Caligo, an Extensible Block Cipher
-and-
CHash, a Caligo Based Hash

Alexis W. Machado
email: alexis.machado(@task.com.br @telemigcelular.com.br)
Mar/09/2006

Abstract: The Caligo operations are performed on whole blocks only. No subdivision passes through an s-box or a Feistel network. The cipher definition is the same for any block size, allowing exhaustive search for statistical deviations on small block variants. I also propose CHash, a hash function that takes advantage of the cipher extensibility and resists the extension attack.

Keywords: Caligo, extensible, block cipher, symmetric key, CHash, extension attack.

1) Introduction

Currently, there is no provably secure block cipher. After withstanding many attempts of cryptanalysis, the algorithm is assumed to be secure. With a single definition for any block size, Caligo permits full inspection of small block variants, simplifying the search for defects and associated cryptanalytic attacks.

In sections 2 and 3, the algorithm is described. In section 4, the definition of CHash is given. In sections 5 and 6, the results of seeking for frequently differentials, impossible differentials and linear correlations are presented. In section 7, competitive performance on two 64-bit processors is shown.

2) Encryption and Decryption

Given a natural number n, each element of the set $\Omega = \{0, 1, 2, \ldots, 2^n-1\}$ have a distinct binary representation in the set $\Psi = \{0, 1\}^n$. The term block identifies an integer from Ω or the correspondent bit-sequence of Ψ (n is called the block size). Therefore, we can do algebraic or bitwise operations on a block by considering it an element of Ω or Ψ respectively.

Been r the number of rounds of the cipher, the encryption and decryption round functions $f_i, g_i: \Omega^{3r} \times \Omega \rightarrow \Omega$ are defined, respectively, by

$$f_i(K, X) = (K[3i] \times (X \oplus K[3i+1]))'' + K[3i+2] \pmod{2^n} \quad (0 \leq i < r) \quad (2.1)$$
$$g_i(K, X) = (K[3i]^{-1} \times (X - K[3i+2]))'' \ominus K[3i+1] \pmod{2^n} \quad (0 \leq i < r) \quad (2.2)$$

where

a) The subkey vector $K = \langle K[0], K[1], \ldots, K[3r-1] \rangle$ have $3r$ odd-blocks derived from a
secret block called *masterkey* (see section 3). $K[3i]^{-1}$ is the multiplicative inverse (mod 2^n) of $K[3i]$ (these elements should be calculated during the subkey setup and stored together with K).

b) X is an input block.

c) " is the bit-reversal of a block. Example for $n=8$: (01001101)" $= 10110010$.

d) \oplus is the bitwise xor of two blocks.

e) \times, $+$ and $-$ are the integer multiplication, addition and subtraction, reduced mod 2^n.

A composition (in the second parameter) of the round functions is performed to construct the encryption and decryption functions:

\[
\begin{align*}
 f (r, K, X) &= f_{r-1} \circ f_{r-2} \circ \ldots \circ f_1 \circ f_0 (K, X) \quad (2.3) \\
 g (r, K, X) &= g_0 \circ g_1 \circ \ldots \circ g_{r-2} \circ g_{r-1} (K, X) \quad (2.4)
\end{align*}
\]

The above n-bit block round functions (2.1 and 2.2) can embed the encryption/decryption of smaller blocks with $n-m$ bit length ($0 \leq m < n$). The input/output $n-m$ least significant bits represent the smaller block been processed. The most significant $n-m$ bits must be shifted to the least significant $n-m$ positions after the bit-reversal (it's equivalent to shift the least significant $n-m$ bits to the most significant $n-m$ positions before the bit-reversal). The modified (and more general) round functions are

\[
\begin{align*}
 f_i(K, X) &= (2^m \times K[3i] \times (X \oplus K[3i+1]))" + K[3i+2] \quad (\text{mod } 2^n) \quad (0 \leq i < r) \quad (2.5) \\
 g_i(K, X) &= (K[3i]^{-1} \times (2^m \times (X - K[3i+2]))") \oplus K[3i+1] \quad (\text{mod } 2^n) \quad (0 \leq i < r) \quad (2.6)
\end{align*}
\]

The “user” interacts with the cipher by passing and receiving n-bit strings, which are interpreted in accord with the *little endian convention* (least significant bits in lower addresses).

3) Subkey Setup

First consider the sequence of blocks based on a T-function [4]:

\[
\begin{align*}
 R_0 &= 0 \\
 R_{i+1} &= R_i + ((R_i \times R_i) \lor 5) \quad (i \geq 0)
\end{align*}
\]

where \lor is the bitwise or operation. Note that R_i have the same parity of i. Let C_e and C_o be constant vectors formed by $3r$ even-blocks and $3r$ odd-blocks respectively:

\[
\begin{align*}
 C_e[i] &= R_{20+2i} \quad (0 \leq i < 3r) \\
 C_o[i] &= R_{20+2i+1} \quad (0 \leq i < 3r)
\end{align*}
\]

The cipher masterkey is a single block M provided by the user. From M we derive the “weak” subkey vector W, formed by $3r$ odd-blocks:
$W[i] = M \oplus C_{e[i]} \quad (0 \leq i < 3r) \quad \text{when } M \text{ is odd}$

or

$W[i] = M \oplus C_{o[i]} \quad (0 \leq i < 3r) \quad \text{when } M \text{ is even}$

The subkey vector K, used for encryption and decryption, have $3r$ odd-blocks. Is derived from M, C_o and W in the following way:

\[
M' = f(r, C_o, M) \\
K[i] = f(r, W, M' + i) \lor 1 \quad (0 \leq i < 3r)
\]

The or operation forces $K[i]$ to be odd. Since W is derived from M in a very simple way, it's prudent to avoid a direct interaction between them to compute $K[i]$. The combination of W and M' guarantees that even related masterkeys (M) will produce uncorrelated subkey vectors (K). Furthermore, it's hard for an attacker to find a subkey $K[i]$ based on the knowledge of other subkeys of K.

4) **CHash, a Caligo Based Hash**

Forced by the birthday paradox, cryptographic hashes must generate very large digests. Due to the block extensibility, Caligo can be used in hash modes with any suitable block size, without redefining the algorithm. A particular hash mode to be used with the cipher is proposed in this section. The resulting function is called $CHash$.

By using the weak vector W (instead of K), taking into account that W depends on the masterkey ($W = \omega(M)$) and choosing $r = 6$, we define the encryption function w as

\[
w(M, X) = f(6, W, X) = f(6, \omega(M), X)
\]

The L-bit string to be hashed, $S = S_1 || S_2 || .. || S_m$, is viewed as a concatenation of n-bit substrings or blocks. S_m must be end-padded with zeros if L is not a multiple of n. The implementor may choose any suitable block size (generally $160 \leq n \leq 512$). The hash construction is

\[
H_0 = 0 \\
H_i = w(H_{i-1}, S_i) \oplus H_{i-1} \oplus S_i \quad (1 \leq i \leq m) \quad (4.1) \\
H_{m+1} = w(1, H_m \oplus L) \oplus H_m \oplus L \quad (m \geq 0) \quad (4.2)
\]

where

a) The Preneel-Miyaguchi mode is applied to compute $H_1 .. H_m$. This scheme compensates the use of W (instead of K), since an attacker can't control the masterkey (H_{i-1}) directly. For a discussion on Preneel-Miyaguchi security, see ref. [6] and [7].

b) H_{m+1} is the hash of S.

c) The use of L in H_{m+1} is equivalent to the *Merkle-Damgård strengthening*.

d) H_{m+1} breaks the chain on the first parameter by using the fixed masterkey 1. Moreover, it doesn't depend on S directly. Therefore, H_{m+1} is unlikely to appear in (or used to calculate)
an intermediate state of another string. This avoids the extension attack, in which the adversary can compute the hash of \(S||S' \) without knowing \(S \) (or a part of it), but only the hash of \(S \) (for Merkle-Damgård strengthened strings, given only the hash of \(S \) and the block \(L \) representing the length of \(S \), he can calculate the hash of \(S||L||S' \)) (see [5, section 6.3.1]).

e) \(m = \lfloor (L + n - 1) / n \rfloor \). For the empty string, \(L = 0 \) \(\Rightarrow \) \(m = 0 \) \(\Rightarrow \) \(H_{m+1} = H_1 = w(1, 0) \).
f) The input size limitation is \(0 \leq L < 2^{n/2} \).

Since the \(W \) setup is faster than a block encryption, \(CHash \) is not supposed to be much slower than an encryption mode like CBC. The compression function (4.1) timings are given in section 7.

5) Differential Properties

For the cipher, the relation between an input block \(X \), an input difference \(U \) and the resulting output difference \(V \) is given by

\[
V = f(r, K, X) \oplus f(r, K, X \oplus U) \quad (5.1)
\]

In the encryption and decryption functions, the addition and subtraction of a constant operand \(K[3i+2] \) protects the cipher against differentials \(\langle U, V \rangle \) when \(U \oplus V \) have high Hamming weight or \(U \land V \) (bitwise and) have long runs of 1’s (see [2]). The multiplication by \(K[3i] \) and \(K[3i]^{-1} \) gives little protection against differentials \(\langle U, V \rangle \) when \(U \) and \(V \) have low Hamming weight concentrated in the most significant bits. The bit-reversal swaps these bits to the least significant positions, and the next multiplication can provide a good diffusion.

For \(M = 0 \), all possible 16-bit input blocks (\(X \)) and input differences (\(U \)) had been tested to count the occurrences of all difference pairs or differentials \(\langle U, V \rangle \). The most frequent differential, \(\langle U_{\text{max}}, V_{\text{max}} \rangle \), for up to 10 rounds was acquired.

For a round function where the addition operation is replaced by xor (table 5.1), the best pair found is formed by the iterative palindromic difference \(U_p = U = V = 2^{n-1} - 2 = 0111...1110 \). The pair \(\langle U_p, U_p \rangle \) occurs with probability 1/2 in a round. Analyzing this experimental result, we can see that the multiplication have no effect against \(U_p = 2^{n-1} - 2 \), for all \(n \), when \(X \) is odd (hence probability 1/2 for any \(X \)). In fact, for an odd subkey \(k \) and an odd block \(X \), the congruences \(X \oplus U_p \equiv U_p + 2 - X \pmod{2^n} \) and \(k(U_p + 2) \equiv U_p + 2 \pmod{2^n} \) implies \(k(X \oplus U_p) \oplus kX \equiv U_p \pmod{2^n} \). The difference \(U_p \) can be concatenated to built a high probability \((1/2)^n\) \(r \)-round differential characteristic [1].

For the addition operation, the probability of the above pair \(\langle U_p, U_p \rangle \) falls drastically to \(1/2^{n-2} \), since \(U_p \land U_p \) have a run of \(n-2 \) binary 1’s [2]. Accordingly, tables 5.2 and 5.3 show how the distribution of differentials \(\langle U, V \rangle \) flattens fast as the number of rounds increases, but stops at round \(\textbf{four} \). This same behavior was observed on up to 28-bit blocks. It's reasonable to conjecture that we gain no additional protection against conventional differential cryptanalysis.
with more than four rounds.

<table>
<thead>
<tr>
<th>Rounds</th>
<th>U_{max}</th>
<th>V_{max}</th>
<th>$\langle U_{\text{max}}, V_{\text{max}} \rangle$ occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x8000</td>
<td>0x0001</td>
<td>0x10000</td>
</tr>
<tr>
<td>2</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x4000</td>
</tr>
<tr>
<td>3</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x1FF0</td>
</tr>
<tr>
<td>4</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x1028</td>
</tr>
<tr>
<td>5</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x07F2</td>
</tr>
<tr>
<td>6</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x03AE</td>
</tr>
<tr>
<td>7</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x01E0</td>
</tr>
<tr>
<td>8</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x00E4</td>
</tr>
<tr>
<td>9</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x0072</td>
</tr>
<tr>
<td>10</td>
<td>0x7FFE</td>
<td>0x7FFE</td>
<td>0x0040</td>
</tr>
</tbody>
</table>

Table 5.1: Max. differential occurrences for $n = 16$ and addition replaced by xor

In the tables 5.2 and 5.3, $U = 2^{n-1}$ (0x8000 and 0x20000) seems to be good input differences (they pass through multiplication with probability 1 and the addition transforms the (bit-reversed) difference 0x01 into 0x03 with probability 1/2). Therefore, it's interesting to verify what the fixed $U = 2^{24-1}$ (0x800000) and $U = 2^{28-1}$ (0x800000) can do with 24 and 28-bit blocks respectively (tables 5.4 and 5.5).
A noteworthy detail in round four of tables 5.2 to 5.5, is how close are the occurrences of the most frequent differential, despite the block size variation.

Impossible Differentials

For a given non-zero input difference U_0, we see in equation 5.1 that X and $X' = X \oplus U_0$ give the same V. So there are at most 2^{n-1} possible differentials $\langle U_0, V \rangle$ and 2^{n-1} impossible ones. But after changing the masterkey we may get differentials that could not be found with the previous one.

The following tests had been done with 16 and 18-bit blocks and up to 10 rounds. In equation 5.1, for each value of U, the keys $M = 0..63$ had been combined with all values of X to compute the number N of not found values of V. Tables 5.6 and 5.7 show the larger value of $N (N_{\text{max}})$, the associated input difference U_{max} and the probability $P_{\text{max}} = N_{\text{max}} / (2^n - 1)$ ($V=0$ excluded) of finding impossible differentials under these keys.

Table 5.4: Max. differential occurrences for $n = 24$ and $U = 0x800000$

<table>
<thead>
<tr>
<th>Round</th>
<th>U</th>
<th>V_{max}</th>
<th>$\langle U, V_{\text{max}} \rangle$ occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x800000</td>
<td>0x000003</td>
<td>0x800000</td>
</tr>
<tr>
<td>2</td>
<td>0x800000</td>
<td>0x1A921610</td>
<td>0x0002280</td>
</tr>
<tr>
<td>3</td>
<td>0x800000</td>
<td>0x1F0210</td>
<td>0x00011A</td>
</tr>
<tr>
<td>4</td>
<td>0x800000</td>
<td>0x82897F</td>
<td>0x000010</td>
</tr>
<tr>
<td>5</td>
<td>0x800000</td>
<td>0x9C7E80</td>
<td>0x00000E</td>
</tr>
<tr>
<td>6</td>
<td>0x800000</td>
<td>0x4C78F7</td>
<td>0x00000A</td>
</tr>
<tr>
<td>7</td>
<td>0x800000</td>
<td>0x490012</td>
<td>0x00000B</td>
</tr>
<tr>
<td>8</td>
<td>0x800000</td>
<td>0x08A7D68</td>
<td>0x000012</td>
</tr>
<tr>
<td>9</td>
<td>0x800000</td>
<td>0x5555DA</td>
<td>0x000010</td>
</tr>
<tr>
<td>10</td>
<td>0x800000</td>
<td>0x3FE0FA</td>
<td>0x000010</td>
</tr>
</tbody>
</table>

Table 5.5: Max. differential occurrences for $n = 28$ and $U = 0x8000000$

<table>
<thead>
<tr>
<th>Round</th>
<th>U</th>
<th>V_{max}</th>
<th>$\langle U, V_{\text{max}} \rangle$ occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x800000</td>
<td>0x000003</td>
<td>0x800000</td>
</tr>
<tr>
<td>2</td>
<td>0x800000</td>
<td>0x58221E2</td>
<td>0x0003624</td>
</tr>
<tr>
<td>3</td>
<td>0x800000</td>
<td>0x940012</td>
<td>0x000430</td>
</tr>
<tr>
<td>4</td>
<td>0x800000</td>
<td>0x0000030</td>
<td>0x000002E</td>
</tr>
<tr>
<td>5</td>
<td>0x800000</td>
<td>0x17A3DCA</td>
<td>0x0000010</td>
</tr>
<tr>
<td>6</td>
<td>0x800000</td>
<td>0x36A3B96</td>
<td>0x0000010</td>
</tr>
<tr>
<td>7</td>
<td>0x800000</td>
<td>0x241C964</td>
<td>0x0000010</td>
</tr>
<tr>
<td>8</td>
<td>0x800000</td>
<td>0x5F69B6C</td>
<td>0x0000010</td>
</tr>
<tr>
<td>9</td>
<td>0x800000</td>
<td>0x06CBC79</td>
<td>0x0000012</td>
</tr>
<tr>
<td>10</td>
<td>0x800000</td>
<td>0x8EFE2DE</td>
<td>0x0000014</td>
</tr>
</tbody>
</table>

Table 5.6: Max. impossible differentials for $n = 16$ and $M = 0..63$

<table>
<thead>
<tr>
<th>Rounds</th>
<th>U_{max}</th>
<th>N_{max}</th>
<th>P_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x8000</td>
<td>0xFFF0</td>
<td>0.999771</td>
</tr>
<tr>
<td>2</td>
<td>0x8000</td>
<td>0x1A68</td>
<td>0.103151</td>
</tr>
<tr>
<td>3</td>
<td>0x0800</td>
<td>0x0005</td>
<td>0.000076</td>
</tr>
<tr>
<td>4</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>5</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>6</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>7</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>8</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>9</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>10</td>
<td>0x0001</td>
<td>0x0000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Table 5.7: Max. impossible differentials for $n = 18$ and $M = 0..63$

<table>
<thead>
<tr>
<th>Rounds</th>
<th>U_{max}</th>
<th>N_{max}</th>
<th>P_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x200000</td>
<td>0x3FFE</td>
<td>0.999935</td>
</tr>
<tr>
<td>2</td>
<td>0x200000</td>
<td>0x80000</td>
<td>0.172593</td>
</tr>
<tr>
<td>3</td>
<td>0x100000</td>
<td>0x00014</td>
<td>0.000259</td>
</tr>
<tr>
<td>4</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>5</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>6</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>7</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>8</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>9</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>10</td>
<td>0x000001</td>
<td>0x00000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
These tables prove that, in 16 and 18-bit cases, there are no impossible differentials from 4 to 10 rounds of the cipher. This is coherent with the fact that, for round 4 and beyond, the differential distributions are equally closer to a normal distribution, as tables 5.2 to 5.5 suggest.

6) Linear Properties

To verify linear dependencies in the cipher, fixed bit groups from the input (X) and output (Y) blocks are xored together. This is equivalent to xor the bits of the number

$$Z = (m_x \land X) \oplus (m_y \land Y)$$

where

a) m_x and m_y are the bit group selecting masks
b) \land is the bitwise and operator
c) \oplus is the bitwise exclusive-or (xor) operator
d) $Y = f(r, K, X)$

Ideally, the resulting bit should be odd with probability 1/2 for a randomly chosen X.

An exhaustive search was done with the 16-bit variant ($n = 16$) and $M = 0$. For each mask pair $\langle m_x, m_y \rangle$, all X and Y was generated. The bits of each Z was xored and the number of odd results accumulated in N. The odd parity probability was approximated by $p = N/2^{16}$ and the bias (deviation from 1/2) by $|p - 1/2|$. The mask pairs with higher bias, for up to 10 rounds, are in table 6.1. The bias for 18 and 20-bit blocks with fixed m_x (0x00001) can be seen in tables 6.2 and 6.3.

These tables suggest that no additional protection against a linear attack is achieved with more than four rounds.

<table>
<thead>
<tr>
<th>Rounds</th>
<th>m_x</th>
<th>m_y</th>
<th>N</th>
<th>p</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x0001</td>
<td>0x8000</td>
<td>0x26EA</td>
<td>0.1520</td>
<td>0.3480</td>
</tr>
<tr>
<td>2</td>
<td>0x400F</td>
<td>0x8000</td>
<td>0x5E10</td>
<td>0.3676</td>
<td>0.1324</td>
</tr>
<tr>
<td>3</td>
<td>0x0C01</td>
<td>0x8D30</td>
<td>0x665C</td>
<td>0.5248</td>
<td>0.0248</td>
</tr>
<tr>
<td>4</td>
<td>0x07E3</td>
<td>0x8000</td>
<td>0x83AE</td>
<td>0.5144</td>
<td>0.0144</td>
</tr>
<tr>
<td>5</td>
<td>0xBD75</td>
<td>0x57E4</td>
<td>0x7CD6</td>
<td>0.4876</td>
<td>0.0124</td>
</tr>
<tr>
<td>6</td>
<td>0xDDB5</td>
<td>0xDC68</td>
<td>0x7CB0</td>
<td>0.4871</td>
<td>0.0129</td>
</tr>
<tr>
<td>7</td>
<td>0x1C6E</td>
<td>0x5D44</td>
<td>0x7CBA</td>
<td>0.4872</td>
<td>0.0128</td>
</tr>
<tr>
<td>8</td>
<td>0xFD1A</td>
<td>0xBD9A</td>
<td>0x7CD4</td>
<td>0.4876</td>
<td>0.0124</td>
</tr>
<tr>
<td>9</td>
<td>0xB9F2</td>
<td>0x0492</td>
<td>0x7CD0</td>
<td>0.4875</td>
<td>0.0125</td>
</tr>
<tr>
<td>10</td>
<td>0x4106</td>
<td>0x0D98</td>
<td>0x8304</td>
<td>0.5118</td>
<td>0.0118</td>
</tr>
</tbody>
</table>

Table 6.1: Higher bias for $n = 16$ and $M = 0$
7) Performance

To be competitive, this algorithm needs a processor with fast 64-bit multiplication like Alpha
21264, Itanium or Athlon64. Table 7.1 compares Caligo with Rijndael C code running on Alpha
21264 processor (see ref. [3]).

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Rounds</th>
<th>Key size</th>
<th>Block size</th>
<th>Encryption cycles/byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rijndael</td>
<td>10</td>
<td>128</td>
<td>128</td>
<td>18</td>
</tr>
<tr>
<td>Caligo</td>
<td>6</td>
<td>128</td>
<td>128</td>
<td>23</td>
</tr>
<tr>
<td>Caligo</td>
<td>6</td>
<td>256</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>Caligo</td>
<td>6</td>
<td>320</td>
<td>320</td>
<td>23</td>
</tr>
<tr>
<td>Caligo</td>
<td>6</td>
<td>512</td>
<td>512</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 7.1: Alpha 21264, C code performance of Caligo.

Table 7.2 shows the timings on the AMD Athlon64 processor under Red-Hat Linux. In this case,
the mul and bswap 64-bit assembly instructions was embedded in the C code.

<table>
<thead>
<tr>
<th>Rounds</th>
<th>Block size</th>
<th>Encryption cycles/byte</th>
<th>Decryption cycles/byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>128</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>256</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>320</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>512</td>
<td>38</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 7.2: AMD Athlon64, C+assembly code performance of Caligo.

Table 7.3 gives the CHash compression function (4.1) performance on the Alpha 21264
processor. The code had been written in C.
<table>
<thead>
<tr>
<th>Hash</th>
<th>Block size</th>
<th>Cycles/block</th>
<th>Cycles/byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHash-256</td>
<td>256</td>
<td>926</td>
<td>28</td>
</tr>
<tr>
<td>CHash-320</td>
<td>320</td>
<td>1247</td>
<td>31</td>
</tr>
<tr>
<td>CHash-512</td>
<td>512</td>
<td>0</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 7.3: Alpha 21264, C code performance of the CHash compression function.

References

Appendix A: Caligo Test Vectors

The masterkey (M), plaintext (X₀) and ciphertext (Xᵣ) blocks are given in hexadecimal.

A.1) n = 256, r = 6

\[
\begin{align*}
M &= 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \\
X₀ &= 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \\
Xᵣ &= 4F3311B6 \ A9B391B2 \ AD0D74E6 \ F55296F2 \ 911BA9F7 \ 18833BCC \ 0FD9FCE4 \ E134AC7C \\
M &= 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \\
X₀ &= 01000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \\
Xᵣ &= 32C66775 \ 46371E6F \ 6E124370 \ D2149A02 \ 9B61096D \ 5637AA0E \ D909AC2C \ 777D5931
\end{align*}
\]
M = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = DB87C4DE 5314A39B E79F7B65 E294A9B7 30A03BDD 60F98784 3FEE940F B3E38C09

A.2) n = 320, r = 6

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = 28554800 088778B4 C7A14690 3876A6EB 6A663BF2 63C4C131 78C9E23C E40ABA5A
 97F1976F D5AD179B

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = 5BC55EB3 E21526C3 774CED6E C5B60448 B7471983 1C7BE9CA 04D2078D 1A543DD4
 5C1CAA47 0C46CE01

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = AC701C56 9B31D28B 76D91C02 4AFE4858 FECC054B 5BC877EB BEAA3954 6DEA95C
 3EA44B4E 4B33303F6

A.3) n = 512, r = 6

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = 9129FD59 3DCB4430 0097D220 7D4F2384 C07B4365 C7226B7E BEB01779 1E8ED80F
 D6807D91 6C253196 2130D365 1A931443 57C4EE1A EE4E2AC7 6022A2D1 B6338DA4

M = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = 4A72B4BB 14D98F1A C0A61B69 5BADC92D B141D71C 96A737C6 D97ACE6D 2D175821
 19E59037 8689DA08 455ADC00 033E9671 36CE374F E7987FA7 59243F47 958119B7

M = 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_0 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
X_r = 385B012D E0BCF842 C00BC9CD F0567EE2 B971323A 29DF26CE 37202E83 634B2466
 E5688E3E C785C42F 870E9D31 17DD6101 617880EF B0AE0231 2A2B8B67 0BBED0DD
Appendix B: CHash Test Vectors

B.1) The empty string

\[
\begin{align*}
n=256: & \quad A78FD14E \ 92A1B6A2 \ 3CA9B32B \ F87D1560 \ 908F7241 \ 675C3F33 \ 356B863F \ 55DB056A \\
n=320: & \quad BB248F5A \ 4428391F \ 38BACB08 \ B7FE21C1 \ 2C3D338A \ AC865AB2 \ 5366FD74 \ 3AAE2CED \\
n=512: & \quad DBEE2656 \ D4E48C27 \ 167B59EB \ 25D596EA \ DCDD634A \ 7975AE99 \ 6ED9D1D1 \\
 & \quad 09D3C093 \ 685A7687 \ E08A36BE \ AE03CC4F \ 7FF27288 \ 23A6EBD1 \ 89FEC156 \ 29536EE9
\end{align*}
\]

B.2) The string “abc”

\[
\begin{align*}
n=256: & \quad 5BB659EE \ 309766BA \ C445C26E \ 943839D2 \ E833F3BF \ 343AEA39 \ 449F5AEF \ B9F2D404 \\
n=320: & \quad 72DD6C73 \ EBF679A2 \ 17086626 \ C4BBC793 \ 74D5DE6E \ 576B3D48 \ E9977AA2 \ CFE2352D \\
n=512: & \quad D89E708A \ 2EE4537A \ 801B56CF \ 5318DC31 \ F0A134D0 \ 28EDB69A \ D4645C54 \ 02688769 \\
 & \quad 49F377E4 \ 977002F \ E7F8420 \ 6E3F82D9 \ 58E78FDF \ 9CA45E69 \ 70D3B0BC \ C2FEFE02
\end{align*}
\]

B.2) The string formed by “a” repeated 1000 times

\[
\begin{align*}
n=256: & \quad B7B8F460 \ CB4F5A54 \ 9334CD86 \ 644B49DE \ 4F4EAB4B \ 6F9D54DE \ 75FEA58A \ E7760566 \\
n=320: & \quad 954F57F7 \ FBA99AC5 \ C32815AB \ 4A1111E7 \ AE92ED6 \ 66B93B3 \ 91A23588 \ 4ECC0693 \\
 & \quad 712A269B \ A768CE9
\end{align*}
\]

\[
\begin{align*}
n=512: & \quad 47E10EE0 \ E28613C5 \ 83A35EB9 \ 9CE63B99 \ E9E5A02A \ 9DEFF59BC \ 26D0DF4A \ B389E1CA \\
 & \quad 6DBAE7BD \ 14F7998C \ 115523D8 \ D4F2F8FE \ 3C4C8CA5 \ DD51363A \ D53F6F3B \ F1557BF7
\end{align*}
\]