15t and 2"9 Preimage Attacks on 7, 8 and
9 Rounds of
Keccak-224,256,384,512

Donghoon Chang!, Arnab Kumar?, Pawel Morawiecki3,
Somitra Kumar Sanadhya?

HIT-Delhi, India 2NSIT, India

3Polish Academy of Sciences, Institute of Computer Science, Poland

Presented at 2014 SHA3 Workshop, Santa Barbara USA
August 22 2014

Sponge Construction

M

pad |
M Y)) " : Y Y
|
bitrate | | () ‘L AL l- L : > -
i Y S
|
capacity| | 0 > = = | —» : - -
absorbing : squeezing

sponge

Domain Extension of Keccak-224

M 4

10*1 |
|
A 7N N N ' |
|
152 | 0 —:—-Lastzz4-bit
b

T

3
M
448)[] o — — — H

\ absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of Keccak-256

M

l 10*1 :

4

088

512

i

0

0

-

-y S _

N

Last 256-bit

absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of Keccak-384

M

l 10*1 :

4

832

768

i

0

0

-

-y S _

N

Last 384-bit

absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of Keccak-512

M

l 10*1 :

4

576

024

i

0

0

-

-y S _

N

Last 512-bit

absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of SHA3-224

M /Message padding is changed. Z
A
74
1110*1 |
M N Yy Y ' :
|
152| | 0 —=—- Last 224-bit
|
” ;o1 |
A |
aas| | () - — — |— —=—-
v N Ny N ~ 1

absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of SHA3-256

M

|1110*1=

4

088

512

i

0

-

-y S _

N/

Last 256-bit

absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of SHA3-384

M

|1110*1=

4

832

768

i

0

-

-y S _

N/

Last 384-bit

absorbing : squeezing

The size of capacity is double of the hash output size.

Domain Extension of SHA3-512

M

|1110*1=

4

576

1024

i

0

-

-y S _

N/

Last 512-bit

absorbing : squeezing

The size of capacity is double of the hash output size.

1600-bit Permutation f

* A 1600-bit state is described by a|x][y][z] for
0<x<4, 0<y<4, 0<z<63.

e fconsists of 24 rounds. Each round is defined
byR=toxomopod.

[0 alz][y][2] < al[x][y][z] & @, _g alr — [/ & @, ala + 1][y/'][z — 1]
palzlly]lz] < alz]ly]lz — (t+1)(t +2)/2], f
_ 0 ' T oo
degree 1 _ with ¢ satisfying 0 < ¢ < 24 and (1) (1> = (I) in GF(5)%%2,
(0.5 round) 23 0 1
ort=—-1i1tr=9y=0,

P T, NI R xT o 01 ;I_.'"
|7 alx)[yl <« al2][y], with (y) = (2 3) (y")

degree2 _J X: «a (] <+ a[x] & (alr +1] & 1Dalr + 2],
(0.5 round)| ¢: a + adRC[i],

—

Number of Bit-operations of each Round

For 0<x<4, 0<y<4, 0<z<63.

1600 bit-operations

320 bit-operations
1280 bit-operations

0 : alz]lyllz] + alx]y][={ B i;:{] alr — 1] [-;z,:’}[z(é)i—]%,zo alx +1][y'][z — 1]
p:oalx|lyllz] « alz]lyllz — (t+ 1)t +2)/2],

t
) T oo
with ¢ satistfying 0 <t < 24 and ([2 i) ([1]) = (;) in GF(5)2%2,

ort=—1iter=y=0,
-
x
(.U')"

ol] with [T — (0 1)
m:oalrlly] < al2’][y], with (U) = (2 5
L: a — 4 D RO, 4800 bit-operations

W

X ooalr] ajgj\@ (alx +1] & 1)alxr + 2],

64 bit-operations

In total, at least 8064 (=1600+1280+320+4800+64) bit-operations
are required to compute one round.

General Preimage Attack Complexity for
Keccak-n and SHA3-n based on r-round f

* So, given a o-bit hash value Z, we need rx8064 x 2° bit-
operations to find its preimage with high probability.

\ Z
M "
| pad } I
A N :
|
Y. L -
1600-2x0 | | 0 > —| Last o-bit
f |
|
X |
2x0| |0 - H—
W N
abSbehngi squeezing

sponge

Polynomial Enumeration (used by
Dinur and Shamir [FSE 2011])

* Given a boolean function f; (1<i<b) with n-bit
input and degree d, where f; is the i-th output bit

of f,

* polynomial enumeration algorithm is a way of
constructing the truth table of f; by the following
two steps.

— Step 1: Compute coefficients of f,
* Time complexity: > o ,(2)x,C).

— Step 2: Construct the truth table of f; using the fast
Moebius transformation.

e Time complexity: nx2"1,

The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array

0 ..

(1) l coefficient of x;

0 .

1 < coefficient of x;

0

1 coefficient of x;x,

1 coefficient of x;xx;

The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array

The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array

0 0
oo (6
I
S
14 -0

The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array

o] ol
) xR
1 ¥
RRROO
——
RORRRORO

The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X;X5X3@DXX,DX;5

Coefficient Array Truth Table Array
0 0 0 0 £(0,0,0)
i -1 i o N—
) | =g
é—
42 bl =
— S Em— U,
12 1 0 0 f(1,1,0
1 >0 1 0 f(1,1,1)

Complexity : for n variables, nx2"™* 1-bit XOR operations.

Preimage Attack on H using Polynomial
Enumeration (by Dinur and Shamir)

* Given a o-bit hash output Z,

— Step 1: By polynomial enumeration algorithm,
efficiently find messages M’s which partially
match over b bits of the given o-bit hash value.

— Step 2: if there is M s.t. H(M)=Z, then return M
else goes to Step 1.

Improving Polynomial Enumeration
(by Bernstein [NIST mailing list 2013])

* Given a boolean function f; (1<i<b) with n-bit
input and degree d, where f; is the i-th output bit
of f.

* polynomial enumeration algorithm is a way of
constructing the truth table of f; by the following
two steps.

— Step 1: Compute coefficients.of f,
* Time complexity: X, _3(21x C) mmm) > .(ix,C).
— Step 2: Construct the truth table of f; using the fast
Moebius transformation.
e Time complexity: nx2"1,

Improving Polynomial Enumeration
(by Bernstein [NIST mailing list 2013])

* Given a boolean function f; (1<i<b) with n-bit
input and degree d, where f; is the i-th output bit
of f.

* polynomial enumeration algorithm is a way of

constructing the truth table of f; by the following
two steps.

— Step 1: Compute coefficients.of f,
* Time complexity: X, 3(2% C) mmm) > .(ix,C).
— Step 2: Construct the truth tableRof f; using the fast
Moebius transformation.

e Time complexity: nx2"1, But this time complexity
improvement requires
big memory cost.

Application to 6, 7, 8 rounds of Keccak-512
(by Bernstein)

* 6 rounds: 21/¢ bits of memory give a workload
reduction by a factor 50 (™6 bits)

* 7 rounds: 2320 bits of memory give a workload
reduction by a factor 37 (~5 bits)

* 8 rounds: 2°% bits of memory give a workload
reduction by a factor 1.4 (half a bit)

Our Results

Bernstein only described the idea of improving Step 1
complexity. However, overall time and memory
complexity of his attack is not clear.

Result 1: Based on Bernstein’s idea, we made
Algorithm 1 for generating the coefficient array of a
boolean function with detailed time and memory
complexity.

Result 2: We provide a general preimage attack
methodology on hash functions using Result 1 and
meet-in-the-middle-matching technique.

Result 3: Using Result 2, as an example, we further
improve Bernstein’s result upto 9 rounds of Keccak.

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begin

2 [=0;

3 while [< d do

4 for Aca AND |A|=1do

5 y=0;

6 1=0;

7 y=F(5a);

8 Sumg[Sa] = v;

9 while i <[do
10 y =1y & Sum;[Sai];
11 i=i+1;
12 Sum;[Sa] = y;
13 C[Sa] =y, where C, is also same as C[S4];
14 I=I+1;

Time Complexity: 5 X (Z?:D[X (?)) + 1" X Zf:[] (?)

Memory Complexity: (2d + 1) % Q™ 19"

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the W Static Array of a Boolean

Input: Boolean function f witﬁ n-bit inpui)and having algebraic degra{at most d)
Result: Coeffient static array C of 512 , which is initialized with all zeros 1 the beginning

1 begin

2 [=0; — .

3 while 7 < d da -~ a={A:|A|<dand A {]1,2,....,n}}
4 for A aJAND |A| =1 do

5 y=0;

6 1=0;

7 y=F(5a);

8 Sump[Sa] = v;

9 while 7 < [do

10 y =1y & Sum;[Sai];

11 i=1+1;

12 Sum;[Sa] = y;

13 C[Sa] =y, where C, is also same as C[S4];
14 I=l+1;

Time Complexity: 5 X (Z?:DZ X (?)) + 1" X Zf:[] (?)

Memory Complexity: (2d + 1) % Q™ 19"

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begin

2 [=0;

3 while [< d do

4 for Aca AND |A|=1do

z f:[']] The time complexity of f is T.

7 y=1(Sa); <« (in terms of number of bit-operations)
8 Sumg|[Sa] = v;

9 while i <[do
10 y =1y & Sum;[Sai];
11 i=i+1;
12 Sum;[Sa] = y;
13 C[Sa] =y, where C, is also same as C[S4]; Step 7
14 I=l+1;

Time Complexity: 5 X (Z?:DZ X (?)) +({ X Zf:[] (?)

Memory Complexity: (2d + 1) x 9™ 1 9"

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begin

2 [=0;

3 while [< d do

4 for Ac€a AND |A|=1do

5 y=0;

6 1=0);

7 y=F(5a): 2 bit-operations (1 XOR, 1-bit memory access of static array Sum)
8 Sumg[Sa] = v;

9 while i < I do 2 bit-operations are needed on average
10 y =1y & Sum;[Sai];
11 i=i+1; 1 bit -operation (1-bit update of static array Sum)
12 Sum;[Sa] = y;
13 1Sa] =y, where C4 is also same as C[S4];
14 I=1+1; / Step 10,11,12

Time Complexity:(_- f:ﬂ (T;ﬂ)

Memory Complexity: (2d + 1) x 2™ + 2"

Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begi C .

9 eg;iﬂ, Current Sum Arrays: Each Sum array (which is static) has 2"

3 while I < d do elements of size 1-bit. We need at most d+1 current Sum arrays.

4 for Aca AND I do

5 y=0;

6 i=0; Previous Sum Arrays : Each Sum array (which is static) has 2"

7 y=f(598; elements of size 1-bit. We need at most d previous Sum arrays.
8 SumD[SA]

9 while 1 < ¢
10 .
11 Zl: e e
12 — Coefficient Array (which is static) has 2" elements of size 1-bit.
13 CTSA]|=& where C4 is also same as C[S4];
14 I=l+1;

Time Complexity:

Memory Complexity:

Our General Preimage Attack on H=H,°H,
(Result 2)

@ Repeat 2°" times

Message M with n variables

Polynomial
Enumeration

@ (Algorithm 1 H 1

and the fast
Moebius (with Time Comp. T’)

Transformation) @ Matching with

remaining o-b bits

(3 g-bit matching (q=b)

1
HZ

(with Time Comp. T”)

Table Look-up

(alarge :

memory may b bits
be required)

A

Given: o-bit hash value h

Complexity of Our General Preimage Attack
(Result 2)

Time Complexity:
P y (D Generating lookup Table for H,

l/ @ Algorithm 1 (here, w=1)
bx29xT"+297% % (g —b) x g+ /
d

@ (T’x;(?))+((2us+3) cgx Y x G)H

(g xmnx2" |+

\ 3 =Ll
>< (T x 2”*—b)\+ (max{(g —b), 1} x 2" x q), N
\ @ the fast Moebius
Transformation

@ Matching over remaining @ Matching over g-bit
o-q bits (where T=T"+T"’)

Memory Complexity:

gx 298 +)2d+qg+1) x 2"

Lookup Table for H, g Coefficient arrays and 2d+1 Sum arrays of size 2" for
Polynomial Enumeration

Application to Keccak (Result 3)

@ Repeat 2°" times

Message M

Polynomial H 1

Enumeration

@ (Algorithm 1 First r-0.5 rounds
and the fast

N " (degree: 2™1)

Transformation) @ matching with

l remaining o-b bits
(3 q-bit mthhin q=b=5 or 10)

N H_Z Last 0.5 round
@ (nverting ‘

no memory b bits‘
required)

Given: o-bit hash value h

15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 27
Keccak-512 = Preimage 9°0b 64

Keccak-512

Keccak-512

12, 8]

Preimage

64

[12,8,14]

2nd Preimage

Keccak-224

12,8.14 8
This work, § 7 6 Preimage/ 2° 27" 7.01
2nd Preimage
Thin wrewl- © F T n .25”9.39 2172..‘_:2 6.13
Our results g DELRE 531529 181
This work, § 8 7 '

Keccak-25¢

This work, § 8

Keccak-38:

This work, § 8

Keccak-512

This work, § 8

This work, § 8

This work, § 8

This work, § 8

15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 27
Keccak-512 = Preimage 9°0b 64
Keccak-512 Preimage 9200 64
Keccak-512 [12, 8] 6 2nd Preimage 2° 2 50
(12,8, 14] 7 7 2! 27 [37
12,8,14 8 27"~ 27" 1.44
This work, § 7 6 Preimage/ 277 2 7.01
2nd Preimage
T e crrmaels O = 7 M QEUH.SH 2172.02 6.13
Our reSUItS 8 n .EEIU‘.:I'.TH 2310.29 4.81
Keccak-224This work, § 8 7 ? 27T 50 - 85.70
Keccak-256§This work, § 8 8 ? PR 2
Keccak-384This work, § 8] 8 PR AR 38.36
Keccak-514This work, § 8] 6 PR PR 85.70
This work, § 8 7 2°te- gied- 1z 59.34
This work, § 8 8 27107 PR 38.36
This work, § 8 9 21 PR 1.23

15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 27
Keccak-512 = Preimage 9°0b 64

Keccak-512

Keccak-512

12, 8]

Preimage

64

[12,8,14]

2nd Preimage

12,8,14
This work, § 7

Preimage/
2nd Preimage

i [l S —
Our results

Ly

n1r-1.r

|

[613

Keccak-224

This work, § 8

=1 Qoo

Keccak-25¢

This work, § 8

Keccak-38:

This work, § 8

37 - 59.34
s

4.81

Keccak-512

This work, § 8

2“)4.33

This work, § 8

QIELI.IE

This work, § 8

o
Qd._nl.U.f

This work, § 8

QEIILI.LIE

15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 27
Keccak-512 = Preimage 9°0b 64

Keccak-512

Keccak-512

12, 8]

Preimage

64

[12,8,14]

2nd Preimage

12,8,14
This work, § 7

Preimage/
2nd Preimage

i [l S —
Our results

Ly

n1r-1.r

|

[613

Keccak-224

This work, § 8

=1 Qoo

4.81

Keccak-25¢

This work, § 8

Keccak-38:

This work, § 8

Keccak-512

This work, § 8

2'.!-54.L|3

1.44 - 38.36

21U4.23

This work, § 8

QIELI.IE

This work, § 8

o
Qd._nl.U.f

This work, § 8

QEIILI.LIE

15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 27
Keccak-512 = Preimage 9°0b 64

Keccak-512

Keccak-512

12, 8]

Preimage

64

[12,8,14]

2nd Preimage

Keccak-224

12,8.14 8
This work, § 7 6 Preimage/ 2° 27" 7.01
2nd Preimage
Thin wrewl- © F T n .25”9.39 2172..‘_:2 6.13
Our results g DELRE 531529 181
This work, § 8 7 '

Keccak-25¢

This work, § 8

2'.3-54.L|3

Keccak-38:

This work, § 8

TIA06
2

Keccak-512

This work, § 8

This work, § 8

This work, § 8

2“)4.33

New :1.23

QJ.S‘-l.LIF

his work, § 8

QEIILI.LIE

Work in Progress

 Message Modification: Good selection of position of
message lanes will not double the degree by bypassing

chi step () of the round function of Keccak.

* Very careful memory and time complexity analysis
required (at the complexities close to exhaustive
search)

 QOur preliminary analysis shows

— 1stand 2"9 preimage attacks on 9 rounds of Keccak-256
with improvement factor 1.14

— 1stand 2" preimage attacks on 10 rounds of Keccak-512
with improvement factor 1.05

Conclusion

* None of the attacks threatens the security of
Keccak as the attack complexities are already
close to brute force by the time we cross 9
rounds of Keccak.

* |n fact, this work shows the limits of polynomial
enumeration method-based preimage attacks
against Keccak.

e Our Attack on reduced rounds of Keccak can be
applied to reduced rounds of SHA3 with the same
complexity and same number of rounds.

