above 

problem) the problem can b e framed as a Polynomial Constraint Satisfaction Problem over F2 

(where each polynomial has degree at most two), which is known to be NP-hard ([GJ79]). However, 

the notion of cryptographic one-wayness requires showing the problem to be average-case hard for 

NP. Unfortunately, all advances in this direction have b e e n stymied by a theorem of Impagliazzo 

([Imp95]) that any such r e s u l t m ust be non-relativizing. Further, it has been shown ([FF76, BT05]) 

that under non-adaptive reductions this reduction is not possible unless the polynomial hierarchy 

collapses to the third level (of course, there could still be adaptive reductions, but then the proof 

must b e non-relativizing). The other approach requires showing super-polynomial lower bounds 

directly on the average case complexity of the given problem, for which all known techniques are 

inadequate [RR97]. 

Coming back to the heuristic argument for making the case for SHA-1 as a one-way function, 

let us take a look at the actual equations or constraints involved. Recall, a program P must solve 

for m given aY pY /Y {Y v. 

We denote the jth bit of word Xi 

by xi,j. Also, when we consider any addition of two v ariables 

we will introduce binary auxiliary variables to represent carries, and we will use Greek letters to 

denote them. Also, we break up any addition involving more than two w ords into several two w ord 

additions, thus ensuring that carry variables are binary. 

8i 2 [1Y 80] 8j 2 [0Y 31] 

fi,j 

= fi(ai;2,j Y a i;3,j+2Y a i;4,j+2) 

gi,j 

= (ki,j 

+ wi;1,j 

+ ai,j;1) mod 2 

ai,j 

= (ki,j 

+ wi;1,j 

+ ai,j;1) div 2 

hi,j 

= (gi,j 

+ fi;1,j 

+ Ti,j;1) mod 2 

m

Ti,j 

= (gi,j 

+ fi;1,j 

+ Ti,j;1) div 2 

i,j 

= (hi,j 

+ ai;5,j+2 

+ ¢i,j;1) mod 2 

¢i,j 

= (hi,j 

+ ai;5,j+2 

+ ¢i,j;1) div 2 

ai,j 

= (mi,j 

+ ai;1,j;5 

+  i,j;1) mod 2

 i,j 

= (mi,j 

+ ai;1,j;5 

+  i,j;1) div 2 (2) 



 with ai,;1 

= Ti,;1 

= ¢i,;1 

= i,;1 

= 0 for all i. 

8j 2 [0Y 31] a0,j 

= IV 0,j 

8j 2 [0Y 31] b0,j 

= a;1,j 

= IV 1,j 

8j 2 [0Y 31] c0,j 

= a;2,j 

= IV 2,j 

8j 2 [0Y 31] d0,j 

= a;3,j 

= IV 3,j 

8j 2 [0Y 31] e0,j 

= a;4,j 

= IV 4,j 

(3) 

where IV (i 2 [0::4]) is the initial vector specifed in SHA-1. i 

We remark that three binary variables added and divided by two is just the majority function 

over GF2, and three binary variables added and reduced modulo two is just addition in GF2. 

Thus, all of the above equations, including the message expansion, and the computation of f , can 

b e written as polynomial equations over GF2, with degree at most two. However, this variant of 

the polynomial constraint satisfaction problem is known to b e NP-hard ([GJ79]). The heuristic 

argument we employ is that this system of polynomial constraints is general enough (on average 

for randomly chosen aY pY /Y { and v), and even though this is a fxed input length problem, the 

number of polynomial equations involved is large enough. 

To further convince oneself that there is no useful structure in this system of polynomial equa-
tions, consider the above equations with all message words set to zero (and hence all W variables 

set to zero). Then considered over 32 bit words, there is a unique output, i,e. A80Y B 80Y :::Y E80 

, and 

hence only 1 in 2160 of the aY pY :::Y v will satisfy the above constraints. If we t h r o w in the M vari-
ables (and the intermediate W variables), any attempt to solve for M (given aY pY :::Y v) is th warted 

by the fact that each mi 

is used in several equations, and in no particular or discernible fashion. 

This can b e attributed to the \orthogonal" design of the state update function and the message 

expansion code. The additive constants Ki, and a non-zero IV make sure that the equations are 

not homogeneous. 

Can a similar heuristic argument b e given for collision resistance? We address this question 

in the next section. We end this section by an attempt to solve the system of equations using 

Schoning's Algorithm for 3-SAT and CSPs [Sch99]. Recall that in Schoning's algorithm, a random 

initial assignment o f t h e n variables is chosen, and if some clause is falsifed, a random literal from 

the clause is picked and fipped. This process is continued for up to 3n steps, before a new random 

assignment is picked. The complexity of this randomized algorithm is within a polynomial factor 

of (2(1 ; 

1 ))n , w here k is the number of literals per clause. 

k 

In our case, we have written our system of equations or constraints as 4-constraints. However, 

the numb e r o f v ariables has shot up considerably from 160. Even, if we consider auxiliary variables 

other than W to be not a factor, we still have a total of 80 x 32 variables, out of which w e m ay f x 

at most 512 ; 160 variables corresponding to M , t h us leaving us with at least n = 64 x 32 variables. 



If we get rid of the W variables as well, and directly write the clauses in terms of M , w e fnd that 

each clause has on average 80 binary variables corresponding to M , rendering k to be large. Note 

that the same argument holds for SHA1-IME. 

2 Collision Resistance Properties of SHA1-IME 

The hash function SHA-IME [JP05], is exactly the same as SHA-1 except that the message expan-
sion code as in equation (1) is replaced by 

W 

i;3 E W 

i;8 E W 

i;14 E W 

i;16 E W 

i;1 E W 

i;2 E W 

i;15
( ; ) 

<<< 13 if 16 : i < 36 

W 

i = 

; )
W 

i;3 E W 

i;8 E W 

i;14 E W 

i;16 E W 

i;1 E W 

i;2 E W 

i;15 E W 

i;20 <<< 13 if 36 : i : 79 

(4) 

It was shown that this code has minimum weight 80 in just the last 64 words. Further, the minimum 

weight restricted to the last 60 (48 steps) is at least 75 (52 respectively). 

The attacker's task is to fnd two messages M and M 0 which hash to the same value, say aY pY /Y { 

and v. If we use primed variables to write another set of equations as in the previous section for 

the second message M 0 , then we can get rid of aY p etc. by equations of the form a80,j 

= a0 

80,j 

, 

a79,j 

= a0 etc.
79,j 

We will use the prefx . to denote the xor diference of a variable with its primed variable; thus 

.a65,12 

denotes a65,12 

E a65
0 

,12. Thus, the equations in the previous paragraph are really 

.a80,j 

= 0 Y .a79,j 

= 0 Y :::Y .a76,j 

= 0 (5) 

Is it possible to write all the equations in terms of diference variables? For this to b e true, 

exclusive-or has to distribute over the majority function which, although not always true, does 

happen with non-trivial probability. This leads to a trivial solution, i.e. .M = 0, which is not very 

useful. However, many equations can be made to be trivially true (and with probability one) if the 

diference variables involved are zero. One then tries to focus on a non-zero .M which requires the 

least number of equations to have to go through the probabilistic distribution of xor over majority. 

This is the idea behind local collisions [CJ98], [WYY05], as with local collisions one takes a non-
zero .M and tries to set most of the diference variables to zero as quickly as possible. Notice that 

a non-zero .M leads to a non-zero .W , which k eeps disturbing the equality o f i n termediate step 

variables. This disturbance is then ofset as quickly as possible by additional diferences coming 

from .W . 

Other than this local collision strategy, or a method which makes many equations true with high 

probability, it is an open problem to fnd collisions in a way better than birthday attack. The only 

alternative seems to be to use general purpose randomized algorithms for satisfability o f C S P s l i k e 

Schoning's algorithm mentioned in the previous section. 



So, at the present state of knowledge about solving general CSPs, and without any further 

insights into any special structure these CSPs may have, an attacker is left with the option of 

trying to optimize the local collision based attacks. 

In the next section we show that, if the linear message expansion code is good then either the 

disturbance vector itself has a large hamming weight, or fnding a small hamming weight disturbance 

vector (if any s u c h exists) is an instance of a NP-hard problem (which does not seem to have any 

special structure, e.g. sparsity, to reduce its complexity). 

3 Are there b e t t e r Disturbance vectors? 

Recall that in [CJ98] a disturbance vector indicates where new disturbances start, and these indi-
vidual disturbances are cancelled in the next six rounds by additional diferences in the expanded 

message; each of these events is called a local collision. The linear combination (xor) of all these 

disturbances and additional diferences is called the diference vector. There can be many kinds of 

local collision strategies, and we explore all such possibilities in the next few sub-sections. The one 

requirement on the diference vector is that it mu s t b e a c o d e w ord of the SHA-1 message expansion 

linear code. 

To review recent attacks, in [CJ98] the collision attack on SHA-0 is carried out by explicitly 

constructing a diference vector out of a disturbance vector. Moreover, in there a disturbance vector 

is itself chosen to be a codeword of SHA-0. Later [BC04] and [RO05] extend their technique to cause 

collisions in reduced SHA-1. In [WYY05], this idea is further extended to attack the full SHA-1. 

However, the diference vector is still constructed out of a disturbance vector which i s a c o d e w ord. 

One advance has been in not requiring local collisions at every disturbance { in particular, the frst 

16 to 20 rounds in [WYY05] are handled in a more complicated juxtaposition of local collisions, 

and the last 5 round disturbances are allowed to run loose. The inner round (i.e. from round 20 to 

round 75) disturbances however are still handled by local collisions. 

Thus, since these attacks crucially depends on the weight of the disturbance vector (particularly 

in the inner rounds), the issue of obtaining a small weight disturbance vector is a crucial one. 

3.1 Local Collision Based Strategies 

In this sub-section, we prove that if the local collision is constructed as in [CJ98], then the dis-
turbance vector must b e a codeword in SHA-1 (the same is also true for SHA1-IME). It was an 

open problem whether one could consider a disturbance vector which is not a codeword and yet 

the diference vector is a codeword. To be specifc, we show t h a t if the global collision arises as a 

result of local collisions from step t onwards (that is we allow o n e t o manipulate the disturbances 

and additional diferences in any arbitrary way till the frst t steps) then the disturbance vector 

restricted to steps t + 5 o n wards must be a SHA-1 message expansion codeword. 



      

Consider the front-truncated SHA-1 code, i.e. restricted to the last 65 words. We assume that 

the parity c heck constraints of SHA-1 is denoted by R, i.e., for any 6 5 x 32-bit vector w, R(w) = 0 

if 

8j 2 f 1Y Y 32gY 8i 2 16Y Y 64 wi,j 

= wi;3,j;1 

E wi;8,j;1 

E wi;14,j;1 

E wi;16,j;1: 

Assume that the local collisions are desired from rounds 5 to 64. 10 Also, we do not force that the 

last 5 words in the disturbance vectors be zero, thus allowing the possibility of near-collisions. 

265X32 265X32 def 

Defne a map { : f0Y 1g ! f 0Y 1g . Let z = {(u). Then (
def 

ui,j 

if 0 : i : 4 

{(u)i,j 

= zi,j 

= (6) 

ui,j 

E ui;1,j;5 

E ui;2,j 

E ui;3,j+2 

E ui;4,j+2 

E ui;5,j+2 

if 5 : i : 64 

Essentially, the map { takes a disturbance vector u, and builds a diference vector {(u) according to 

a local collision strategy for the last 60 rounds, whereas in the frst 5 rounds the diference vector 

is already specifed by the disturbance vector, and hence need not follow any particular pattern. 

We will call this map, or this local collision strategy a CJ-local collision strategy [CJ98]. 

The main result of this section shows that if a diference vector z is obtained from a disturbance 

vector u by t h e above transformation, i.e. z = {(u), and that z is a codeword (as every diference 

vector must be) then u, the disturbance vector, agrees with some codeword y in the last 60 rounds. 

The import of this result is that the disturbance vector cannot be small weight (in SHA1-IME) if 

a global collision is obtained by p a t c hing together local collisions, even when allowing for freedom 

in the frst 20 or so rounds. 

Let yi,j 

b e any 65 x 32 (where 0 : i : 64Y 0 : j : 32) bit vector. We also use yi 

to denote 

def 265X32 265X32 

the vector yi 

= j=0. Given y, we defne another map p : f0Y 1g ! f0Y 1g .hyi,j 

i31 Let 

def 

u = p(y). Then (
def 

yi,j 

if i : 5 

p(y)i,j 

= ui,j 

= (7) 

yi,j 

E yi;1,j;5 

E yi;2,j 

E yi;3,j+2 

E yi;4,j+2 

E yi;5,j+2 

if 0 : i : 4 

where y;1 

to y;5 

are obtained from y by the SHA-1 expansion code run backwards. 

Lemma 3.1 Let R(y) = 0 i.e., that is y is a codeword. Let u = p(y) and z = {(u). Then R(z) = 0 

i.e., z is a codeword too. 

Proof : First consider the case when i : 5. Then by (5) and (6), 

zi,j 

= yi,j 

E yi;1,j;5 

E yi;2,j 

E yi;3,j+2 

E yi;4,j+2 

E yi;5,j+2: 



 

Also note when i : 4, then again by (5) and (6) we h a ve 

zi,j 

= ui,j 

= yi,j 

E yi;1,j;5 

E yi;2,j 

E yi;3,j+2 

E yi;4,j+2 

E yi;5,j+2: 

where y;1Y y Y y Y y Y y are obtained using the SHA-1 recurrence from y. Then, rearranging 

and regrouping the terms and using the fact that R(y) = 0, all the parity c heck constraints of the 

code i.e., constraints of the form 

;2 ;3 ;4 ;5 

zi+16,j 

E zi+13,j;1 

E zi+8,j;1 

E zi+2,j;1 

E zi,j;1 

= 0 

are satisfed for all i : 0. 

Lemma 3.2 The map { is an injection. Moreover, for y such that R(y) = 0 , the map p : y 7! u is 

an injection. 

Proof : Let z = {(u) and z0 = {(u0 ). If u and u0 difer in any j, for any j : 4, then clearly the 

corresponding z and z0 difers. Therefore assume i* : 5 b e the smallest i where u and u0 difers, 

say in some j* bit. From Equation 6, it is clear then that zi* ,j* ; ui* ,j* = zi
0 

* ,j* 

; u0 

i* ,j* which 

implies z 6 0 , and hence { is an injection. = z
0 0 0Now, let u = p(y) and u = p(y0), where y and y are codewords. We will show that if u = u

0 0 0then y = y . If u = u0, it already implies y = y for i : 5. This implies y = y everywhere, as any 

16 consecutive w ords of a codeword determine the rest. 

Theorem 3.3 If R(z) = 0 i.e., z is a codeword, then z = {(p(y)) for some y such that R(y) = 0 . 

In particular, if z is a diference vector obtained from a disturbance vector u by the map {, then 

there exists a y such that R(y) = 0 Y u = p(y)Y and hence for all i : 5Y u = yi.i 

Proof : This follows from a counting argument. For every y, such that R(y) = 0, by lemma 3.1 

R({(p(y)) = 0. Moreover by the previous lemma, { p is an injection for such y. Therefore the size 

of the set 

fz j R(z) = 0 and 9y : R(y) = 0 ^ z = {(p(y))g 

is at least the numb e r o f y such that R(y) = 0, i.e. 216x32 . But, fz j R(z) = 0 g has exactly that size. 

Hence, each z such that R(z) = 0 m ust be of the form z = {(p(y)) for some y such that R(y) = 0. 

Now notice that if z is a diference vector obtained from a disturbance vector u by the map {, 

then since z is a codeword R(z) = 0 . Then by the previous paragraph, z = {(p(y)) for some y such 

that R(y) = 0. Since { is 1-1, u = p(y), and hence y and u restricted to last 60 words are identical. 



3.2 Approximate Local Collision Based Strategies 

The previous theorem showed that the disturbance vector itself has to be a codeword in the message 

expansion code, when the diference vector is built using a local collision strategy. However, the 

possibility arises that the adversary is willing to pay a price for not requiring local collisions in 

some inner rounds, if the diference vector can b e obtained from a disturbance vector which is 

much smaller than a codeword. The attacker may consider the map { to b e 8
 
 ui,j 

if 0 : i : 4    
def 

ui,j 

E ui;1,j;5 

E ui;2,j 

E ui;3,j+2 

E ui;4,j+2 

E ui;5,j+2 

if 5 : i : s 

{(u)i,j 

= zi,j 

=
  ui,j


 if s + 1 : i : s + 5   : ui,j 

E ui;1,j;5 

E ui;2,j 

E ui;3,j+2 

E ui;4,j+2 

E ui;5,j+2 

if s + 6 : i : 64 

(8) 

Now, the attacker is seeking a diference vector z (i.e. a codeword) such that it can b e obtained 

from a small disturbance vector u using this new map {. However, we can defne a corrective m a p 

p as in the previous subsection, this time also correcting indices s + 1 through s + 5, and the rest 

of the proof goes through. Thus, u is forced to be close to a codeword. This proof technique works 

as long as there is a consecutive sequence of 16 indices where the map { models local collisions. We 

will later address the situation where this is not the case. 

3.3 Mixed Local Collision Strategies 

An adversary could try two diferent local collision strategies. For example, although the map { (CJ-
local collision strategy in section 3.1) is the most efective strategy, there could be another slightly 

less efective (i.e. with a slightly lower probability o f success) local collision strategy modeled by 

a map |. Now, the adversary seeks two disturbance vectors u and u1, such that {(u) E |(u1) is a 

codeword diference vector. Of course, the intent is to fnd small hamming weight u and u1, for 

instance u E u1 w h i c h is not a codeword, and with much smaller weight than the min weight o f t h e 

code. 

Before we address this question, we h a ve to frst see if the map { is indeed the best local collision 

map, i.e. one with the largest probability of success. By a local collision, we mean a diferential 

characteristic with a single bit starting expanded message disturbance, which is ofset by a string 

of additional diferences in the expanded message so that the output diference of the characteristic 

is zero. 

3.3.1 Local Collision Probabilities 

Since, SHA-1 has diferent non-linear functions in the four diferent rounds, we expect the charac-
teristics to have diferent probabilities in the diferent rounds, as well as in ones bordering on two 



rounds. Regardless, the initial disturbance (step 0), say . Wj
i = 1, always causes .Ai

j 

= 1 . What 

is not certain is whether the carry bit(s) from this addition is non-zero. 

.Ai+1Proceeding to the next step (step 1), .Ai = 1 causes to b e one, unless ofset by a j j+5 

.W 

i+1 Moreover, .Bi+1 = 1 is automatic.j+5 

.	 j 

.Bi+1 .Ai+2	 .W 

i+2In the next step (step 2), = 1 causes = 1, unless ofset by , or if the j j j 

Ai+2(i + 2)th step is in the IF and MAJ rounds. In the latter case, the probability o f . j 

= 0 is half. 

Moreover, .Ci+2 = 1 is automatic.j;2 

.Ci+2 .Ai+3 .W 

i+3In step 3, = 1 causes = 1, unless ofset by , or if the (i + 3)th step is j;2 j;2	 j;2 

.Ai+3in the IF and MAJ rounds. In the latter case, the probability of j;2 

= 0 is half. Moreover, 

.Di+3 = 1 is automatic.j;2
 

.Di+3 .Ai+4 .W 

i+4
In step 4, j;2 

= 1 causes j;2 

= 1, unless ofset by	 j;2 

, or if the (i + 4)th step is 

.Ai+4in the IF and MAJ rounds. In the latter case, the probability of j;2 

= 0 is half. Moreover, 

.Ei+4 = 1 is automatic.j;2
 

.Ei+4 .Ai+5 .W 

i+5
In step 5, = 1 causes = 1, unless ofset by In the latter case, the j;2 j;2 j;2 

. 

Ai+5probability o f . j;2 

= 0 is half. This time however, there is no automatic propagation of diference. 

If certain diferences mentioned above are not ofset as mentioned, then the diferences propagate 

and fan out, causing additional ofsets to b e required later, which may or may not work with 

certainty. Also, since the IF round spans steps 1 to 20, and we allow the attacker complete success 

in the frst 20 steps, we need not consider the IF round anymore. Thus, note that in the XOR 

rounds, apart from the initial disturbance in W , fve additional diferences are required in the 

subsequent steps. In the MAJ rounds, the only additional disturbances which are imperative are 

in steps 1 and 5, and the remaining three are optional. In this respect, the map { is not unique in 

being the best probability local collision strategy. 

The probability that there is no carry in step 0 is half, unless j = 31. But if j = 31, then in 

step 1, j = 4 , and hence there is a carry there with probability h a l f . Thus a local collision, which 

has required ofsets as above, cannot have probability better than half. This includes the CJ-local 

collision strategy. Heuristically, o n average over all the steps, the probability o f local collisions is 

about 2;2:5 , e v en when additional conditions are imposed on the message bits (not the diferences, 

but the actual bits). We give more details in the next sub- section. 

3.3.2 Further Analysis 

Let us assume that local collisions are as described in the previous section, with the required ofsets 

in steps 1 to 5. An important observation made in [CJ98] is that if there is no carry diference in 

step 0, then if the propagation of .Ai
j 

to later steps is predictable, then one can impose conditions 

on the message (or W ) bits, so that \no carry" in later steps is a certainty given other conditions 

which are required anyway. Unfortunately, f o r t h e attacker, the XOR function fips the diference 



(i.e. +1 to ;1 and vice versa) with probability half. So, in XOR rounds, this feature is not 

applicable. On the other hand, in the MAJ rounds, where this is applicable, the MAJ function 

behaves linearly with probability only half. Since, there is another way to tackle carries, i.e. by 

requiring that the diference is in the 31st bit, it is best for the adversary to require that j = 1 (in 

step 0) for the XOR rounds. 

In such a case for the XOR rounds, assuming that some message conditions can be imposed, the 

probability of local collision is 2;2 . This follows from the \no carry" in step 0, and the \no carry" 

in step 2, which i n volves the XOR function (again assuming j = 1). If j = 1, then the probability 6
is at most 2;3 . 

For the MAJ rounds, assuming that some message conditions can be imposed, the probability 

of local collision is at most 2;4, regardless of j. In overlapping rounds, we can conclude that the 

probability is not better than 2;2 . 

3.3.3 Highly Interacting Local Collisions 

In the previous subsection, we dealt with local collisions in isolation. It is possible that two local 

collisions, or more accurately, t wo disturbance bits which are near each other, can have their local 

collisions share some of the ofsets, and hence probabilities. The simplest such possibility [WYY05] 

i
j

i
j+1 

= 1 is guaranteed. However, the carry from this may ofset .W +1 

i
jis when the two disturbance bits are adjacent, say . W 1, and . W 1 . Then, in step 0 we =
 =
 

i
jknow that . A = 1 to lead to 

.Ai = 0.j+1 

i
j+1 

= 0) and higher carry With additional message conditions, the combined probability o f ( . A
bit diferences being zero can be as as high as 1�2. The probabilities in the remaining steps will be 

as in the previous subsection, i.e. for a single local collision. Thus, the probability of local collisions 

for these two adjacent disturbances combined can be as high as 2;2 in the XOR rounds. 

This still gives an average of 1�2 p e r disturbance bit. Further, as the code in SHA1-IME has 

a 1 3 bit rotation, the small weight c o d e w ords have disturbance bits widely spaced, and we d o n o t 

expect this criteria to be applicable in SHA1-IME. 

3.3.4 Mixed CJ-like local collision strategies 

In section 3.3.1 we s a w that in the MAJ round, the local collision need not have ofsets (from W ) 

in steps 2, 3 and 4. This leads to a c hoice for the attacker in specifying the map {. Let us denote 

these variants of CJ-local collision strategy maps by |. For now, lets assume that we are dealing 

with only one variant, and thus |(e) = {(e) + e0 , where e has hamming weight one, and e0 is just 

the required shift of e. 

Given this choice, the attacker now seeks a disturbance vector u = u1Eu2, such that {(u1)E|(u2) 

is the diference vector, a c o d e w ord. However, by Theorem 3.3, {(u1) E |(u2) = {(p(y)) for some y, 



a codew ord. Since the map { is linear, we can write the above a s {(u1 E p(y)) = |(u2). Further, let 

u3 = u1 E p(y). Then, {(u3) = |(u2). Since | is only supposed to work in the MAJ rounds, we c a n 

assume that |(u2) is zero in the remaining steps. From this, one can calculate u3, given u2. Since 

the code specifed by { is not similar to the code specifed by the SHA1-IME message expansion 

(or for that matter SHA-1), we do not expect any cancellations of u3 with p(y) leading to a small 

hamming weight u1. 

This is not a proof, but we give this heuristic argument to point out that there is no obvious 

way for the attacker to come up with a small hamming weight disturbance vector. We note that 

the general problem of fnding low w eight c o d e w ords is NP-hard [Var97]. We further note that, if 

we w ere to write down the equations in R({(u1) E |(u2)) = 0, we will get equations with at least 50 

terms in each equation. The more complicated that | gets, the more the number of terms in these 

equations. This then defnes a parity c heck code, which can no longer be viewed as low-density. 

4 Conclusion 

To conclude, there are two extreme ways of trying to fnd collisions in SHA1-IME (or SHA-1) 

1. Write down all the equations as in (2), (3) and (5), and try to solve f o r M by general purpose 

algorithms like Schoning's algorithm [Sch99] and variants, or just brute force search which 

includes the birthday attack. 

2. Try to rewrite the equations in terms of diference variables, even if only probabilistically 

true, and use the fact that many equations are trivially true when the diference variables 

involved are zero. The extreme case here is the CJ-local collision attack [CJ98], [WYY05]. 

The probability of success of the frst approach is no better than 2;160 (with the birthday attack 

leading to a success in 280 attempts). The probability of success in the second approach has been 

estimated to b e at most 2;52x2:5 (assuming the frst 32 rounds can b e handled with probability 

one...an extremely generous assumption). Various intermediate, or mixed approaches were studied, 

a n d n o a p p r o a c h seems to increase the probability of success. 

It remains an open problem to fnd structure in the CSPs given by (2), (3), (4) and (5), so as 

to improve on the above techniques. 
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