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Domain Extension of Keccak-224
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The size of capacity is double of the hash output size.




Domain Extension of Keccak-256
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Domain Extension of Keccak-384
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Domain Extension of Keccak-512
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Domain Extension of SHA3-224
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Domain Extension of SHA3-256
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Domain Extension of SHA3-384
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Domain Extension of SHA3-512
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1600-bit Permutation f

* A 1600-bit state is described by a|x][y][z] for
0<x<4, 0<y<4, 0<z<63.

e fconsists of 24 rounds. Each round is defined
byR=toxomopod.

[0 alz][y][2] < al[x][y][z] & @, _g alr — [/ & @, ala + 1][y/'][z — 1]
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Number of Bit-operations of each Round

For 0<x<4, 0<y<4, 0<z<63.

1600 bit-operations

320 bit-operations
1280 bit-operations
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64 bit-operations

In total, at least 8064 (=1600+1280+320+4800+64) bit-operations
are required to compute one round.




General Preimage Attack Complexity for
Keccak-n and SHA3-n based on r-round f

* So, given a o-bit hash value Z, we need rx8064 x 2° bit-
operations to find its preimage with high probability.
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Polynomial Enumeration (used by
Dinur and Shamir [FSE 2011] )

* Given a boolean function f; (1<i<b) with n-bit
input and degree d, where f; is the i-th output bit

of f,

* polynomial enumeration algorithm is a way of
constructing the truth table of f; by the following
two steps.

— Step 1: Compute coefficients of f,
* Time complexity: > o ,(2)x,C).

— Step 2: Construct the truth table of f; using the fast
Moebius transformation.

e Time complexity: nx2"1,



The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array
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The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array



The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5
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The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X{X5X3@DXX,DX;5

Coefficient Array
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The Fast Moebius Transformation

* transforms the coefficient array of a boolean
function to its truth table array.

For example, f(X1,X5,X3)=X{®X;X5X3@DXX,DX;5

Coefficient Array Truth Table Array
0 0 0 0 £(0,0,0)
i -1 i o N—
) | =g
é—
42 bl =
— S Em— U,
12 1 0 0 f(1,1,0
1 >0 1 0 f(1,1,1)

Complexity : for n variables, nx2"™* 1-bit XOR operations.



Preimage Attack on H using Polynomial
Enumeration (by Dinur and Shamir)

* Given a o-bit hash output Z,

— Step 1: By polynomial enumeration algorithm,
efficiently find messages M’s which partially
match over b bits of the given o-bit hash value.

— Step 2: if there is M s.t. H(M)=Z, then return M
else goes to Step 1.



Improving Polynomial Enumeration
(by Bernstein [NIST mailing list 2013] )

* Given a boolean function f; (1<i<b) with n-bit
input and degree d, where f; is the i-th output bit
of f.

* polynomial enumeration algorithm is a way of
constructing the truth table of f; by the following
two steps.

— Step 1: Compute coefficients.of f,
* Time complexity: X, _3(21x C) mmm) > .(ix,C).
— Step 2: Construct the truth table of f; using the fast
Moebius transformation.
e Time complexity: nx2"1,



Improving Polynomial Enumeration
(by Bernstein [NIST mailing list 2013] )

* Given a boolean function f; (1<i<b) with n-bit
input and degree d, where f; is the i-th output bit
of f.

* polynomial enumeration algorithm is a way of

constructing the truth table of f; by the following
two steps.

— Step 1: Compute coefficients.of f,
* Time complexity: X, 3(2% C) mmm) > .(ix,C).
— Step 2: Construct the truth tableRof f; using the fast
Moebius transformation.

e Time complexity: nx2"1, But this time complexity
improvement requires
big memory cost.




Application to 6, 7, 8 rounds of Keccak-512
(by Bernstein)

* 6 rounds: 21/¢ bits of memory give a workload
reduction by a factor 50 (™6 bits)

* 7 rounds: 2320 bits of memory give a workload
reduction by a factor 37 (~5 bits)

* 8 rounds: 2°% bits of memory give a workload
reduction by a factor 1.4 (half a bit)



Our Results

Bernstein only described the idea of improving Step 1
complexity. However, overall time and memory
complexity of his attack is not clear.

Result 1: Based on Bernstein’s idea, we made
Algorithm 1 for generating the coefficient array of a
boolean function with detailed time and memory
complexity.

Result 2: We provide a general preimage attack
methodology on hash functions using Result 1 and
meet-in-the-middle-matching technique.

Result 3: Using Result 2, as an example, we further
improve Bernstein’s result upto 9 rounds of Keccak.



Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begin

2 [=0;

3 while [ < d do

4 for Aca AND |A|=1do

5 y=0;

6 1=0;

7 y=F(5a);

8 Sumg[Sa] = v;

9 while i <[ do
10 y =1y & Sum;[Sai];
11 i=i+1;
12 Sum;[Sa] = y;
13 C[Sa] =y, where C, is also same as C[S4];
14 I=I+1;

Time Complexity: 5 X (Z?:D[ X (?)) + 1" X Zf:[] (?)

Memory Complexity: (2d + 1) % Q™ 19"




Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the W Static Array of a Boolean

Input: Boolean function f witﬁ n-bit inpui)and having algebraic degra{at most d )
Result: Coeffient static array C of 512 , which is initialized with all zeros 1 the beginning

1 begin

2 [=0; — .

3 while 7 < d da -~ a={A:|A|<dand A {]1,2,....,n}}
4 for A aJAND |A| =1 do

5 y=0;

6 1=0;

7 y=F(5a);

8 Sump[Sa] = v;

9 while 7 < [ do

10 y =1y & Sum;[Sai];

11 i=1+1;

12 Sum;[Sa] = y;

13 C[Sa] =y, where C, is also same as C[S4];
14 I=l+1;

Time Complexity: 5 X (Z?:DZ X (?)) + 1" X Zf:[] (?)

Memory Complexity: (2d + 1) % Q™ 19"




Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begin

2 [=0;

3 while [ < d do

4 for Aca AND |A|=1do

z f:[']] The time complexity of f is T.

7 y=1(Sa); <« (in terms of number of bit-operations)
8 Sumg|[Sa] = v;

9 while i <[ do
10 y =1y & Sum;[Sai];
11 i=i+1;
12 Sum;[Sa] = y;
13 C[Sa] =y, where C, is also same as C[S4]; Step 7
14 I=l+1;

Time Complexity: 5 X (Z?:DZ X (?)) +({ X Zf:[] (?)

Memory Complexity: (2d + 1) x 9™ 1 9"




Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begin

2 [=0;

3 while [ < d do

4 for Ac€a AND |A|=1do

5 y=0;

6 1=0);

7 y=F(5a): 2 bit-operations (1 XOR, 1-bit memory access of static array Sum)
8 Sumg[Sa] = v;

9 while i < I do 2 bit-operations are needed on average
10 y =1y & Sum;[Sai];
11 i=i+1; 1 bit -operation (1-bit update of static array Sum)
12 Sum;[Sa] = y;
13 1Sa] =y, where C4 is also same as C[S4];
14 I=1+1; / Step 10,11,12

Time Complexity:(_- f:ﬂ (T;ﬂ)

Memory Complexity: (2d + 1) x 2™ + 2"




Algorithm 1 for Generating the Coefficient
Array of a Boolean Function (Result 1)

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C of size 2", which is initialized with all zeros in the beginning

1 begi C .

9 eg;iﬂ, Current Sum Arrays: Each Sum array (which is static) has 2"

3 while I < d do elements of size 1-bit. We need at most d+1 current Sum arrays.

4 for Aca AND I do

5 y=0;

6 i=0; Previous Sum Arrays : Each Sum array (which is static) has 2"

7 y=f(598; elements of size 1-bit. We need at most d previous Sum arrays.
8 SumD[SA]

9 while 1 < ¢
10 .
11 Zl: e e . . . . .
12 — Coefficient Array (which is static) has 2" elements of size 1-bit.
13 CTSA]|=& where C4 is also same as C[S4];
14 I=l+1;

Time Complexity:

Memory Complexity:




Our General Preimage Attack on H=H,°H,
(Result 2)
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Complexity of Our General Preimage Attack
(Result 2)

Time Complexity:
P y (D Generating lookup Table for H,
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Application to Keccak (Result 3)
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15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
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Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 27
Keccak-512 = Preimage 9°0b 64
Keccak-512 Preimage 9200 64
Keccak-512 [12, 8] 6 2nd Preimage 2° 2 50
(12,8, 14] 7 7 2! 27 [ 37
12,8,14 8 27"~ 27" 1.44
This work, § 7 6 Preimage/ 277 2 7.01
2nd Preimage
T e crrmaels O = 7 M QEUH.SH 2172.02 6.13
Our reSUItS 8 n .EEIU‘.:I'.TH 2310.29 4.81
Keccak-224This work, § 8 7 ? 27T 50 - 85.70
Keccak-256§This work, § 8 8 ? PR 2
Keccak-384This work, § 8] 8 PR AR 38.36
Keccak-514This work, § 8] 6 PR PR 85.70
This work, § 8 7 2°te- gied- 1z 59.34
This work, § 8 8 27107 PR 38.36
This work, § 8 9 21 PR 1.23




15t and 2"9 Preimage Attacks on 6, 7,
8, 9 rounds of Keccak (Result 3)
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Work in Progress

 Message Modification: Good selection of position of
message lanes will not double the degree by bypassing

chi step () of the round function of Keccak.

* Very careful memory and time complexity analysis
required (at the complexities close to exhaustive
search)

 QOur preliminary analysis shows

— 1stand 2"9 preimage attacks on 9 rounds of Keccak-256
with improvement factor 1.14

— 1stand 2" preimage attacks on 10 rounds of Keccak-512
with improvement factor 1.05



Conclusion

* None of the attacks threatens the security of
Keccak as the attack complexities are already
close to brute force by the time we cross 9
rounds of Keccak.

* |n fact, this work shows the limits of polynomial
enumeration method-based preimage attacks
against Keccak.

e Our Attack on reduced rounds of Keccak can be
applied to reduced rounds of SHA3 with the same
complexity and same number of rounds.



