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Spectral Hash Fundamentals 

• Hashing methodology: Merkle-Damgard construction 

• Organization of data: 512-bit data is broken into 128 4-bit blocks, and 
then, it is treated as a 3-d array of dimension 4 × 4 × 8 with 4-bit entries 

• Mathematical structures: Finite fields GF(17) and GF(24), 3-d Discrete 
Fourier transform of length 4 and 8 over the finite field GF(17) 

• Operations: 3-d DFTs, Swaps, Rubic-type rotations, Affine 
transformations (similar to the AES S-box), Data controlled 
permutations, Nonlinear transformations 

• Platforms: Highly suitable for hardware (FPGA & ASIC), but, optimized 
software implementations are also possible 
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Merkle-Damgard Construction 
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Initial Steps: Data to S-Prism 

• Input is processed in 512-bit chunks mi for i = 0, 1, . . . with |mi| = 512 

• Take the 512-bit data chunk mi in step i, break it into a linear array of 
128 4-bit blocks: sn for n = 0, 1, . . . , 127 with |sn| = 4 

• Construct a 4 × 4 × 8 array: s-prism, such that 

Sijk = s32i+8j+k 

Given sn, we can also compute the 3-d index set as 

i = ⌊n/32⌋ (mod 4) 

j = ⌊n/8⌋ (mod 4)
 

k = n (mod 8) 
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S-Prism 
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P-Prism and H-Prism 

• We also have two additional prisms of the same shape: P and H 

• P-prism is initially configured as 

Pijk = 32i + 8j + k 

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. It holds a permutation of the 
7-bit index set: {0, 1, 2, . . . , 127}. 

• H-prism holds the data from the S-prism of the previous round, therefore, 
like S-prism, it will contain 4-bit values. Its initial configuration is all 
zero: 

Hijk = 0
 

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7.
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P-Prism (Initial Configuration) 
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Begin Hashing: Initial Swap 

• Take m0 and create the initial S-prism 

• Initialize P-prism 

• Apply Initial Swap function to P-prism using the data in S-prism, using 
the following definitions: 

SH(ijk) = Sijk div 4 (higher 2 bits of Sijk)
 

SL(ijk) = Sijk mod 4 (lower 2 bits of Sijk)
 

Initial Swap 
for k = 0, 1, . . . , 7 
for i = 0, 1, 2, 3 
for j = 0, 1, 2, 3 
Swap(Pi j k, PSH(ijk) SL(ijk) k) 
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Compression Function on mi 

Inputs: mi, P-prism, H-prism
 
Outputs: P-prism, H-prism
 
P and H were updated in previous step with mi−1
 

Take chunk mi and form S
 
S = AffineTransform(S)
 
P = SwapControl1(S,P)
 
P = SwapControl2(S,P)
 
S = DFTk(S)
 
P = SwapControl3(S,P)
 
S = DFTj(S)
 
P = SwapControl4(S,P)
 
S = DFTi(S)
 
S = NLST(S,P,H)
 
H = S
 
P = PlaneRotate(P)
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Affine Transformation on S-Prism 

•	 For all i, j, k do the following: 

•	 Take an element of S-prism Sijk and compute its inverse 

U	 = S−1 ∈ GF (24)ijk 

3•	 Let U be U0 + U1x + U2x
2 + U3x

•	 Compute the matrix-vector product 

  	      

S0	 1 0 1 1 U0 1 
  	     S1	 1 1 0 1 U1 1 
  	     =	 ⊕ 
	 S2   1 1 1 0  U2   1  

S3 0 1 1 1 U3 0 

• Replace Sijk in the S-prism with the output (S3S2S1S0) 
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3-d Discrete Fourier Transformations on S-Prism 

• DFT over the k axis: 16 simultaneous 1-dimensional 8-point DFT 
computations over GF(17) with w8 = 2 

• DFT over the j axis: 32 simultaneous 1-dimensional 4-point DFT 
computations over GF(17) with w4 = 4 

• DFT over the i axis: 32 simultaneous 1-dimensional 4-point DFT 
computations over GF(17) with w4 = 4 

d−1
 


Xi = DFTd(x) = w i·jxj (mod 17) 
j=0 
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3-d Discrete Fourier Transformations on S-Prism 
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Discrete Fourier Transformations on P-Prism 

• DFT computations on P-prism are accomplished using data (S-prism) 
dependent swaps on P-prism 

• A swap-control-plane (sc-plane) is generated using S-prism; these sc­
planes are then used to update P-prism 

• The 1st sc-plane is generated using these explicit formulae: 

if Sij0[0] ⊕ Sij4[0] = 0 then swap(Pij0, Pij7) 

if Sij0[1] ⊕ Sij4[1] = 0 then swap(Pij1, Pij6) 

if Sij0[2] ⊕ Sij4[2] = 0 then swap(Pij2, Pij5) 

if Sij0[3] ⊕ Sij4[3] = 0 then swap(Pij3, Pij4) 

• The other sc-plane definitions (2nd, 3rd, and 4th) are found in the 
document 
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Nonlinear Transformations on S-prism 

• For all i, j, k do the following on S-prism: 

  

−1 
  

−1′ ′ Sijk = S ⊕ PLijk ⊕ S ⊕ PHijk ⊕ Hijk ijk Pijk 

• Here, we have 

′ S = (mod 16) for all i, j, k ijk Sijk
 

PL ′ = Pijk (mod 16) for all i, j, k
 ijk 

′ PH = (Sijk div 16) || (Pijk div 16) for all i, j, k ijk 

• Recall that GF(17) produces 5-bit numbers, in the range [0, 16]. With 
these nonlinear transformations, they are reduced back to 4 bits. 
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Rubic Rotations on P-prism 

• The last step of the compression function involves plane rotations along 
the k-axis, defined as follows: 

if (k = 0 mod 4) then Pijk = Pijk 

if (k = 1 mod 4) then Pijk = P(3−j)ik 

if (k = 2 mod 4) then Pijk = Pjik 

if (k = 3 mod 4) then Pijk = Pj(3−i)k 
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Rubic Rotations on P-prism 
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Hash Output via sg-Tables 

• Spectral Hash algorithm can be configured to return hash values in 32 
multiples of bit lengths between 128 and 512 bits, and thus, include sizes 
224, 256, 384, and 512 bits. 

• The hash value bits are selected from S-prism using the sg-table. 

• For each hash length (128, 224, 256, 384, & 512), there are (4, 6, 8, 
12, & 16) stars in the sg-table which gives the indices of P-prism and 
S-prism to be selected. 

• For example, for 256-bit hash, the following sg-table is used. 

P(i,j,k)[1 : 0] 00 01 10 11 

bit 3 * * 
*position 2 * 

on 1 * * 
0 * *S(i,j,k) 
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Final Hash Output 

• After the selection process, the resulting S-prism looks like a swiss cheese, 
unselected parts are the holes. 

• The final hash value is obtained from this punctured S-prism using the 
index mapping 

h = H0 || H1 || · · · || H127 

such that 
HI = Sijk
 

where Sijk is the punctured S-prism, and
 

I = 32i + 8j + k
 

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7
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Security Claims 

• DFT provides near perfect diffusion. 

• No look-up tables – Prevents side channel attacks. 

• Affine Transform prevents fixed points. 

• The inversion function over a finite field has the best known non-linearity.
 

• Our current NIST-approved submission has an issue with the padding 
specification for messages whose lengths are multiples of 512 bits. There 
exists a trivial fix for this issue. Our website has a fixed version of the 
code. 

• As of now, there are no current attacks (on the fixed code) that have 
shown any weakness in Spectral Hash. 
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Performance for 512-bit Hashing 

Software (Unoptimized reference implementation) 

• 40 Mb/s on a Core Duo 2.16Ghz. 

• 400 cycles per byte. 

• 15,000 cycles of overhead. 

• 256 bytes of internal state. 

Hardware (FPGA) 

• A maximum-area and speed implementation running on a 100-MHz 
Virtex-4 FPGA will produce 512-bit hashes at 51.2 gigabits per second! 
We will publish our code at opencores.org. 

• Same hardware produces hashes of any length. 

• We are currently working on an area-optimized ASIC implementation.
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What Makes Spectral Hash Special? 

• It is the work of 5 undergraduate students (Megan Maguire, Carl Minden, 
Jacob Topper, Alex Troesch, Cody Walker) from the College of Creative 
Studies at the University of California Santa Barbara (UCSB), working 
with a postdoc and a professor. 

• UCSB is the home of Crypto (We are natural cryptographers!) 

• In software, we are not the slowest (Thanks ECOH!) 

• Spectral rhymes with Special! 
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