
-

-

Specification Security Performance MAC

SHAvite 3:

Secure, Efficient, and Flexible Hash

Function Proposal

Orr Dunkelman

Département d’Informatique
´ Ecole Normale Supérieure

France Telecom Chaire

Joint work with Eli Biham

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 1/ 32

-

Specification Security Performance MAC

Outline

1 Specification and Design Rationale
SHAvite-3
SHAvite-3256 — Producing Digests of up to 256 Bits
The E 256 Block Cipher
SHAvite-3512 — Producing Digests of 257 to 512 Bits
The E 512 Block Cipher
Why SHAvite-3?

2 Security Analysis
The Security of the Block Ciphers
The Security as a Hash Function
Theoretical Notions of Security

3 Performance Results and Analysis
Software Implementation
Hardware Implementation

4 The SHAvite-3-MAC
Definition of the SHAvite-3-MAC
Comparing SHAvite-3-MAC with HMAC

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 2/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

Outline

1 Specification and Design Rationale
SHAvite-3
SHAvite-3256 — Producing Digests of up to 256 Bits
The E 256 Block Cipher
SHAvite-3512 — Producing Digests of 257 to 512 Bits
The E 512 Block Cipher
Why SHAvite-3?

2 Security Analysis
The Security of the Block Ciphers
The Security as a Hash Function
Theoretical Notions of Security

3 Performance Results and Analysis
Software Implementation
Hardware Implementation

4 The SHAvite-3-MAC
Definition of the SHAvite-3-MAC
Comparing SHAvite-3-MAC with HMAC

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 3/ 32

-

- -

-

Specification Security Performance MAC SHAvite 3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

SHAvite 3 (SHAvite Shalosh)

◮ A SHA-3 candidate designed to be secure, efficient, and
suitable for all environments.

◮ SHAvite-3256 is used for digests up to 256 bits, and
SHAvite-3512 is used for digests of 257 to 512 bits.

◮ The compression functions are iterated using HAIFA.

◮ Supports salts (nonces/randomized hashing), variable
digest length, while maintaining full security.

◮ The compression function is designed using known and
understood components: Feistel structure, AES-round,
and LFSRs.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 4/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite 3256 E256 SHAvite-3512 E512 Pronunciation

SHAvite 3256

Based on the C256 compression function,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 5/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite 3256 E256 SHAvite-3512 E512 Pronunciation

SHAvite 3256

Based on the C256 compression function,

◮ which is a Davies-Meyer transformation of the block
cipher E 256 ,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 5/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite 3256 E256 SHAvite-3512 E512 Pronunciation

SHAvite 3256

Based on the C256 compression function,

◮ which is a Davies-Meyer transformation of the block
cipher E 256 ,

◮ which is a 12-round Feistel block cipher,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 5/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite 3256 E256 SHAvite-3512 E512 Pronunciation

SHAvite 3256

Based on the C256 compression function,

◮ which is a Davies-Meyer transformation of the block
cipher E 256 ,

◮ which is a 12-round Feistel block cipher,
◮ where each round function is composed of three AES

rounds.
◮ The message expansion combines both AES rounds and

LFSRs.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 5/ 32

-

-

Specification Security Performance MAC SHAvite-3 SHAvite 3256 E256 SHAvite-3512 E512 Pronunciation

Advanced Encryption Standard

◮ AES was selected at the end of a similar process to the
SHA-3 process by NIST in 2000.

◮ The selected algorithm, Rijndael, was selected from 15
submissions, of which 5 became known the AES finalists.

◮ Thoroughly analyzed in many cryptographic settings, and
so far withstood all cryptanalytic attempts.

◮ Best known attack: 7/10 rounds for 128-bit keys, 8/12
rounds for 192-bit, and 8/14 rounds for 256-bit keys (in
the related-key model, the results are 7/9/10 rounds,
respectively).

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 6/ 32

—

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

E 256 the Underlying Block Cipher

◮ Accepts a 256-bit plaintext (chaining value).

◮ Accepts a key (message block, bit counter, and a salt) of
832 bits in total.

◮ The round function is composed of 3 rounds of AES (with
an AddRoundKey operation before the first round, last
AddRoundKey operation omitted).

◮ The message expansion generates 36 128-bit subkeys (12
rounds of E 256, each uses 3 round of AES).

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 7/ 32

—

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

E 256 the Underlying Block Cipher (cont.)

�
AESRoundAESRoundAESRound

��

k0
0k1

0k2
00

�
AESRoundAESRoundAESRound

��

k0
1k1

1k2
10

...

�

AESRoundAESRoundAESRound
��

k0
11k1

11k2
110

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 8/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

The Message Expansion (E 256 Key Schedule)

◮ Accepts 832-bit key: 512-bit block, 256-bit salt, 64-bit
counter.

◮ Not all bits are treated equally.

◮ A combination of an LFSR (for diffusion), and AES
rounds (for maximal “confusion” and nonlinearity).

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 9/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

The Message Expansion (E 256 Key Schedule)

(cont.)

Message words 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rk[12]

rk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AESRound
salt[0, 1, 2, 3]

AESRound
salt[4, 5, 6, 7]

AESRound
salt[0, 1, 2, 3]

AESRound
salt[4, 5, 6, 7]

rk[13]
rk[14]

rk[15]

cnt[0]

cnt[1]

����������������

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 rk ����������������

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 rk
. . .Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 10/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

The Message Expansion (E 256 Key Schedule)

(cont.)

◮ The key (message block, counter, and salt) is expanded
into 144 32-bit words.

◮ The first 16 32-bit words are the message words.

◮ The following process is repeated four times:

1 16 words are generated by applying AES round (where
the salt is XORed before the round) and some XORs.

2 16 words are generated using an LFSR operation.

◮ The counter words are mixed into 8 of the 144 words, to
ensure that the counter affects the encryption process.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 11/ 32

— -

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

Final Touches SHAvite 3256

◮ In order to hash the message M into an m-bit digest, for
m ≤ 256, compute IVm which is

h0 = IVm = C256(MIV256, m, 0, 0),

◮ Let |M| be the length of M before padding, measured in
bits. Pad the message M according to the padding
scheme of HAIFA:

1 Pad a single bit of 1.
2 Pad as many 0 bits as needed such that the length of

the padded message (with the 1 bit and the 0’s) is
congruent modulo 512 to 432.

3 Pad |M| encoded in 64 bits.
4 Pad m encoded in 16 bits.

◮ Divide the padded message pad(M) into 512-bit blocks,
pad(M) = M1||M2|| . . . ||Ml ,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 12/ 32

— -

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

Final Touches SHAvite 3256

◮ Set #bits ← 0.

◮ Set h0 ← IVm.

◮ For i = 1, . . . , ⌊|M|/512⌋:
◮ Set #bits ← #bits + 512.
◮ Compute hi = C256(hi−1, Mi , #bits, salt).

◮ ◮ If |M| = 0 mod 512, compute
hl = C256(hl−1, Ml , 0, salt), else

◮ If |M| mod 512 ≤ 431, compute
hl = C256(hl−1, Ml , |M|, salt), else

◮ Compute hl−1 = C256(hl−2, Ml−1, |M|, salt), and then
compute hl = C256(hl−1, Ml , 0, salt).

◮ Output truncatem(hl), where truncatem(x) outputs the m
leftmost bits of x , i.e., x [0]||x [1]|

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 13/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite 3512 E512 Pronunciation

SHAvite 3512

Based on the C512 compression function,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 14/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite 3512 E512 Pronunciation

SHAvite 3512

Based on the C512 compression function,

◮ which is a Davies-Meyer transformation of the block
cipher E 512 ,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 14/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite 3512 E512 Pronunciation

SHAvite 3512

Based on the C512 compression function,

◮ which is a Davies-Meyer transformation of the block
cipher E 512 ,

◮ which is a 14-round Generalized Feistel block cipher,

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 14/ 32

-

-

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite 3512 E512 Pronunciation

SHAvite 3512

Based on the C512 compression function,

◮ which is a Davies-Meyer transformation of the block
cipher E 512 ,

◮ which is a 14-round Generalized Feistel block cipher,
◮ where each round function is composed of four AES

rounds.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 14/ 32

—

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

E 512 the Underlying Block Cipher

◮ Accepts a 512-bit plaintext (chaining value), and 1664-bit
key (message block, counter, and salt).

◮ The block cipher has a Generalized Feistel structure.

◮ The plaintext is divided into four words of 128 bits each.

◮ In each of the 14 rounds, two words enter (separately) the
round function.

◮ After XORing the output of the round function with the
two remaining words, the words are rotated.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 15/ 32

—

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

E 512 the Underlying Block Cipher (cont.)

F 4
�

F 4
�

(k0
0,0, k

1
0,0, k

2
0,0, k

3
0,0)(k0

1,0, k
1
1,0, k

2
1,0, k

3
1,0)

F 4
�

F 4
�

(k0
0,1, k

1
0,1, k

2
0,1, k

3
0,1)(k0

1,1, k
1
1,1, k

2
1,1, k

3
1,1)

...

F 4
�

F 4
�

(k0
0,13, k

1
0,13, k

2
0,13, k

3
0,13)(k0

1,13, k
1
1,13, k

2
1,13, k

3
1,13)

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 16/ 32

-

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

How to Pronounce SHAvite 3

SHA-vite SHA-losh

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 17/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

What Does it Mean?

◮ SHA + vite — fast secure hash algorithm.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 18/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

What Does it Mean?

◮ SHA + vite — fast secure hash algorithm.

◮ shavit means “comet” in Hebrew

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 18/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

What Does it Mean?

◮ SHA + vite — fast secure hash algorithm.

◮ shavit means “comet” in Hebrew

◮ A follower of Shiva, god of destruction, is called Shavite.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 18/ 32

-

Specification Security Performance MAC SHAvite-3 SHAvite-3256 E256 SHAvite-3512 E512 Pronunciation

What Does it Mean?

◮ SHA + vite — fast secure hash algorithm.

◮ shavit means “comet” in Hebrew

◮ A follower of Shiva, god of destruction, is called Shavite.

◮ shalosh means 3 in Hebrew.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 18/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Outline

1 Specification and Design Rationale
SHAvite-3
SHAvite-3256 — Producing Digests of up to 256 Bits
The E 256 Block Cipher
SHAvite-3512 — Producing Digests of 257 to 512 Bits
The E 512 Block Cipher
Why SHAvite-3?

2 Security Analysis
The Security of the Block Ciphers
The Security as a Hash Function
Theoretical Notions of Security

3 Performance Results and Analysis
Software Implementation
Hardware Implementation

4 The SHAvite-3-MAC
Definition of the SHAvite-3-MAC
Comparing SHAvite-3-MAC with HMAC

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 19/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Is the Block Cipher E 256 Secure?

◮ Of course!

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 20/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Is the Block Cipher E 256 Secure?

◮ Of course!
◮ The maximal expected differential probability of three

round AES is at most 2−49 .
◮ Analysis reveals that there are no 2-round iterative

characteristics, 3-round iterative characteristics of
probability higher than 2−98, . . . , 9-round characteristics
with probability higher than 2−294 .

◮ Similar results hold for linear cryptanalysis/boomerang
attacks.

◮ Longest known impossible differential is of 5 rounds.
◮ Longest known Square is of 3 rounds.
◮ Slide/Related-key attacks — counter protects against

these.
◮ Algebraic attacks: equations reach full degree after 4

rounds.
Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 20/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Is the Block Cipher E 512 Secure?

◮ The maximal expected differential probability of four
round AES is at most 2−113 .

◮ Analysis reveals that there are no 2-round iterative
characteristics, 3-round iterative characteristics of
probability higher than 2−113, . . . , 9-round characteristics
with probability higher than 2−678 .

◮ Similar results hold for linear cryptanalysis/boomerang
attacks.

◮ Longest known impossible differential is of 9 rounds.
◮ Longest known Square is of 3 rounds.
◮ Slide/Related-key attacks — counter protects against

these.
◮ Algebraic attacks: equations reach full degree after 4

rounds.
Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 21/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Extending the Block Cipher Security Results

First Attempt

Computing the maximal expected differential probability of
related-key attacks.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 22/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Extending the Block Cipher Security Results

First Attempt

Computing the maximal expected differential probability of
related-key attacks.

First Attempt Fails

No good methodology for that.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 22/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Extending the Block Cipher Security Results

First Attempt

Computing the maximal expected differential probability of
related-key attacks.

First Attempt Fails

No good methodology for that.

First Attempt Fails (2)

The attacker controls the keys, he can make sure some
differential transitions do happen.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 22/ 32

—

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Extending the Security Results 2nd Attempt

What to do

Consider differentials through the message expansion.

◮ For a fixed salt, the message expansion can be treated as
a block cipher.

◮ Compute the probability of differentials of it.
◮ Count how many active S-boxes there are in the message

expansion.
◮ Assume that the attacker can use message modification

to increase the probability of the differential (fixing 8 bits
of the message/salt/counter can “eliminate” the cost of
one active S-box).

◮ Results: No good differentials. The message expansion
makes sure there are no high probability differentials
through the message expansion.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 23/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

A 3rd Attempt (TBD)

◮ Collision-producing differentials need to go both through
the message expansion and the block cipher.

◮ Each probabilistic event in any of the two should “cost”:

1 Each active byte that enters the actual compression
data-path costs at least 8 bits of control.

2 Each transition of difference column through the MDS
matrix in the message expansion — costs control
according to the hamming weights.

3 Each XOR in the message expansion that cancels a
difference — costs control.

◮ Too large of a search space, but gives a very strong upper
bound.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 24/ 32

-

Specification Security Performance MAC Block Ciphers Hash Function Theory

Theoretical Notions of Security

◮ HAIFA offers a prefix-free encoding:
◮ If the compression function is a random oracle the hash

function is indifferentiable from random oracle (up to
the birthday bound).

◮ Maintaining the salt secret leads to an efficient and
secure PRF (MAC).

◮ If the compression function is a random oracle, the
second preimage resistance can be proved to be O(2n).

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 25/ 32

-

Specification Security Performance MAC Software Hardware

Outline

1 Specification and Design Rationale
SHAvite-3
SHAvite-3256 — Producing Digests of up to 256 Bits
The E 256 Block Cipher
SHAvite-3512 — Producing Digests of 257 to 512 Bits
The E 512 Block Cipher
Why SHAvite-3?

2 Security Analysis
The Security of the Block Ciphers
The Security as a Hash Function
Theoretical Notions of Security

3 Performance Results and Analysis
Software Implementation
Hardware Implementation

4 The SHAvite-3-MAC
Definition of the SHAvite-3-MAC
Comparing SHAvite-3-MAC with HMAC

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 26/ 32

- -

-

Specification Security Performance MAC Software Hardware

Software Implementation

Hash Function 32 Bit 64 Bit
MD5 7.4 8.8
SHA-1 9.8 9.5
SHA-256 28.8 25.3
SHA-512 77.8 16.9
SHAvite-3256 (measured) 35.3 26.7
SHAvite-3256 (conjectured) 26.6 18.6
SHAvite-3256 (with AES inst.) < 8
SHAvite-3512 (measured) 55.0 38.2
SHAvite-3512 (conjectured) 35.3 28.4
SHAvite-3512 (with AES inst.) < 12

Expect 1–1.5 cycles per byte improvement if no salts are used.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 27/ 32

-

Specification Security Performance MAC Software Hardware

Hardware Implementation (Estimations)

◮ We looked at four hardware optimizations for AES:
FPGA/ASIC, fastest/smallest.

Digest Size Technology Size Throughput
256 ASIC 10.3 Kgates 7.6 Mbps

55.0 Kgates 604.4 Mbps
FPGA 510 Slices 1.7 Mbps

3585 Slices 872.3 Mbps
512 ASIC 18.5 Kgates 4.7 Mbps

81 Kgates 907.7 Mbps
FPGA 895 Slices 1.0 Mbps

7170 Slices 1.12 Gbps

These are estimates based on AES implementations from
2005. Expect real figures to be much better.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 28/ 32

-

Specification Security Performance MAC SHAvite-3-MAC Comparison

Outline

1 Specification and Design Rationale
SHAvite-3
SHAvite-3256 — Producing Digests of up to 256 Bits
The E 256 Block Cipher
SHAvite-3512 — Producing Digests of 257 to 512 Bits
The E 512 Block Cipher
Why SHAvite-3?

2 Security Analysis
The Security of the Block Ciphers
The Security as a Hash Function
Theoretical Notions of Security

3 Performance Results and Analysis
Software Implementation
Hardware Implementation

4 The SHAvite-3-MAC
Definition of the SHAvite-3-MAC
Comparing SHAvite-3-MAC with HMAC

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 29/ 32

- -

- -

-

Specification Security Performance MAC SHAvite 3 MAC Comparison

The SHAvite 3 MAC

◮ With HAIFA, one can define

HAIFA-MACC
k
(M) = HAIFAC

k
(M).

◮ As HAIFA is PRF-preserving, then the above MAC is
secure.

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 30/ 32

- -

- -

-

Specification Security Performance MAC SHAvite 3 MAC Comparison

The SHAvite 3 MAC

◮ With HAIFA, one can define

HAIFA-MACC
k (M) = HAIFAC

k (M).

◮ As HAIFA is PRF-preserving, then the above MAC is
secure.

◮ SHAvite-3 is secure, and thus we define

SHAvite-3-MACk (M) = SHAvite-3k (M).

◮ Of course, the user needs to keep the key secret!

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 30/ 32

-

Specification Security Performance MAC SHAvite-3-MAC Comparison

Comparison with HMAC

◮ More efficient — most of the time, one compression
function less than HMAC.

◮ More efficient — one less initialization than HMAC.

◮ Better foundations for the security analysis.

Number of compression function calls:

Construction 0 Bytes 1500 Bytes n Bytes

SHA-256 1 24 ⌈(n + 8)/64⌉

HMAC-SHA-256 2 25 1 + ⌈(n + 8)/64⌉

SHAvite-3 1 24 ⌈(n + 10)/64⌉

SHAvite-3-MAC 1 24 ⌈(n + 10)/64⌉

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 31/ 32

-

Specification Security Performance MAC SHAvite-3-MAC Comparison

Questions?

Thank you for your attention!

http://www.cs.technion.ac.il/∼orrd/SHAvite-3/

Orr Dunkelman SHAvite 3: Secure, Efficient, and Flexible Hash Function Proposal 32/ 32

	Specification and Design Rationale
	SHAvite-3
	SHAvite-3256 --- Producing Digests of up to 256 Bits
	The E256 Block Cipher
	SHAvite-3512 --- Producing Digests of 257 to 512 Bits
	The E512 Block Cipher
	Why SHAvite-3?

	Security Analysis
	The Security of the Block Ciphers
	The Security as a Hash Function
	Theoretical Notions of Security

	Performance Results and Analysis
	Software Implementation
	Hardware Implementation

	The SHAvite-3-MAC
	Definition of the SHAvite-3-MAC
	Comparing SHAvite-3-MAC with HMAC

