Ponic

The third slowest algorithm submitted! -

Designed by Peter Schmidt-Nielsen

(There is
interaction
between the
CSRs which will
be explained on
the next slide.)

Each CSR is stepped in sequence, where stepping a CSR causes either the next or the
previous CSR to be stepped. This has two big advantages: -

1) Each CSR is stepped anywhere from 1-3 times in a data dependent way. -

2) Despite this, Ponic still maintains near deterministic execution time. -

Six rounds of the
Ponic NLF are
performed. This
makes every bit
dependent on
every other bit.

(Which is probably
maybe perhaps just
possibly what you want
in such a function.)

Ponic(“Nobody expects the spammish repetition!”)
Note that the leftmost column of each CSR is noisy.

o -.m:-rﬂ";'-.ﬂlﬁ?‘

Csr 2

e o PR T A SR R
? L

IE o 1A AL A AT

=

LI ot T A e B
T A BT
3 e

-a::i‘-il‘ o e LA ﬁ:ﬂ"?‘;‘m].-' 'j' #‘

Ponic Performance:

Initial published performance: -

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gecc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24.,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate 27?7

Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcec4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.

They are gotten from my new optimized numbers of 4,000 cycles per byte, but then | found that
my computer is actually running at 800MHz, not 2GHz, so | divided by 2.5 to correct, but then |
forgot to give gcc the -O3 switch, so then | retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Ponic Performance: (with AES instruction)

Initial published performance: -

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gecc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24.,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate 27?7

Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcec4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.

They are gotten from my new optimized numbers of 4,000 cycles per byte, but then | found that
my computer is actually running at 800MHz, not 2GHz, so | divided by 2.5 to correct, but then |
forgot to give gcc the -O3 switch, so then | retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Ponic Performance: (with time travel)

Initial published performance: -

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gecc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24.,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate 27?7

Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcec4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.

They are gotten from my new optimized numbers of 4,000 cycles per byte, but then | found that
my computer is actually running at 800MHz, not 2GHz, so | divided by 2.5 to correct, but then |
forgot to give gcc the -O3 switch, so then | retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Ponic Performance: (with a side order of Grostl)

Initial published performance: -

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gecc 4.2.3 7,000-7,500
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 3,000-3,500
Optimized-8bit Estimate Estimate Estimate ~24.,000
Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 700,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 600,000 cycles

More accurate, and optimized performance:

Performance: Processor Operating System Compiler Cycles/Byte
Optimized-32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcc 4.2.3 1,600
Optimized-64bit Athlon 1.5GHz Ubuntu 8.04 Gcc 4.2.3 800
Optimized-8bit Estimate Estimate Estimate 27?7

Setup for 32bit Athlon 2x 2.0GHz Ubuntu 8.04 Gcec4.2.3 280,000 cycles
Setup for 64bit Athlon 1.5GHz Ubuntu 8.04 Gcc4.2.3 240,000 cycles

Disclaimer: Even those second numbers are not very reliable.

They are gotten from my new optimized numbers of 4,000 cycles per byte, but then | found that
my computer is actually running at 800MHz, not 2GHz, so | divided by 2.5 to correct, but then |
forgot to give gcc the -O3 switch, so then | retested, etc... In short, these numbers are processed
a bit, and may not be very accurate. But the 7,000cpb is certainly an accurate upper bound.

Questions? -

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

