
Spectral Hash

Çetin Kaya Koç

koc@cs.ucsb.edu

http://cs.ucsb.edu/~koc/shash

College of Creative Studies &

Department of Computer Science

University of California Santa Barbara

Team:

Gökay Saldamlı, Cevahir Demirkıran, Megan Maguire,

Carl Minden, Jacob Topper, Alex Troesch, Cody Walker

First SHA-3 Candidate Conference - Feb 25-28, 2009

http://cs.ucsb.edu/~koc/shash
mailto:koc@cs.ucsb.edu

Spectral Hash Fundamentals

• Hashing methodology: Merkle-Damgard construction

• Organization of data: 512-bit data is broken into 128 4-bit blocks, and
then, it is treated as a 3-d array of dimension 4 × 4 × 8 with 4-bit entries

• Mathematical structures: Finite fields GF(17) and GF(24), 3-d Discrete
Fourier transform of length 4 and 8 over the finite field GF(17)

• Operations: 3-d DFTs, Swaps, Rubic-type rotations, Affine
transformations (similar to the AES S-box), Data controlled
permutations, Nonlinear transformations

• Platforms: Highly suitable for hardware (FPGA & ASIC), but, optimized
software implementations are also possible

First SHA-3 Candidate Conference - Feb 25-28, 2009 1

Merkle-Damgard Construction

Message

Padding

m
0 m

1 m
n-2 m

n-1

H

Initial Swap

Control

Bit Marking

Message

Digest

Message

M

H

P P

S S S

S

Compression Compression Compression Compression

First SHA-3 Candidate Conference - Feb 25-28, 2009 2

Initial Steps: Data to S-Prism

• Input is processed in 512-bit chunks mi for i = 0, 1, . . . with |mi| = 512

• Take the 512-bit data chunk mi in step i, break it into a linear array of
128 4-bit blocks: sn for n = 0, 1, . . . , 127 with |sn| = 4

• Construct a 4 × 4 × 8 array: s-prism, such that

Sijk = s32i+8j+k

Given sn, we can also compute the 3-d index set as

i = ⌊n/32⌋ (mod 4)

j = ⌊n/8⌋ (mod 4)

k = n (mod 8)

First SHA-3 Candidate Conference - Feb 25-28, 2009 3

S-Prism

s7
s15

s23

s39 s71 s103
s103

s111
s119

s127

s126

s125

s124

s123

s122

s121

s126

s118

s117

s116

s115

s114

s113

s112

s110

s109

s108

s107

s106

s105

s104

s102

s101

s100

s99

s98

s97

s96

s127s95s63s31

s55 s87 s119
s111s79s47

s31

s30

s29

s28

s27

s26

s25

s24

s63

s62

s61

s60

s59

s58

s57

s56 s88

s89

s90

s91

s92

s93

s94

s95 s127

s126

s125

s124

s123

s122

s121

s120

k

j

i

First SHA-3 Candidate Conference - Feb 25-28, 2009
 4

P-Prism and H-Prism

• We also have two additional prisms of the same shape: P and H

• P-prism is initially configured as

Pijk = 32i + 8j + k

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. It holds a permutation of the
7-bit index set: {0, 1, 2, . . . , 127}.

• H-prism holds the data from the S-prism of the previous round, therefore,
like S-prism, it will contain 4-bit values. Its initial configuration is all
zero:

Hijk = 0

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7.

First SHA-3 Candidate Conference - Feb 25-28, 2009 5

P-Prism (Initial Configuration)

7

15

23

39 71 103

103

111

119

127

126

125

124

123

122

121

126

118

117

116

115

114

113

112

110

109

108

107

106

105

104

102

101

100

99

98

97

96

127956331

55 87 119

1117947

31

30

29

28

27

26

25

24

63

62

61

60

59

58

57

56 88

89

90

91

92

93

94

95 127

126

125

124

123

122

121

120

k

j

i

First SHA-3 Candidate Conference - Feb 25-28, 2009
 6

Begin Hashing: Initial Swap

• Take m0 and create the initial S-prism

• Initialize P-prism

• Apply Initial Swap function to P-prism using the data in S-prism, using
the following definitions:

SH(ijk) = Sijk div 4 (higher 2 bits of Sijk)

SL(ijk) = Sijk mod 4 (lower 2 bits of Sijk)

Initial Swap
for k = 0, 1, . . . , 7
for i = 0, 1, 2, 3
for j = 0, 1, 2, 3
Swap(Pi j k, PSH(ijk) SL(ijk) k)

First SHA-3 Candidate Conference - Feb 25-28, 2009 7

Compression Function on mi

Inputs: mi, P-prism, H-prism

Outputs: P-prism, H-prism

P and H were updated in previous step with mi−1

Take chunk mi and form S

S = AffineTransform(S)

P = SwapControl1(S,P)

P = SwapControl2(S,P)

S = DFTk(S)

P = SwapControl3(S,P)

S = DFTj(S)

P = SwapControl4(S,P)

S = DFTi(S)

S = NLST(S,P,H)

H = S

P = PlaneRotate(P)

First SHA-3 Candidate Conference - Feb 25-28, 2009 8

Affine Transformation on S-Prism

•	 For all i, j, k do the following:

•	 Take an element of S-prism Sijk and compute its inverse

U	 = S−1 ∈ GF (24)ijk

3•	 Let U be U0 + U1x + U2x
2 + U3x

•	 Compute the matrix-vector product

  	     

S0	 1 0 1 1 U0 1
  	     S1	 1 1 0 1 U1 1
  	     =	 ⊕
	 S2   1 1 1 0  U2   1 

S3 0 1 1 1 U3 0

• Replace Sijk in the S-prism with the output (S3S2S1S0)

First SHA-3 Candidate Conference - Feb 25-28, 2009 9

3-d Discrete Fourier Transformations on S-Prism

• DFT over the k axis: 16 simultaneous 1-dimensional 8-point DFT
computations over GF(17) with w8 = 2

• DFT over the j axis: 32 simultaneous 1-dimensional 4-point DFT
computations over GF(17) with w4 = 4

• DFT over the i axis: 32 simultaneous 1-dimensional 4-point DFT
computations over GF(17) with w4 = 4

d−1

Xi = DFTd(x) = w i·jxj (mod 17)
j=0

First SHA-3 Candidate Conference - Feb 25-28, 2009 10

3-d Discrete Fourier Transformations on S-Prism

k

j

i

i

k

k-DFT

j-DFT

i-DFT

i

j

First SHA-3 Candidate Conference - Feb 25-28, 2009
 11

Discrete Fourier Transformations on P-Prism

• DFT computations on P-prism are accomplished using data (S-prism)
dependent swaps on P-prism

• A swap-control-plane (sc-plane) is generated using S-prism; these sc­
planes are then used to update P-prism

• The 1st sc-plane is generated using these explicit formulae:

if Sij0[0] ⊕ Sij4[0] = 0 then swap(Pij0, Pij7)

if Sij0[1] ⊕ Sij4[1] = 0 then swap(Pij1, Pij6)

if Sij0[2] ⊕ Sij4[2] = 0 then swap(Pij2, Pij5)

if Sij0[3] ⊕ Sij4[3] = 0 then swap(Pij3, Pij4)

• The other sc-plane definitions (2nd, 3rd, and 4th) are found in the
document

First SHA-3 Candidate Conference - Feb 25-28, 2009 12

Swap Control Planes

k k k

j

4

sc-

plane

th

1 sc-plane*st

1 sc-plane*st

2 sc-planendt

2 sc-planend

i i

j j

DFTs through k-axis DFTs through j-axis

3 sc-planerd

First SHA-3 Candidate Conference - Feb 25-28, 2009

i

13

Nonlinear Transformations on S-prism

• For all i, j, k do the following on S-prism:

−1

−1′ ′ Sijk = S ⊕ PLijk ⊕ S ⊕ PHijk ⊕ Hijk ijk Pijk

• Here, we have

′ S = (mod 16) for all i, j, k ijk Sijk

PL ′ = Pijk (mod 16) for all i, j, k
 ijk

′ PH = (Sijk div 16) || (Pijk div 16) for all i, j, k ijk

• Recall that GF(17) produces 5-bit numbers, in the range [0, 16]. With
these nonlinear transformations, they are reduced back to 4 bits.

First SHA-3 Candidate Conference - Feb 25-28, 2009 14

Rubic Rotations on P-prism

• The last step of the compression function involves plane rotations along
the k-axis, defined as follows:

if (k = 0 mod 4) then Pijk = Pijk

if (k = 1 mod 4) then Pijk = P(3−j)ik

if (k = 2 mod 4) then Pijk = Pjik

if (k = 3 mod 4) then Pijk = Pj(3−i)k

First SHA-3 Candidate Conference - Feb 25-28, 2009 15

Rubic Rotations on P-prism

k

rot - 3

rot - 3

rot - 2

rot - 1

rot - 0

rot - 2

rot - 1

rot - 0

i

j

First SHA-3 Candidate Conference - Feb 25-28, 2009
 16

Hash Output via sg-Tables

• Spectral Hash algorithm can be configured to return hash values in 32
multiples of bit lengths between 128 and 512 bits, and thus, include sizes
224, 256, 384, and 512 bits.

• The hash value bits are selected from S-prism using the sg-table.

• For each hash length (128, 224, 256, 384, & 512), there are (4, 6, 8,
12, & 16) stars in the sg-table which gives the indices of P-prism and
S-prism to be selected.

• For example, for 256-bit hash, the following sg-table is used.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * *
*position 2 *

on 1 * *
0 * *S(i,j,k)

First SHA-3 Candidate Conference - Feb 25-28, 2009 17

Final Hash Output

• After the selection process, the resulting S-prism looks like a swiss cheese,
unselected parts are the holes.

• The final hash value is obtained from this punctured S-prism using the
index mapping

h = H0 || H1 || · · · || H127

such that
HI = Sijk

where Sijk is the punctured S-prism, and

I = 32i + 8j + k

for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7

First SHA-3 Candidate Conference - Feb 25-28, 2009 18

Security Claims

• DFT provides near perfect diffusion.

• No look-up tables – Prevents side channel attacks.

• Affine Transform prevents fixed points.

• The inversion function over a finite field has the best known non-linearity.

• Our current NIST-approved submission has an issue with the padding
specification for messages whose lengths are multiples of 512 bits. There
exists a trivial fix for this issue. Our website has a fixed version of the
code.

• As of now, there are no current attacks (on the fixed code) that have
shown any weakness in Spectral Hash.

First SHA-3 Candidate Conference - Feb 25-28, 2009 19

Performance for 512-bit Hashing

Software (Unoptimized reference implementation)

• 40 Mb/s on a Core Duo 2.16Ghz.

• 400 cycles per byte.

• 15,000 cycles of overhead.

• 256 bytes of internal state.

Hardware (FPGA)

• A maximum-area and speed implementation running on a 100-MHz
Virtex-4 FPGA will produce 512-bit hashes at 51.2 gigabits per second!
We will publish our code at opencores.org.

• Same hardware produces hashes of any length.

• We are currently working on an area-optimized ASIC implementation.

First SHA-3 Candidate Conference - Feb 25-28, 2009 20

http:opencores.org

What Makes Spectral Hash Special?

• It is the work of 5 undergraduate students (Megan Maguire, Carl Minden,
Jacob Topper, Alex Troesch, Cody Walker) from the College of Creative
Studies at the University of California Santa Barbara (UCSB), working
with a postdoc and a professor.

• UCSB is the home of Crypto (We are natural cryptographers!)

• In software, we are not the slowest (Thanks ECOH!)

• Spectral rhymes with Special!

First SHA-3 Candidate Conference - Feb 25-28, 2009 21

