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Requirements 

• Cryptographical Strength 

• Architectural Independence 
• We have no idea what processors will look like 10 

years from now 
• SIMD 

• Multiple Core 

• Mixture of the two 

• Pipelined??? 



Requirements 

• We need different processors to compute the 
same hash 
• Including processors not designed when we pick the 

hash function parameters 

• This means we would prefer not to have a 
parameterized hash tuned to a specific 
implementation 

We would prefer one hash function that allows implementation 
options 



Requirements 

• Online Computation 
• We don’t always have all the data we’re hashing in 

front of us at once 

• Hashing network data needs to deal with small 
updates 

• The segmentation option doesn’t do this well 

 



Requirements 

Packet 
Stream 

Hash Hash 

Here is one scenario where this can happen: 

• We have a stream of packet data we are hashing 

• Because each packet is small, we are never able to present a 
large segment to the hashing function 



 What does this mean? 

• We want one hash function that works well 
everywhere, and does everything 
• Can we actually design something that is both SIMD 

and multi-core friendly, is not tied to a number of 
tracks, and can handle short updates? 

• Perhaps we can come closer if we consider a 
multilevel design 



 One level Interleave Design 

It has the number of tracks inherent in the design 
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This interleaved design can easily 
handle SIMD parallelism of 4, but 
can’t take advantage of any more 
 
To take advantage of more, we’d 
have to change the hash 



 Multilevel Design 
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A multilevel design can take advantage of 
different kinds of parallelism 



 What is the trade-off? 

• Multilevel can give us one hash function that 
works well in a variety of scenarios 

• However, the implementation is more complex 

 

Is the trade-off worth it? 


