
OFFICIAL COMMENT: ECOH

1 of 1 4/13/2009 10:04 AM

Subject: OFFICIAL COMMENT: ECOH
From: Niels Ferguson <niels@microsoft.com>
Date: Fri, 10 Apr 2009 13:47:35 -0700
To: "hash-function@nist.gov" <hash-function@nist.gov>
CC: "hash-forum@nist.gov" <hash-forum@nist.gov>

Michael Halcrow and myself found a 2nd pre‐image attack on ECOH. Our attack requires 2^{143} time for ECOH‐224
and ECOH‐256, 2^{206} time for ECOH‐384, and 2^{287} time for ECOH‐512. The attack sets the checksum block
to a fixed value and uses a collision search on the elliptic curve points.

I have attached the paper. It should also appear on eprint.iacr.org under 2009/198.

Cheers!

Niels

ecohattack-final.pdf

Content-Description: ecohattack-final.pdf

Content-Type: application/pdf

Content-Encoding: base64

A Second Pre-image Attack
Against Elliptic Curve Only Hash (ECOH)

Michael A. Halcrow
mhalcrow@microsoft.com

Niels Ferguson
niels@microsoft.com

April 6, 2009

Abstract

We present a second pre-image attack on ECOH. Our attack requires 2143

time for ECOH-224 and ECOH-256, 2206 time for ECOH-384, and 2287 time
for ECOH-512. The attack sets the checksum block to a fixed value and uses
a collision search on the elliptic curve points.

1 An outline of ECOH

We first give a description of the essential elements of ECOH. We restrict ourselves to
messages that are an integral number of blocks, which is what we use in our attack.
For full details, please refer to the ECOH specifications [1].

ECOH divides the message into blocks, maps each block to an elliptic curve point,
and adds these points together with two more points. One additional point contains
the padding and depends only on the message length. The second additional point
depends on the message length and the exclusive-or of all message blocks.

1

More formally, given n message blocks M0, . . . ,Mn−1 we have

Pi := P (Mi, i) for i = 0, . . . , n − 1

X1 := P ′(n)

X2 := P ′′(
n−1⊕
i=0

Mi, n)

Q :=
n−1∑
i=0

Pi + X1 + X2

R := f(Q)

Here, P is a function that maps a message block and an integer to an elliptic curve
point. P ′ computes the padding point which depends only on the length of M .
P ′′ computes the checksum point X2 which depends on the exclusive-or of all the
message blocks, and on the length of M . Finally, the n + 2 elliptic curve points are
added, and the result Q is passed through an output transformation function f to
get the hash result R.

2 General form of the attack

For a second pre-image attack we are given a message M and try to find an M ′

that hashes to the same message. We will find an M ′ that results in the same value
for Q that occurred in the hash computation of M . This lets us ignore the output
transformation.

For this attack, we fix the message length to six blocks: M ′ = (M0, M1, M2, M3,
M4, M5). We choose K different random values for (M0,M1) and define M2 by
M2 := M0 ⊕M1. We compute the K corresponding elliptic curve points P (M0, 0) +
P (M1, 1) + P (M2, 2) and store them in a list. We then choose K different random
values for (M3,M4), define M5 := M3 ⊕ M4, compute Q − X1 − X2 − P (M3, 3) −
P (M4, 4) − P (M5, 5), and store them in a second list. Note that the target Q is
known. X1 only depends on the length of the message which we have fixed. X2

depends on the length and the xor of all message blocks, but we choose the message
blocks such that the xor is always zero. Thus, X2 is fixed for all our tries.

If K is larger than the square root of the number of points on the elliptic curve then
we expect one collision between the two lists. This gives us a message (M0, M1, M2,

2

M3, M4, M5) with

Q − X1 − X2 −
5∑

i=3

P (Mi, i) =
2∑

i=0

P (Mi, i)

and thus

Q =
5∑

i=0

P (Mi, i) + X1 + X2

which shows that this message leads to the target value Q and thus is a second
pre-image.

The workload of this attack is 2K partial hash computations. As this is a direct
collision search, well-known techniques can be used to convert this algorithm into
one that uses only a limited amount of memory.

3 Actual parameters

ECOH-224 and ECOH-256 use the elliptic curve B-283 with approximately 2283

points on the curve. We choose K = 2142 and get an attack with complexity 2143.

ECOH-384 uses the elliptic curve B-409 with approximately 2409 points on the curve.
Choosing K = 2205 gives an attack with complexity 2206.

ECOH-512 uses the elliptic curve B-571 with approximately 2571 points on the curve.
Choosing K = 2286 gives an attack with complexity 2287.

4 Discussion

The ECOH authors discuss a possible second pre-image birthday attack in Section
6.2.2 of the ECOH paper. They claim that Wagner’s Generalized Birthday Attack
does not work because of the checksum block. Our method of choosing the mes-
sage pieces effectively fixes the checksum block to zero, thereby circumventing this
countermeasure.

3

5 Acknowledgements

We would like to thank Daniel Brown, the principal submitter of ECOH, for his
helpful comments and suggestions.

References

[1] Daniel R. L. Brown, Adrian Antipa, Matt Campagna, Rene Struik, “ECOH:
the Elliptic Curve Only Hash” http://ehash.iaik.tugraz.at/uploads/a/

a5/Ecoh.pdf, Submission to NIST, 2008

4

Re: OFFICIAL COMMENT: ECOH

1 of 1 4/13/2009 10:05 AM

Subject: Re: OFFICIAL COMMENT: ECOH
From: Daniel Brown <dbrown@certicom.com>
Date: Sat, 11 Apr 2009 16:57:15 -0400
To: Multiple recipients of list <hash-forum@nist.gov>

Thank you Niels and Michael for looking at ECOH.

Although I'm not sure why there is need to have n rather than n/2 bit security for n bit hashes, the ECOH team is
working on a way that may achieve this. It will likely involve doubling the bit size of the elliptic curve, and as such
may be viewed as an instance of the generalization of ECOH in our submission. Details to follow.

Best regards,

Dan

From: hash-forum@nist.gov
To: Multiple recipients of list
Sent: Fri Apr 10 17:01:48 2009
Subject: OFFICIAL COMMENT: ECOH

Michael Halcrow and myself found a 2nd pre‐image attack on ECOH. Our attack requires 2^{143} time for ECOH‐224
and ECOH‐256, 2^{206} time for ECOH‐384, and 2^{287} time for ECOH‐512. The attack sets the checksum block
to a fixed value and uses a collision search on the elliptic curve points.

I have attached the paper. It should also appear on eprint.iacr.org under 2009/198.

Cheers!

Niels

From: hash-forum@nist.gov on behalf of Daniel Brown [dbrown@certicom.com]
Sent: Tuesday, June 02, 2009 1:31 PM
To: Multiple recipients of list
Subject: OFFICIAL COMMENT: ECOH
Attachments: ECOH2.pdf

Page 1 of 1

6/3/2009

Hi All,

This paper tunes the parameters of generalized ECOH in an effort to resist second preimage attacks like
Ferguson and Halcrow's.

Best regards,

 Dan

ECOH2

Daniel R. L. Brown

June 1, 2009

Abstract

Parameters in the SHA-3 candidate ECOH are tuned to yield ECOH2, which has potentially
better security and efficiency than ECOH with the original parameters. The elliptic curve bit
length is effectively doubled, so that the Ferguson-Halcrow second preimage attack on ECOH
becomes worse than a generic hash attack on ECOH2. Despite the doubling of the curve size,
efficiency is not too adversely affected, and is indeed potentially improved, for two main reasons:
more message bits are used per point, and elliptic curve twists are used to lessen the number of
attempted points per message block.

1 Introduction

ECOH, the elliptic curve only hash, is a submission to NIST’s SHA-3 competition. The competition
guidelines request that an n-bit hash should provide about n bits of second preimage resistance for
short messages.

Ferguson and Halcrow [1] found a second preimage against ECOH that is significantly faster
than the goal above from the SHA-3 competition guidelines. For example, they find 143-bit attack
second preimage attack against ECOH-256.

The NIST competition guidelines request for submitters to suggest tunable parameters that
would allow NIST to adjust the security or performance of the submitted hash functions. At
the first SHA-3 workshop, NIST stated that submitters should prepare any adjustments to these
recommended parameters, as soon as possible, in anticipation of the fact the SHA-3 candidates
accepted to the second round of the competition would be allowed to make such adjustments.

The ECOH submission documentation contains a description of a generalization of ECOH. This
generalization may be regarded as providing the tunable parameters requested in the SHA-3 com-
petition guidelines. This document presents an adjustment of the tunable parameters. The primary
goal of the adjustment is to improve the security against second preimage attacks. Secondary goals
are to improve efficiency and pseudorandomness.

2 Two 2nd Preimage Attacks Against ECOH

This section summarizes some second preimage attacks against ECOH.

ECOH2 2.1 Ferguson-Halcrow Second Preimage Attack

2.1 Ferguson-Halcrow Second Preimage Attack

Ferguson and Halcrow [1] found a second preimage attack on ECOH. When an m-bit elliptic curve
is used, the Ferguson-Halcrow attack takes about 2m/2 partial ECOH evaluations. Their attack
can be implemented with a negligible amount of memory.

In the ECOH specification and implementations, the parameter m (curve bit size) is chosen
to be slightly larger than n (hash bit size). The effect was that the 2m/2 steps in their attack
was considerably smaller than the 2n steps that the SHA-3 guidelines requested for the minimum
number of steps in a second preimage attack.

2.2 A Second Second Preimage Attack

In hindsight, it is noted that in §6.1.2 of the ECOH documentation, a method to find second
preimages in about 2blen steps is almost described. Starting from the paragraph containing equation
(16), what is described is essentially a second preimage attack, since the message M ′ is fixed and
arbitrary and the possibility of finding a message M colliding with M ′ is considered. By equation
(20), it is noted that one need only find a low degree solution of a given quartic (with the quartic
determined by M ′). However, in the next paragraph, it is noted that this can be generalized to a
two-variable polynomial, which by the theory of Semaev summation polynomials will be octic in
each variable, whose low degree solution leads to a colliding message M . Here, by low degree, we
mean a polynomial of degree blen. The ECOH documentation notes that there is likely to be such
a low degree solution. (The reason is by heuristics and counting arguments.)

The ECOH documentation fails to note that by exhaustively searching all low degree values of
one of the variables, solving the octic for the second variables, and checking at most eight possible
solutions for the second variable for having low degree, that one could find the desired low degree
solution and thus colliding message M . The cost of this attack is about 2blen steps, with each step
involving the solving of an octic polynomial. This is likely to be faster than the Ferguson-Halcrow
attack, and further it is only slightly above the birthday bound of 2n/2 hash computations, because
blen = n/2 in some cases of ECOH.

3 Specification

In this section, a version of generalized ECOH is presented. This version of generalized ECOH is
called ECOH2. It may be also be called ECOH2 (especially where superscripts are not available).

3.1 Overview and Motivation

In ECOH2, the elliptic curves used are defined over finite fields that are, for practical purposes,
quadratic extensions of the corresponding finite fields used in ECOH. Occasionally, we also employ
quartic extensions. So, for example, the function ECOH-224 uses an elliptic curve defined over the
field F2283 , and thus the function ECOH2-224 uses elliptic curves defined over the fields F2566 and
F21132 .

Note that a reason for using even degree extension fields, rather than similarly sized prime
degree fields, is that by choosing quadratic extension fields of the field used in elliptic curve public
key cryptography, some of the field arithmetic implementation code can be shared between the

§3 SPECIFICATION 2

ECOH2 3.2 Bit Length Parameters

hash function and the public key operations. This is because efficient implementation of quadratic
field arithmetic is possible using tower representation involving the lower field arithmetic.

Note that quartic extension are used to have ECOH2 adhere as closely as possible to the original
ECOH pseudocode, and also to work with elliptic curve twists. Using the twisted curve reduces the
number of attempted x-coordinates that must be tried, and therefore the number of field inversions
needed.

3.2 Bit Length Parameters

For the purposes of comparison between ECOH and ECOH2, the notation in the pseudocode of
ECOH2 has been changed: m has been changed to d. Where ECOH used d = m, ECOH2 uses
d = 4m. So, the parameter d will be quadrupled in ECOH2, compared to ECOH. The parameters
blen is also increased. The parameters ilen and clen remain the same. All these parameters are
given in Table 1.

Hash n d blen ilen clen
ECOH2-224 224 1132 384 64 64
ECOH2-256 256 1132 384 64 64
ECOH2-384 384 1636 640 64 64
ECOH2-512 512 2284 768 128 128

Table 1: Parameters for ECOH2

Note that Table 1, unlike the corresponding table for ECOH, does not specify the elliptic curve
and base point. These are specified later in this document.

3.3 Pseudocode

The unified pseudocode in Table 2 for ECOH2 is the almost same as the code for ECOH: there
are only two changes. First is the notation change, discussed above, of switching m to d. The
second is that rightmost bit in Step 6 has been changed to constant bit. This technical change
is actually consistent with ECOH, because the rightmost bit was the constant bit in ECOH. In
ECOH2, however, the location of the constant bit has been moved in order to facilitate Step 5.

Note that reusing the pseudocode from ECOH is intended to avoid introducing new attacks
and to avoid redoing any cryptanalytic effort that has been done, at least to extent that these are
related to the pseudocode.

3.4 Tower Representations

Recall that the finite field used in ECOH were F2m where m was prime, more specifically m ∈
{283, 409, 571}. Furthermore, finite field elements were represented as bit strings using a polynomial
basis representation. This means that the finite field elements were expressed as polynomials:

a = am−1t
m−1 + · · · + a1t + a0 (1)

where ai ∈ {0, 1} and t ∈ F2m has an irreducible polynomial, written f(t), of degree m. The
polynomials f(t) were specified in FIPS 186-2. Every a ∈ F2m can be expressed uniquely in the

§3 SPECIFICATION 3

ECOH2 3.4 Tower Representations

1. Let N = M‖1‖0j , with j chosen to be the smallest nonnegative integer such that the
length of N is divisible by blen.

2. Parse N into blocks N0, . . . , Nk−1 each of length blen bits.

3. Let Oi = Ni‖Ii, where Ii is the ilen-bit representation of the integer i, for i from 0 to
k − 1.

4. Let Ok = (
⊕k−1

i=0 Ni)‖Imlen where Imlen is the ilen-bit representation of the bit length
mlen of the message M .

5. Let Xi = (0d−(blen+ilen+clen)‖Oi‖0clen)⊕Ci where Ci is the bit string of length d rep-
resenting the smallest nonnegative integer c such that Xi represents the x-coordinate
xi of an element of 〈G〉.

6. Let Pi = (xi, yi) be such that the constant bit of yi/xi equals the leftmost bit of Ni.

7. Let Q =
∑k

i=0 Pi.

8. Output the n-bit representation of bx(Q + bx(Q)/2cG)/2c mod 2n.

Table 2: Unified Pseudocode for ECOH2

form given by (1). Also, every (am−1, . . . , a0) ∈ {0, 1}m gives rise to a unique element element
a ∈ F2m in the form (1). The bit string (am−1, . . . , a0) represents the finite field element a.

When moving to the quadratic extension F22m we use what is sometimes called a tower repre-
sentation of the finite field elements. We introduce an element u ∈ F4 which does not belong to
F2m and satisfies equation u2 + u + 1 = 0. Elements of F22m are now written as:

a = (a2m−1t
m−1 + · · · + am+1t + am) + (am−1t

m−1 + · · · + a0)u. (2)

and represented by a bit string as (a2m−1, . . . , a0). This may be called a mixed order (t, u)-tower
representation, since the polynomials in t are represented in descending-degree order, while those
in u are represented in ascending-degree order. The bit am is referred to as the constant bit, since
it represents the constant coefficient of the polynomial.

Again, every finite field element has a unique representation in the form (2), and every bit string
corresponds to some finite field element in this manner (2). As a short form for (2), we sometimes
write a = a1u + a0, with ai ∈ F2m and the meaning of a0 being clear from context.

Note that F2m exists as a subfield of F22m and in the tower representation above, the bit string
representation of an element in F2m is postpended by m zero bits to obtain its representation as
an element of F22m .

We also employ a quartic extension. In practice, one would mostly implement ECOH2 using
two elliptic curves over the quadratic extension field, with the curves being known as twists of each
other. However, in order to comply with the pseudocode of ECOH in Table 2, the curve and its
twist over the quadratic extension can be regarded as subgroups of a larger elliptic curve group
defined over the quartic extension field.

To represent quartic extension field elements, we introduce another element v ∈ F16 satisfying

§3 SPECIFICATION 4

ECOH2 3.5 Curve Definitions

v2 + v + u = 0. We represent elements of F24m using a tower representation, specifically a (t, u, v)-
tower representation. So, elements of F24m are represented first as polynomials,

a = (a10 + a11u)v + (a00 + a01u) (3)

where aij ∈ F2m . To represent this as a bit string, concatenate the bit string representation of the
F2m elements a10, a11, a00, and a01, in that order. The constant bit is the rightmost bit of a00.

Note that F22m exists as a subfield of F24m and in the tower representation above, the bit string
representation of an element in F22m is prepended by 2m zero bits to obtain its representation as
element of F24m .

3.5 Curve Definitions

ECOH2 uses the curves with equation of the form

y2 + xy = x3 + b (4)

where b ∈ F22m is chosen as the finite field element of F22m whose bit string representation is
lexicographically least among those curves such that

1. the curve (4) has 4r F22m-rational points for some prime r, and

2. the twist of the curve (4) has 2s F22m-rational points for some prime s.

In other words, the curve has cofactor four, and its twist has cofactor two. Note that the curve

y2 + xy = x3 + ux2 + b (5)

is a twist of the curve (4). Note that these two criteria are equivalent to the following single
criterion:

1. The curve (4) has 8rs F24m-rational points for some primes r and s.

Note that this means that b will have the form

b = 1 + uw (6)

where, recall u ∈ F4 with u2 + u + 1 = 0, and w ∈ F2m , with furthermore w being the element in
this field with least lexicographic representation such that b meets the criteria above.

For a base point G, we choose an F24m-rational element of order rs, in the notation above. In
other words, we choose a base point of maximal odd order. Among such points we choose the
lexicographically least, according to bit representations for the quartic extension field F24m .

4 Efficiency

This section compares a potential implementation of ECOH2 to that of ECOH, and concludes that
ECOH2 may be faster than ECOH.

§4 EFFICIENCY 5

ECOH2 4.1 Efficient Order Checking

4.1 Efficient Order Checking

As in ECOH, the definition of ECOH2 requires the points derived from the message blocks to have
odd order. In the submitted ECOH implementation this was achieved virtually for free, by correctly
chosen the parity of the incremented counter.

Because ECOH2 works over a quartic extension, the situation is slightly different. In general,
given a point P = (x, y), with x ∈ F22m , it will have odd order if and only if it has a F24m-rational
quarter, that is, a point Q = (u, v) such that 4Q = P and u, v ∈ F24m . Furthermore, if y 6∈ F22m ,
then it suffices for P to have a half R = (r, s), such that 2R = P and (r, s) ∈ F24m . Also, if P has
odd order, then whether or not y ∈ F22m , it will have a half R = (r, s) such that r ∈ F22m .

Assuming that P = (x, y) is on the curve, then P having a half R = (r, s) such that r ∈ F22m

is equivalent to the following condition: there exists z ∈ F22m such that z2 + z = x. In this case
r = y + xz.

Writing x = x1u + x0 and z = z1u + z0, then x = z2 + z in F22m is equivalent to the pair of
equations in F2m :

x1 = z2
1 + z1 (7)

x0 = z2
0 + z0 + z2

1 (8)

Letting T be the trace function from F2m to F2, the system of equations has a solution if and only
the following pair of equations hold:

T (x1) = 0 (9)

T (x0 + z2
1) = 0 (10)

The second equation, however, is redundant because when T (x1) = 0, there will always be two
valid solutions for z1 differing by 1, and exactly one of these two solutions will cause (10) to be
true. Therefore, for determining that there exists a half, it suffices to check that T (x1) = 0.

In the cases where one has to check for a quarter, that is, when y ∈ F22m , we need to check if
the half R = (r, s) has a half. As we saw above, writing r = r1u + r0 this equivalent to T (r1) = 0.
But r = y + xz. So, after solving for y, and also computing z = H(x), where H is the half-trace
function on F2m , which, recall, is usually defined as:

H(z) = z + z4 + · · · + z4(m−1)/2
, (11)

which has the property that H(z)2 + H(z) = z + T (z), for z ∈ F2m . Note that t = H(z) and
t = H(z) + 1 give all solutions to the polynomial equation t2 + t = z.

4.2 Efficient y Recovery

Recall that ECOH and ECOH2 map message bits into the x-coordinate of an elliptic curve point.
These points must then be summed, which requires knowing their y-coordinates. We first review
how the submitted implementation of ECOH efficiently calculated these y-coordinates, then review
how one might do so for ECOH2.

Given a value for x, one computes y = x(β + H(x + a + b/x2)) where β ∈ {0, 1} is chosen as
the sum of the rightmost bit of H(x + a + b/x2) and the leftmost bit of the padded message block
Ni from which x is derived.

§4 EFFICIENCY 6

ECOH2 4.3 Fitting the Twist Into the Quartic

In ECOH2, one would recover y slightly differently. As usual, we can divide the elliptic curve
equation by x2 to formulate the equation:

(y/x)2 + (y/x) = x + b/x2 (12)

Here x + b/x2 ∈ F22m and we shall attempt to find solve for y/x ∈ F24m . Let z = y/x and let
w = x + b/x2. Then we want to solve z2 + z = w. Note that there will be exactly two solutions,
differing by one. Let z = (z0 + z1u) + (z2 + z3u)v and w = w0 + w1u, with zi, wi ∈ F2m , and recall
that u ∈ F4 and v ∈ F16 with u2 + u = 1 and v2 + v = u. Also, for convenience, define a function
F such that F (s) = s2 + s for any s. The equation to solve is now F (z) = w. Note that F is an
additive function. Now we can compute:

F (z) = F (z0) + F (z1u) + F (z2v) + F (z3uv)

= F (z0) + (z2
1 + F (z1)u) + (z2

2u + F (z2)v) + (z2
3(1 + v) + F (z3)uv)

(13)

Taking the F2m coefficients in the basis (1, u, v, uv) for F24m , we see by above that equation z2 +z =
w, becomes four equations in F2m :

w0 = F (z0) + z2
1 + z2

3 (14)

w1 = F (z1) + z2
2 (15)

0 = F (z2) + z2
3 (16)

0 = F (z3) (17)

The fourth equation implies z3 ∈ {0, 1}. If z3 = 1, then the third equation becomes F (z2) = 1,
which has no solution in F2m (the solution is z2 = u in F24m , of course). Therefore z3 = 0, and
z2 ∈ {0, 1}. Recall that in general, F (z) = w has a solution in F2m if and only if T (z) = 0, and if so
the solution z satisfies z ∈ {H(w),H(w) + 1}. For the second equation to have a solution, we need
to have that T (w1 + z2

2) = 0. This forces z2 = T (w1). In that case, z1 = H(w1 +T (w1))+β1 where
β ∈ {0, 1}. The choice of β1 will be determined by looking at the first equation, which requires
T (w0 + z2

1) = 0 in order to have a solution. Since the trace function T is additive and invariant
under the squaring operation we can just set β1 = T (w0+H(w1+T (w1))). After setting β1 this way
to ensure a solution, we can solve for z0 again using the half-trace function z0 = H(w0 + z2

1) + β0,
where β0 ∈ {0, 1}. The choice of β0 is determined such that the constant bit of z equals the leftmost
bit of the corresponding padded message block.

4.3 Fitting the Twist Into the Quartic

For every x ∈ F22m , there exists y ∈ F24m such that (x, y) satisfies the curve equation. For
approximately half of all x values, it will be true that y ∈ F22m . In this case, the point (x, y) is
an F22m-rational points. Group operations with such points may be done using arithmetic only
in F22m , that is, the quadratic extension field, without having to use the quartic extension field
arithmetic.

For the remaining values of x, it will be true that y 6∈ F22m . In this case, the point (x, y) can
be mapped into another F22m-rational point (x, ŷ) that lies on the twist of the curve, where

ŷ = y + xv (18)

§4 EFFICIENCY 7

ECOH2 4.4 Approximate Algorithm Analysis

Furthermore, by the general theorem that rational maps between elliptic curves, in this case the
curve and its twist, produce group homomorphisms, then we can conduct group operations with
the F22m-irrational points (x, y) by using the corresponding F22m-rational points (x, ŷ). Therefore,
when summing these rational points together, quartic extension field arithmetic can be avoided.

The only time when quartic extension field operations are actually needed in ECOH2 would
therefore appear to be during the final two steps of Table 2.

In the second last step, one can obtain two F22m-rational points, one on the curve and on the
twist. The point on the twist can be mapped back onto the original curve to become F22m-irrational,
but still F24m-rational. These two points can then be added. (To be precise, in some cases there
will only be one point, since one of the curves may have no points landing on it. In this case, treat
the point for that curve as the neutral element of the group, that is, the point at infinity.)

In the last step, to avoid extensive use of the quartic extension, one can do something akin to
the Chinese remainder theorem. One can decompose the base point as follows. Let

G = G0 + G1 (19)

where G0 is an F22m-rational point, and the G1 is the image of a F22m-rational point from the twist
of the curve. The points G0 and G1 can be precomputed. Therefore the single scalar multiplica-
tion over the quartic extension can be replaced by two scalar multiplications over the quadratic
extension.

4.4 Approximate Algorithm Analysis

Preliminary.
In this section, we make some theoretical comparisons between the potential performance of

ECOH and ECOH2. This comparison makes a number of simplifications and is not based on actual
implementations. It should be regarded as preliminary.

Firstly, we note that in the submitted implementations of ECOH, that field inversions and field
multiplications (not including squarings) take most of the time. Some other distinct operations
needed, such as computing field square, trace and half-trace functions, took much less time because
the submitted implementations used the additive nature of these functions and table lookups. We
assume that something similar could be done for ECOH2, and therefore we focus on the total cost
of field inversion and field multiplications for the purposes of the comparison.

Let I1 and M1 be the cost of field inversion and field multiplication in the field F2m . Similarly,
let I2 and M2 be the cost of field inversion and field multiplication in the field F22m . Then we can
get the following estimates:

M2 ≈ 3M1 (20)
I2 ≈ 3M1 + I1 (21)

For the first estimate, we use Karatsuba multiplication:

(a1u + a0)(b1u + b0) = ((a1 + a0)(b1 + b0) + a0b0)u + (a1b1 + a0b0) (22)

So, there are three field multiplications in F2m , namely, a0b0 and a1b1 and (a1 + a0)(b1 + b0).
This multiplication also involves four F2m field additions, but in our simplified analysis we shall
ignore these (slightly exaggerating the benefit to ECOH2). Of course, a more efficient algorithm for

§4 EFFICIENCY 8

ECOH2 4.4 Approximate Algorithm Analysis

multiplication, such as, perhaps, some kind of combing method, would only give a lower estimate
for M2 and thereby help ECOH2 further.

For the second estimate, we use the following formula:

(a1u + a0)−1 = (a2
1 + a0a1 + a2

0)
−1(a1u + a0 + a1) (23)

So, there is one field inversion in F2m , namely, b = (a2
1 +a0a1 +a2

0)
−1 and three field multiplications

in F2m , namely, a0a1 and ba1 and b(a0 + a1). There are also, two squarings in F2m and three
additions in F2m , but in our simplified comparison, we shall ignore the cost of these operations
(slightly exaggerating the benefit to ECOH2). Of course, a more efficient for field inversion, such
as, perhaps, some variant of the extended Euclidean algorithm, would only give a lower estimate
for I2, and thereby help ECOH2 further.

We focus the rest of our algorithm analysis on long messages.
In the submitted ECOH implementation, for each point contributing to the total point Q, there

was needed an average of three field inversions and five field multiplications. In terms of message
length in bits, the cost per bit of message was approximately:

3I1 + 5M1

blen1
(24)

where now blen1 indicates the value of blen specific to ECOH. We will use blen2 for the corre-
sponding value of blen in ECOH2. Note that this estimate ignores the padding bits, the final scalar
multiplication and the formation of the checksum block, so is not accurate for short messages.

Other implementation strategies for ECOH are also possible. For example, simultaneous inver-
sion replaces each I1 by 3M1, creating a numerator of 14M1 above. Also, multiplication by fixed
values, such as the curve coefficient can be accelerated by means of precomputation and additivity.
Some form of projective or Edwards coordinates may improve efficiency. Bit slicing (suggested by
Bernstein for batch elliptic curve operations via personal communication) may improve the effi-
ciency of ECOH. For simplicity of our analysis, though, we compare the submitted implementation
for ECOH to how an implementation with a similar strategy would perform for ECOH2.

If we look a little closer into ECOH at the source of the inversion and multiplications, we see
that, one average each point requires one failed point decompressions, one successful point decom-
pression, and one point addition. Each failed point decompression requires one inversion and one
multiplication. Each successful point decompression requires one inversion and two multiplications.
Each point addition requires one inversion and two multiplications.

Because ECOH2 uses the twisted curve, we expect less failed point decompressions. More
precisely, only half the points will have a failed point decompression. Therefore, we expect that
per point, on average, we have 1 point addition, 1 successful point decompression, and 0.5 failed
point decompressions. Therefore, the average cost per bit for ECOH2 on long messages is:

2.5I2 + 4.5M2

blen2
(25)

With the approximation blen2 ≈ 3blen1, and the approximations (20) and (21), we get a cost per
bit for ECOH2 of

5
6I1 + 7M1

blen1
(26)

§4 EFFICIENCY 9

ECOH2

This would suggest that ECOH2 should be faster than ECOH, since the extra 2M1 is certainly faster
than the saved 7

6I1. Indeed, if we approximate I1 ≈ 3M1, then the speedup factor is approximately
1.5. If we approximate I1 ≈ 2.5M1, then the speedup factor is approximately 1.4.

For very short messages, it is the final point multiplication that dominates. As noted earlier,
though technically this point multiplication is done over the quartic extension, it can be imple-
mented over the quadratic extension. We expect this step of ECOH2 to about 12 times slower
than the corresponding step of ECOH, because one does 2 point multiplications, each with a point
multiplier 2 times as long, and using quadratic field arithmetic, which is about 3 times slower.
Therefore, when ECOH2 is applied to many short messages, there is greater incentive to use ex-
tensive precomputation to speed up this step.

5 Security Analysis

This section is preliminary and to be completed.
The doubling of the effective elliptic curve size would suggest that generic group attacks, es-

pecially those finding an internal collision or second preimage at the intermediate value Q, such
as the Ferguson-Halcrow attack, would take at least approximately

√
22m = 2m group operations.

Since m > n, this suggests that cryptanalysis using generic group operations is less efficient than a
generic n-bit hash attacks.

Also, the fact that significantly more bits of an elliptic curve point are truncated to produce
the final hash in ECOH2 suggests that distinguishing attacks based on guessing many values of
the truncated bits and testing for the suitability as an elliptic curve point would be become much
harder for ECOH2.

Elliptic curves over extension fields have in some cases been shown to be vulnerable to a class
of attacks known as Weil descent attacks. Currently, such attacks are not deemed more effective
for quadratic extensions than generic group attacks. If they do become effective, they would need
to become quite effective to be used to find a collision in ECOH2.

References

[1] M. A. Halcrow and N. Ferguson. A second pre-image attack against elliptic curve only hash
(ECOH). ePrint 2009/168, International Association for Cryptologic Research, 2009. http:
//eprint.iacr.org/2009/168.

§REFERENCES 10

http://eprint.iacr.org/2009/168
http://eprint.iacr.org/2009/168

	1 Introduction
	2 Two 2nd Preimage Attacks Against ECOH
	2.1 Ferguson-Halcrow Second Preimage Attack
	2.2 A Second Second Preimage Attack

	3 Specification
	3.1 Overview and Motivation
	3.2 Bit Length Parameters
	3.3 Pseudocode
	3.4 Tower Representations
	3.5 Curve Definitions

	4 Efficiency
	4.1 Efficient Order Checking
	4.2 Efficient y Recovery
	4.3 Fitting the Twist Into the Quartic
	4.4 Approximate Algorithm Analysis

	5 Security Analysis

