
 

               
 
                               
                                     
                                         
                             

 
 
 

 

OFFICIAL COMMENT: Cheetah 

Subject: OFFICIAL COMMENT: Cheetah
 
From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>
 
Date: Fri, 12 Dec 2008 22:39:51 +0100
 
To: <hash-function@nist.gov>
 
CC: <hash-forum@nist.gov> 

Cheetah hash function is not resistant against length‐extension attack. 

The mechanism in Cheetah to protect against length‐extension attack is the permutation of the chaining value before 
the last invocation of the compression function. However, the initial chaining value of Cheetah is a zero vector of 256 
or 512 bits. That means that every hashing of short messages that have length less than 959 bits will suffer from the 
trivial length‐extension attack because the permutation of the initial zero vector is known to the attacker. 

Best regards, 
Danilo Gligoroski 

1 of 1 12/15/2008 9:39 AM 

mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:danilo.gligoroski@gmail.com


 

--

OFFICIAL COMMENT: Cheetah 

Subject: OFFICIAL COMMENT: Cheetah 
From: Dmitry Khovratovich <khovratovich@gmail.com> 
Date: Fri, 6 Feb 2009 17:30:07 +0100 
To: hash-function@nist.gov 
CC: hash-forum@nist.gov 

Hi all, 

we would like to make some clarification on the status of Cheetah. 
Gligoroski's observation showed that the IV is one of a few fixed
points of the permutation which should prevent length-extension
attacks. A simple change of the IV would make a length-extension
attack on even short messages impossible. Therefore, we do not
consider this observation as a break. 

Another option, which however does not affect neither speed nor the
security of compression function, would be to add to the last-round
permutation a non-zero constant, which would remove any fixed points
and completely avoid length-extension attacks. 

So it would be good if editors of the following web-sites which
currently list Cheetah as "broken" take note:

skein-hash.info
 wikipedia
etc. 

Note also that Cheetah, though being AES-based hash functions, runs at

remarkably high speed. Our recent implementation of Cheetah-256 runs

at a speed of 9.3 cpb,

while Cheetah-512 runs at 13.6 cpb.


Best regards,

Dmitry, Alex, Ivica
 

University of Luxembourg,

Laboratory of Algorithmics, Cryptography and Security,
 

2/6/2009 11:48 AM1 of 1 

mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:khovratovich@gmail.com


 Re: OFFICIAL COMMENT: Cheetah 

Subject: Re: OFFICIAL COMMENT: Cheetah
 
From: David Bauer <astgtciv2009@gatech.edu>
 
Date: Fri, 6 Feb 2009 13:27:15 -0500
 
To: Multiple recipients of list <hash-forum@nist.gov>
 

Note also that Cheetah, though being AES-based hash functions, runs at
remarkably high speed. Our recent implementation of Cheetah-256 runs
at a speed of 9.3 cpb, while Cheetah-512 runs at 13.6 cpb. 

Is this code available someplace? 

David Bauer 

2/9/2009 8:47 AM1 of 1 

mailto:hash-forum@nist.gov
mailto:astgtciv2009@gatech.edu


 

-- 

Re: OFFICIAL COMMENT: Cheetah 

Subject: Re: OFFICIAL COMMENT: Cheetah
 
From: Dmitry Khovratovich <khovratovich@gmail.com>
 
Date: Fri, 6 Feb 2009 14:08:43 -0500
 
To: Multiple recipients of list <hash-forum@nist.gov>
 

Not yet, but we will publish it soon.
 

On Fri, Feb 6, 2009 at 7:26 PM, David Bauer <astgtciv2009@gatech.edu> wrote:
 

> Note also that Cheetah, though being AES-based hash functions, runs at 
> remarkably high speed. Our recent implementation of Cheetah-256 runs 
> at a speed of 9.3 cpb, while Cheetah-512 runs at 13.6 cpb. 

Is this code available someplace? 

David Bauer 

Best regards, 

Dmitry Khovratovich
 

University of Luxembourg,
 
Laboratory of Algorithmics, Cryptography and Security,
 
+ 352 46 66 44 5478 

1 of 1 2/9/2009 8:47 AM 

mailto:astgtciv2009@gatech.edu
mailto:hash-forum@nist.gov
mailto:khovratovich@gmail.com


 

-- 

OFFICIAL COMMENT: Cheetah 

Subject: OFFICIAL COMMENT: Cheetah 
From: Dmitry Khovratovich <khovratovich@gmail.com> 
Date: Fri, 20 Feb 2009 18:48:53 +0300 
To: hash-function@nist.gov 
CC: Multiple recipients of list <hash-forum@nist.gov> 

Hi all, 

Cheetah now has its own webpage: http://cryptolux.org/cheetah , where
the specification, updates, slides and code will host. 

A new 64-bit assembler implementation (9.3 / 13.6 cpb for 256/512 bit
digest, resp.) is also available there. 

Comments are welcome. 

Best regards,

Dmitry Khovratovich
 

University of Luxembourg,

Laboratory of Algorithmics, Cryptography and Security,

+ 352 46 66 44 5478 

1 of 1 2/20/2009 10:55 AM 

http://cryptolux.org/cheetah
mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:khovratovich@gmail.com


 

--

-- 

Re: OFFICIAL COMMENT: Cheetah 

Subject: Re: OFFICIAL COMMENT: Cheetah
 
From: Dmitry Khovratovich <khovratovich@gmail.com>
 
Date: Fri, 20 Feb 2009 11:59:58 -0500
 
To: Multiple recipients of list <hash-forum@nist.gov>
 

UPD.: the certificate of our web-server is self-signed so you probably
get a security warning (we will resolve it soon). Please just choose
the option "accept the certificate" when open the web-site. 

On Fri, Feb 20, 2009 at 7:01 PM, Dmitry Khovratovich
<khovratovich@gmail.com> wrote: 

Hi all, 

Cheetah now has its own webpage: http://cryptolux.org/cheetah , where
the specification, updates, slides and code will host. 

A new 64-bit assembler implementation (9.3 / 13.6 cpb for 256/512 bit
digest, resp.) is also available there. 

Comments are welcome. 

Best regards,

Dmitry Khovratovich
 

University of Luxembourg,

Laboratory of Algorithmics, Cryptography and Security,

+ 352 46 66 44 5478 

Best regards,

Dmitry Khovratovich
 

University of Luxembourg,

Laboratory of Algorithmics, Cryptography and Security,

+ 352 46 66 44 5478 

1 of 1 2/20/2009 12:12 PM 

http://cryptolux.org/cheetah
mailto:khovratovich@gmail.com
mailto:hash-forum@nist.gov
mailto:khovratovich@gmail.com


 

 
                       

       
 

                         
 
                 
             
         

 
             

 
 
                   

 
 
     

 
                     
             
                   

 
                           
               

 
                                   

 
                         
                       
                   

                       
                       

                             
 

                         
                       
             
 

 
                           

 
                     

 
                               

                         
 

                       
 
 

OFFICIAL COMMENT: Cheetah 

Subject: OFFICIAL COMMENT: Cheetah
 
From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>
 
Date: Tue, 21 Apr 2009 08:53:15 +0200
 
To: <hash-function@nist.gov>
 
CC: <hash-forum@nist.gov> 

Hi,
 

I think I have second preimage attack on un‐salted Cheetah with complexity of
 
O(2^(n/2)) computations and negligible memory.
 

Cheetah uses a sort of Rijndael block cipher in Davies‐Meyer mode and HAIFA framework.
 

Let us call the used Rijndael‐like block cipher as RijndaelCheetah.
 
More precisely RijndaelCheetah(Key, PlainText) is a block cipher
 
where Key = (Message_Block_of_1024_bits || Block_Counter).
 

Similarly, let us call Inverse_RijndaelCheetah(Key, CipherText) the inverse
 
block cipher.
 

We are going to define two‐block second preimage attack on Cheetah
 
(meet‐in‐the‐middle attack).
 

Let Cheetah(Unknown_Message) = H1.
 

The goal is to find a second preimage message M=(M0, M1) consisting
 
of two blocks, such that Cheetah(M) = H1.
 
Note that both blocks M0 and M1 are 1024 bits long.
 

Step 1. Fix the last 88 bits of M1, according to the definition of the
 
padding of a message long 2048 ‐ 88 = 1960 bits.
 

Step 2. Fix also the last 88 bits of M0 to the same padding constant value as in M1.
 

Step 3. (Forward step) Generate 2^(n/2) different messages {M0_i | i=1, ..., 2^(n/2) }
 
(with the fixed last 88 bits as defined in Step 2.) and compute
 
H0_i = LastBlockPermutation( RijndaelCheetah(M0_i, Block_Counter0, IV) XOR IV ), i=1, ...,
 
2^(n/2),
 
where Block_Counter0=0, and IV is any IV defined by the designers of Cheetah.
 
In the current documentation IV=0, but in one OFFICIAL COMMENT the designers mentioned
 
possibility to use a different IV. This attack works well no matter what IV was chosen.
 

Step 4. (Backward step) Generate 2^(n/2) different messages {M1_i | i=1, ..., 2^(n/2) }
 
(with the fixed last 88 bits as defined in Step 1.) and compute
 
H1_i = Inverse_RijndaelCheetah(M1_i, Block_Counter1, H1), i=1, ..., 2^(n/2),
 
where Block_Counter1=1.
 

Step 5. With high probability, there is a matching pair (M0_i, M1_j) such that the
 
corresponding
 
H0_i = H1_j i.e. Cheetah(M) = H1 where M = (M0_i, M1_j).
 

Remark: Since the domain for message blocks M0_i and M1_i is the same, we can launch a
 
memoryless
 
version of this attack described in memoryless birthday attack of van Oorschot and Wiener
 
paper [1],
 
and the total complexity of this attack is O(2^(n/2)) computations and negligible memory.
 

4/22/2009 8:05 AM1 of 2 

mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:danilo.gligoroski@gmail.com


 

                       

       
 

 
 

OFFICIAL COMMENT: Cheetah 

[1] Paul C. Van Oorschot and Michael J.Wiener. Parallel collision search with cryptanalytic
 
applications.
 
Journal of Cryptology, 12:1–28, 1999.
 

Regards,
 
Danilo Gligoroski
 

4/22/2009 8:05 AM2 of 2 



 

 
                           
                               

 

 

 

 
                       

       
 

                         
 
                 
             
         

 
             

 
 
                   

 
 
     

 
                     
             
                   

 
                           
               

 
                                   

 
                         
                       
                   

                       
                       

                             
 

                         
                       
             

RE: OFFICIAL COMMENT: Cheetah 

Subject: RE: OFFICIAL COMMENT: Cheetah
 
From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>
 
Date: Tue, 21 Apr 2009 06:43:25 -0400
 
To: Multiple recipients of list <hash-forum@nist.gov>
 

Clarification: 

The described attack was based on the Figure 1 in the official Cheetah documentation where 
there is no last feed‐forward. If there is a feed‐forward, the attack as described is not possible. 

Regards, 
Danilo! 

From: hash-forum@nist.gov [mailto:hash-forum@nist.gov] On Behalf Of Danilo Gligoroski 
Sent: Tuesday, April 21, 2009 9:04 AM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT: Cheetah 

Hi,
 

I think I have second preimage attack on un‐salted Cheetah with complexity of
 
O(2^(n/2)) computations and negligible memory.
 

Cheetah uses a sort of Rijndael block cipher in Davies‐Meyer mode and HAIFA framework.
 

Let us call the used Rijndael‐like block cipher as RijndaelCheetah.
 
More precisely RijndaelCheetah(Key, PlainText) is a block cipher
 
where Key = (Message_Block_of_1024_bits || Block_Counter).
 

Similarly, let us call Inverse_RijndaelCheetah(Key, CipherText) the inverse
 
block cipher.
 

We are going to define two‐block second preimage attack on Cheetah
 
(meet‐in‐the‐middle attack).
 

Let Cheetah(Unknown_Message) = H1.
 

The goal is to find a second preimage message M=(M0, M1) consisting
 
of two blocks, such that Cheetah(M) = H1.
 
Note that both blocks M0 and M1 are 1024 bits long.
 

Step 1. Fix the last 88 bits of M1, according to the definition of the
 
padding of a message long 2048 ‐ 88 = 1960 bits.
 

Step 2. Fix also the last 88 bits of M0 to the same padding constant value as in M1.
 

Step 3. (Forward step) Generate 2^(n/2) different messages {M0_i | i=1, ..., 2^(n/2) }
 
(with the fixed last 88 bits as defined in Step 2.) and compute
 
H0_i = LastBlockPermutation( RijndaelCheetah(M0_i, Block_Counter0, IV) XOR IV ), i=1, ..,
 
2^(n/2),
 
where Block_Counter0=0, and IV is any IV defined by the designers of Cheetah.
 
In the current documentation IV=0, but in one OFFICIAL COMMENT the designers mentioned
 
possibility to use a different IV. This attack works well no matter what IV was chosen.
 

Step 4. (Backward step) Generate 2^(n/2) different messages {M1_i | i=1, ..., 2^(n/2) }
 
(with the fixed last 88 bits as defined in Step 1.) and compute
 
H1_i = Inverse_RijndaelCheetah(M1_i, Block_Counter1, H1), i=1, ..., 2^(n/2),
 

1 of 2 4/22/2009 8:06 AM 

mailto:mailto:hash-forum@nist.gov
mailto:hash-forum@nist.gov
mailto:hash-forum@nist.gov
mailto:danilo.gligoroski@gmail.com


 Re: OFFICIAL COMMENT: Cheetah 

Subject: Re: OFFICIAL COMMENT: Cheetah
 
From: Dmitry Khovratovich <khovratovich@gmail.com>
 
Date: Tue, 21 Apr 2009 10:41:01 -0400
 
To: Multiple recipients of list <hash-forum@nist.gov>
 

Hi,

you are right, Figure 1 is incorrect.
 

There is a feed-forward, of course. See, e.g., the reference code, the

conference slides, or the pseudocode (page 2).
 

On Tue, Apr 21, 2009 at 3:42 AM, Danilo Gligoroski
<danilo.gligoroski@gmail.com> wrote: 
Clarification: 

The described attack was based on the Figure 1 in the official Cheetah

documentation where
 

there is no last feed-forward. If there is a feed-forward, the attack as
described is not possible. 

Regards, 

Danilo! 

From: hash-forum@nist.gov [mailto:hash-forum@nist.gov] On Behalf Of Danilo
Gligoroski
Sent: Tuesday, April 21, 2009 9:04 AM
To: Multiple recipients of list
Subject: OFFICIAL COMMENT: Cheetah 

Hi, 

I think I have second preimage attack on un-salted Cheetah with complexity
of 

O(2^(n/2)) computations and negligible memory. 

Cheetah uses a sort of Rijndael block cipher in Davies-Meyer mode and HAIFA
framework. 

Let us call the used Rijndael-like block cipher as RijndaelCheetah. 

More precisely RijndaelCheetah(Key, PlainText) is a block cipher 

where Key = (Message_Block_of_1024_bits || Block_Counter). 

Similarly, let us call Inverse_RijndaelCheetah(Key, CipherText) the inverse 

block cipher. 

1 of 3 4/22/2009 8:07 AM 

mailto:mailto:hash-forum@nist.gov
mailto:hash-forum@nist.gov
mailto:danilo.gligoroski@gmail.com
mailto:hash-forum@nist.gov
mailto:khovratovich@gmail.com

