Engineering considerations for
the SHA-3 hash function



Motivation

e SHA-3 must have good engineering properties
 These are easier to evaluate than security

e Save time by selecting on engineering
requirements first

— Pick candidates with good engineering properties
— Evaluate those for security



Requirements are subjective

Engineering properties are mostly objective
— E.g. Algorithm X runs in N cycles/byte

Requirements are subjective
— E.g. SHA-3 should run in < N cycles/byte

My comments are based on 19 years of
professional experience in designing and
implementing cryptographic systems

Other people will have other opinions



Side channel: Table lookup

* A huge security problem

e Memory addresses are not kept secret
— CPU cache reveals address to other processes
— Demonstrated attacks on AES on current CPUs

— Will not be fixed in hardware
e Fixes cost too much general CPU performance

— Software fixes are tricky, very slow, and generally
not practical

e Recommendation: do not use table lookup



Side channel: AES round

e Some candidates use AES round function
— Fast and no side channels with AES instruction

 But: requires table lookups on all other CPUs
— Insecure on CPUs without AES instruction

e Recommendation: avoid AES round function



Background: PC future

 Every PC will have a 64-bit OS
— Needed to deal with > 4GB RAM
— 32-bit applications will remain
— Applications that need speed will be 64-bit

* Prediction: Handhelds will go to 64 bit CPUs
— When their RAM exceeds 4 GB
— Currently at 128-256 MB RAM

e Recommendation: optimize for 64-bit (rather
than 32-bit) performance



XMM registers

Some implementations use XMM registers
— SSE and AES instructions

Only available on x86-family CPUs
Very slow in 32-bit Windows Kernel mode

Recommendation: also evaluate
implementation without XMM register



Multi-core

Crypto is at the bottom of the software stack
— E.g. DPCs, boot code, initialization & FIPS self-test

Cannot use multiple cores
— Necessary thread functions not available

Two implementations are not practical

— Choice cannot be automated

— Existing code & APIls do not support a choice
— Too many changes required

Recommendation: ignore multi-core code



Performance: PCs

e SHA-256 (=20 c/B) is a performance problem
— SHA-1 is 3x faster (=7.5 ¢/B)
— SHA-256 adoption hindered by low performance
 Performance = power use = battery life

e Recommendation: SHA-3 should be < 20 ¢/B,
oreferably < 10 ¢/B




Performance: embedded systems

 Many different type of embedded systems
 Hardware designed for particular situation

* Any reasonable algorithm is usable
— Faster is always preferable



Performance: smart cards

e Typically not a problem
e Smart cards process very little data

* Any reasonable algorithm is usable
— Faster is always preferable



RAM use: servers

Server can have 10° simultaneous connections

RAM used per connection is important
— RAM is cheap but slow
— CPU caches are fast but limited in size

Minimize RAM use of algorithm

Recommendation: use < 1 kB,
preferably < 300 B



RAM use: smart cards

e RAM is 128-256 bytes and up.
— More RAM costs more
— Adding 1 cent to card cost is a huge deal
 Hashing is only one of many functions
— Do not expect to use >50% of memory

e Recommendation: SHA-3-256 uses < 200 B,
preferably < 100 B



My recommendation

e Select candidates for round 2 that have the
following properties
— Speed < 20 ¢/B on x64
— No table lookup (and thus no AES round)
— Require < 200 bytes RAM (for 256-bit hash)



Conflict of interest

* | am one of the Skein designers
 We designed Skein to fit these requirements

— Not the other way around



Questions?



