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Abstract 

In this paper two attacks on a multiple length hash 
function whose construction is proposed by Knudsen 
and Preneel. One can violates the security bound 
claimed in the proposal paper [6] if t = 1 and d > 3. 
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Introduction 

A cryptographic hash function is one of the impor­
tant cryptographic primitives. It compresses data of 
arbitrary length into a bit string of fixed length. It 
has a lot of applications such as a message authen­
tication and a digital signature. 

In these applications, hash functions are required 
to achieve some security criteria. The following 
three properties are the criteria which should be sat­
isfied: 

–	 one-wayness (OW): for all outputs, it is com­
putationally infeasible to find any input whose 
hash value is equal to that output; 

–	 second pre-image resistance (SPR): for all in­
puts, it is computationally infeasible to find a 
second input whose hash value is equal to that 
input; 

–	 collision resistance (CR): it is computationally 
infeasible to find two distinct inputs whose hash 
values collide. 

The detailed definition of the term “computation­
ally infeasible” is not given in this paper because it 
is not essential for our discussion. Readers who in­
tend to know it can refer [1], wherein their modern 
definitions are given. 

These properties are mostly dependent on the 
output length of hash functions (hash length). For 
example, about 2m calculations of a hash function 
are necessary to find a pre-image of an output if the 
hash length is m bits because the possible number 
of outputs is exactly 2m. Nearly equal complexity is 
necessary to find a second pre-image. In the case of 
collision resistance, there is a well known technique 
to find a collision whose computational complexity 
is significantly smaller than that of finding a second 
pre-image. This technique is called birthday attack 
and the complexity is about 2m/2, the square root 
of the exhaustive trial (See [9] for the detail of a 
birthday attack). 

A common way to construct a hash function is 
to apply a compression function iteratively, which 
maps a bit string of a fixed length to another bit 
string of a fixed (and shorter) length. Merkle [8] and 
Damg̊ard [2] proposed a chaining construction (MD­
construction) defined as follows and proved that it 
is secure if the underlying compression function is 
secure: 

M = M1||M2|| . . . ||Mn,
 

H0 = Const,
 

Hi = Compress(Hi−1,Mi) for 1 ≤ i ≤ n.
 

Most of real hash functions are based on this scheme, 
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so that how to construct a secure compression func­
tion is a matter of concern in the study of hash func­
tions. 

There are many attempts to construct a com­
pression function from a block cipher like as Data 
Encryption Standard (DES) [3] and Advanced En­
cryption Standard (AES) [5]. Matyas-Meyer-Oseas 
[7] and Davies-Meyer constructions are the exam­
ples that are secure if the underlying block cipher 
is secure as a block cipher. Preneel et al. compre­
hensively studied these constructions which call the 
underlying block cipher only once for each call of 
the compression function. They considered possible 
64 constructions and resulted that 12 of them are 
secure as a compression function [10]. Black et al. 
added security proofs to these constructions by a 
current theoretical fashion [1]. 

These constructions are easy to implement if a 
block cipher is already used in the target system. On 
the other hand, the obvious weakness that the hash 
length is too short especially if DES is used as the 
underlying cipher. In addition, these constructions 
is much slower than dedicated hash functions. 

The next objective is how to construct a compres­
sion function which achieves a better security than 
that of underlying compression functions, especially 
in the context of second pre-image resistance and 
collision resistance with a small supplement of op­
erations. MDC-2 and MDC-4 are the double length 
hash functions, and MDC-4 achieves a better se­
curity. Knudsen and Preneel proposed a general 
method to construct a compression function whose 
security is better than that of underlying function 
under some acceptable assumptions. They proved 
that finding a collision of the proposed construction 
requires 2(d−1)m/2 calls of compression function [6]. 

In this paper we proposed an differential attack 
on Knudsen-Preneel construction of a secure hash 
function. This attack enable to find a collision less 
complexity than that claimed in [6]. 

The organization of the rest of this paper is as 
follows: Firstly necessary terms and the main con­
tents of [6] including Knudsen-Preneel construction 
is given in Sect. 2 and the best known attack is in­
troduced in Sect. 3. The detailed description of our 
new differential attack is given in Sect. 4. Sect. 5 

presents yet another differential attack on Knudsen-
Preneel construction. This attack does not violate 
the claimed security of Knudsen-Preneel construc­
tion, though it will help readers to understand the 
integral of the attack which should be considered. 
Finally the conclusion of this paper is presented in 
Sect. 6. 

2	 Knudsen-Preneel construc­
tion of a hash function 

Knudsen and Preneel proposed how to construct 
a hash function from ideal compression functions 
(CFs), whose security (second pre-image resistance 
(SPR) and collision resistance (CR)) is really better 
than that of underlying CFs [6]. In this section, we 
introduce their construction. 

2.1 Preliminaries 

Before starting discussion we define terms and no­
tations used in this paper. 

Let m be the output length (hash length) of the 
underlying hash function h. Subscript j is accom­
panied and denoted by hj if it is necessary to dis­
tinguish plural distinct CFs. For simplify the dis­
cussion let the input length of the CF h be multiple 
of hash length and let the multiple be t + 1. 

h : {0, 1}tm × {0, 1}m → {0, 1}m . 

The first input of tm bits is the message input and 
the second input of m bits is the hash input. Es­
sentially it is not necessary to divide the input of 
a CF into two distinct inputs: the hash input and 
the message input. But for convenience the notation 
above is used throughout this paper. The message 
input and the hash input are denoted by Mi and Hi 

respectively. 

Definition 1 (Multiple Construction) Let 
hi(·, ·) be ideal CFs and they are independent each 
other. Our target is multiple construction of CF 
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defined by: 

H1 = h1(Xi 
1, Y 1),i i 

H2 = h2(Xi 
2, Y 2),i i 

· · · 
nHn = hn(Xi

n, Y ),i i 

j j jwhere Xi , Y are linear combinations of H andi i−1 
j'Mi . 

We call hj subfunctions (SCFs) of the multiple 
construction. 

2.2 Security assumptions 

H I1Let Hi
1 
−1, . . . , Hi

n 
−1, Mi 

1 , . . . , Mr and i−1, . . .,i
 
n


H I
i−1, M I1 

i , . . . , M
Ir be the two distinct input to i 

a multiple construction of CFs. Active inputs are 
j jdefined as a set of pairs H and H Ij (or Mi−1 i−1 i 

j H Ij j M Ijand M Ij) such that H = (M  ). A  = i i−1 i−1 i i

CF hj is called active if at least one of the input is 
active. 

A set of CFs hi1(Xi1 , Yi1), . . . , his 
(Xis 

, Yis 
) can 

be attacked independently if for all j ∈ {1, . . . , s} it 
holds that: for all values of the input blocks affecting 
(Xij

, Yij
) to hij 

the arguments (Xik
, Yik

) are fixed 
for k ∈ {1, . . . , j − 1, j + 1, . . . , s}. 

Under the notations defined above we give the fol­
lowing assumption (this assumption is the quotation 
from [6] for the preciseness). 

Assumption 1 
1. The underlying CFs hi are ideal functions. 

2. What a collision for the CF of a multiple scheme 
has been found means it is found simultane­
ously for underlying SCFs h1, . . . , hn. 

2.3 Theorems of [6] 

Theorem 1 ([6] Theorem 3) If there exists an 
[n, k, d] linear code over GF(22) of length n, di­
mension k, and minimum distance d, with 2k > n, 
for m » log2 n, then there exists a parallel hash 
function based on an ideal compression function 

h : {0, 1}m × {0, 1}m → {0, 1}m, for which find­
ing a collision for the compression function requires 
at least 2(d−1)m/2 operations. 

We follow a part of the proof because it includes 
the construction. 

The CF consists of n different SCFs hi with 
1 ≤ i ≤ n. The input to the CF consists of 2k m-bit 
blocks: the n hash blocks Hi

1 
−1, . . . , H

n (the out­i−1 

put of the n subfunctions of the previous iteration) 
and the r message blocks Mi 

1 , . . . , Mi
r . Note that 

r = 2k− n > 0 is the necessary condition for the CF 
to be a compression function, i.e., the input length 
is larger than the output length. 

In Knudsen-Preneel construction firstly 2k m-bit 
is transformed into the concatenation of km ele­
ments of GF(22). For example j-th bits of H1 

i−1 

and H2 is treated as an element of GF(22). These i−1 

km elements of GF(22) is mapped to nm elements 
of GF(22) by [n, k, d] code over GF(22). These two 
pairs of two bits are separated into two distinct in­
puts of hj . The hash value of the scheme is defined 
by the concatenation of the output Hi

j of all SCFs 
hj , i.e., Hi 

1||Hi 
2|| · · · ||Hi

n . 
This construction bases its security on the basic 

property of [n, k, d] linear code. An arbitrary input 
differential has an influence on at least d − 1 SCFs 
because the minimum distance of the code is d. In 
other word at least d − 1 SCFs are active so that 
Assumption 1 guarantees that more than 2(d−1)m/2 

calculations are needed to find a collision. 
A theorem of the same kind is approved for arbi­

trary SCFs. 

Theorem 2 ([6] Theorem 4) Let b be a divisor 
of m. If there exists an [n, k, d] linear code over 
GF(2(t+1)b) of length n, dimension k, and minimum 
distance d, with (t + 1)k > n, for m » log2 n, then 
there exists a parallel hash function based on an 
ideal compression function h : {0, 1}tm × {0, 1}m → 
{0, 1}m, for which finding a collision for the com­
pression function requires at least 2(d−1)m/2 opera­
tions. 

The construction and the proof of the CF in The­
orem 2 is given in almost the same manner as in 
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Theorem 1. Please refer [6] if the original descrip­
tions and more detailed proofs of the theorems are 
needed. 

We now call the hash functions of Theorem 1 
and 2 as Knudsen-Preneel compression functions 
(KPCFs). 

3	 Generic attack (Inverse and 
collide) 

[6] shows not only the construction and the secu­
rity proof but also the claimed security is tight both 
for one-wayness and collision resistance. In this sec­
tion the generic collision attack against KPCFs pre­
sented in [6] is introduced. 

3.1 The attack 

Definition 2 multi-collision is a input set which 
leads same a hash value: 

Sy ⊂ {x ∈ D|H(x) = y}. 

In other words Sy is a subset of the inverse image of 
y. 

Proposition 1 ([6] Proposition 4) Let H be a 
KPCF with [n, k, d] linear code L over GF(2(t+1)b) 
where (t + 1)k > n. Then collisions for H can be 
found in 

(n+km) 

max 
�
2m(n−k/2), k · 2 2k 

� 

operations. The attack requires the storage of about 
(t + 1)k2(n−k)m/2k m-bit values. 

For the simplicity we assume that the code L is of 
the normal form. I.e., the hash value of the KPCF 
H is calculated as follows: 

j t(j−1)+1 tj jH	 = hj(M , . . . , M ,H ) 1 ≤ j ≤ k, i i i i−1

Hj = hj(Lj(Mi,Hi−1)) k + 1 ≤ j ≤ n.i 

It is clear that h1, . . . , hk can be attacked indepen­
dently. 

Algorithm 1 Generic attack on a KPCF [6] 
Step 1. Calculate multi-collisions S1, . . . , Sk for 

each SCFs h1, . . . , hk. 
Step 2. Search for a collision pair of n − k SCFs 

hk+1, . . . , hn simultaneously by birthday attack 
with the input taken from S = S1 × · · · × Sk. 

Algorithm 1 shows the outline of generic attack 
on KPCFs. In the generic attack firstly the attacker 
generates a set of multi-collision Sj for each SCFs 
hj with 1 ≤ j ≤ k. Secondly he searches for a colli­
sion for hk+1, . . . , hn simultaneously with elements 
of S = S1 × · · · × Sk. Any two elements of S lead 
same output for h1, . . . , hk so that a collision pair 
for SCFs hk+1, . . . , hn collides on all SCFs. 

3.2 Complexity of the attack 

By Assumption 1 it is necessary to search for a 
collision for SCFs hk+1, . . . , hn simultaneously in 
Step 2 so that the input set S must include more 
than 2(n−k)m/2 elements. The sufficient condition 
for the number of the element of Sj is (#S)1/k = 
2(n−k)m/2k for each Sj which is the multi-collision 
for SCF hj . 

As a result, the calculation complexity of 
Step 1 for collecting multi-collision for h1, . . . , hk 

is 2(n−k)m/2k · 2m = 2(n+k)m/2k hash calculations. 
In the Step 2 2(n−k)m/2 hash calculations is neces­
sary to find a collision for n − k SCFs hk+1, . . . , hn 

simultaneously. 

4	 Differential attack 

In this section, we show an attack on KPCF which 
is a counter example for Theorem 1. It is just a 
differential attack. For a simple discussion, we as­
sume k > n − k. Note that this assumption holds 
for all linear codes applied in Theorem 1 because 
2k − n > 0 is satisfied. 

Let h : {0, 1}tm ×{0, 1}m → {0, 1}m be a SCF and 
L be an [n, k, d] linear code over GF(2t+1). An input 
to L is denoted by X = (X1, . . . , Xk) and the cor­
responding output is denoted by Y = (Y1, . . . , Yn) 
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Algorithm 2 Differential attack on a KPCF 
Step 1. Consider a system of linear equations 

Li(X1, . . . , Xk) = 0, k + 1 ≤ i ≤ n. (3) 

Because of the assumption k > n− k, this system 
has a non-trivial solution Δ = (Δ1, . . . , Δk). Fix 
the solution Δ, then the encoded differential is 
L(Δ) = (Δ1, . . . , Δk, 0, . . . , 0). 

Step 2. For each SCF hi (1 ≤ i ≤ k), apply dif­
ferential attack using differential Δi. In other 
words, calculate hash values of X and X ⊕ Δi 

with the fixed Δi and variable Xs until hi(X) 
and hi(X ⊕ Δi) collide. Denote the collision pair 
of hi by (Ai, Ai ⊕ Δi). 

Step 3. Let A is the concatenated vector consisting 
of Ai, i.e., A = (A1, . . . , Ak). Then A and A⊕ Δ) 
are colliding pair. 

where Xi and Yi are elements of GF(2t+1)m. Then 
the encoding of L is described as follows: 

Yi = Li(X1, . . . , Xk), 1 ≤ i ≤ n. (1) 

We can assume that 

Li(X1, . . . , Xk) = Xi, 1 ≤ i ≤ k. (2) 

4.1 The attack 

Algorithm 2 shows the process of differential at­
tack on KPCFs for t = 1. The step 3 holds basing 
on the properties of A and Δ as follows: 

KPCF (A⊕ Δ) 
= (h1 ◦ L1(A⊕ Δ), . . . , hk ◦ Lk(A⊕ Δ), 

hk+1 ◦ Lk+1(A⊕ Δ), . . . , hn ◦ Ln(A⊕ Δ)) 
= (h1(A1 ⊕ Δ1), . . . , hk(Ak ⊕ Δk), 

hk+1(Lk+1(A)⊕ Lk+1(Δ)), 
. . . , hn(Ln(A)⊕ Ln(Δ))) 

= (h1(A1), . . . , hk(Ak), 
hk+1 ◦ Lk+1(A), . . . , hn ◦ Ln(A)) 

= KPCF (A). (4) 

Note that k > n−k is not always satisfied if t > 1, 
so that it is possible that this attack cannot be ap­
plied to KPCFs with t > 1. Let Δ = (Δ1, . . . , Δk) 
be a solution of Eq. 3. If k > n − k is not satis­
fied the input of hk+1, . . . , hn−k cannot be handled 
independently so that the attack is not applicable. 
It may be fortunate for KPCFs that the standard 
block ciphers DES and AES support double length 
key size. 

Contrarily the attack is applicable if k > n − k is 
satisfied and is independent from t. Therefore it is 
desirable carefully to choose the parameter k, n and 
t (and the code) such that t > 1, 2k ≤ n < (t + 1)k. 

4.2 Complexity of the attack 

Now we estimate the computational complexity of 
this attack. 

The complexity of the first step is negligible. We 
have to calculate about 2m input pairs to find a col­
lision for each SCF hi for 1 ≤ i ≤ k in the second 
step. Note that we can attack distinct SCFs inde­
pendently because we can assume that only Xi is 
the input of hi for 1 ≤ i ≤ k. Hence k · 2m opera­
tions of SCFs is required for the second step. The 
third step is costless. 

Therefore the total complexity of this attack is 
nearly equal to that of the second step, about k ·2m . 
This violates the security bound of Theorem 1 and 
2 when d > 3. 

5	 Yet another differential at­
tack 

In this section we present another differential attack, 
which is combined with a birthday attack. It is not 
so effective as other proposed attacks, however it 
appeals that a combination of differential attacks 
and birthday attacks is somehow possible. 

5.1 Differential birthday attack 

The first idea is how to choose a set whose any two 
elements have a desirable differential property. Let 



6 

x be an element of GF(2t+1)k such that the Ham­
ming weight of L(x) is equal to d. Then 

Δ(x) := {ax|a ∈ GF(2(t+1))} 

is a set satisfying the desirable property: for all 
x, y ∈ Δ(x) x ⊕ y is a element of Δ(x). 

If t + 1 > d/2, we can apply birthday attacks to 
d SCFs. Note that attacks must be done simultane­
ously because all elements of Δ(x) is a multiple of 
x. The total complexity of this attack is 2dm/2 . 

If t is not sufficiently large to satisfy above condi­
tion, we can extend the differential vector space Δ 
by relaxing the condition. In fact, Δ(x) can be rep­
resented by solutions of a system of linear equations. 
Deleting some equations from the system relaxes the 
condition, so that the resultant vector space Δ con­
sisting of solutions of remaining equations becomes 
larger. On the other hand, the maximum Hamming 
weight of the differences (elements of Δ) becomes 
larger too, as some linear equations are not satisfied 
any more. 

5.2 Calculation complexity of DBA 

If we delete c linear equations over GF(2t+1), 
max{ham(δ)|δ ∈ Δ} = d+c. Besides, the dimension 
of the vector space Δ over GF(2) is (t + 1)(c + 1). 
Hence, if we choose sufficiently large c such that 
(t+1)(c+1) ≥ (d+ c)/2, a birthday attack on d+ c 
active SCFs is applicable. In this case, the complex­
ity of the attack is 2(d+c)m/2 . 

6 Conclusion 

In this paper two attacks on a Knudsen-Preneel con­
struction of a hash function are proposed. One can 
violates the security bound claimed in the proposal 
paper [6] if t = 1 and d > 3. For the case t > 1, 
the condition for the security of Knudsen-Preneel 
construction to be decreased is not clear as the case 
t = 1. 
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