
Parallelizable Hashing

Scott Fluhrer

Cisco Systems

8/22/14

An industry viewpoint

Requirements

• Cryptographical Strength

• Architectural Independence
• We have no idea what processors will look like 10

years from now
• SIMD

• Multiple Core

• Mixture of the two

• Pipelined???

Requirements

• We need different processors to compute the
same hash
• Including processors not designed when we pick the

hash function parameters

• This means we would prefer not to have a
parameterized hash tuned to a specific
implementation

We would prefer one hash function that allows implementation
options

Requirements

• Online Computation
• We don’t always have all the data we’re hashing in

front of us at once

• Hashing network data needs to deal with small
updates

• The segmentation option doesn’t do this well

Requirements

Packet
Stream

Hash Hash

Here is one scenario where this can happen:

• We have a stream of packet data we are hashing

• Because each packet is small, we are never able to present a
large segment to the hashing function

 What does this mean?

• We want one hash function that works well
everywhere, and does everything
• Can we actually design something that is both SIMD

and multi-core friendly, is not tied to a number of
tracks, and can handle short updates?

• Perhaps we can come closer if we consider a
multilevel design

 One level Interleave Design

It has the number of tracks inherent in the design

 A E I M

 B F J N

 C G K O

 D H L P

 h0

 h1

 h2

 h3

h[final]

This interleaved design can easily
handle SIMD parallelism of 4, but
can’t take advantage of any more

To take advantage of more, we’d
have to change the hash

 Multilevel Design

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 Ma Mb Mc Md Me Mf

Comp Comp Comp Comp

Mg Mh Mi Mj

Comp

Comp

Comp

A multilevel design can take advantage of
different kinds of parallelism

 What is the trade-off?

• Multilevel can give us one hash function that
works well in a variety of scenarios

• However, the implementation is more complex

Is the trade-off worth it?

