

OFFICIAL COMMENT: EDON-R

Subject: OFFICIAL COMMENT: EDON-R

From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>

Date: Mon, 15 Dec 2008 13:27:30 +0100

To: <hash-function@nist.gov>

CC: <hash-forum@nist.gov>

Hi,

A new optimized C version of Edon-R hash function can be downloaded from:
http://people.item.ntnu.no/~danilog/Hash/Additional_Implementations_edonr_Dec2008.

With Intel C++ v11.0.061 for Windows it achieves the following speeds:

32-bit environment
Edon-R performance in Cycles/Byte with different message lengths in BYTES

 1 10 100 1000 10000 100000
MD Size: 224 1801.00 182.50 33.13 7.22 6.43 6.46
MD Size: 256 565.00 56.50 10.21 6.67 6.44 6.46
MD Size: 384 1465.00 147.70 14.89 11.59 10.24 10.01
MD Size: 512 1489.00 148.90 15.01 11.68 10.22 10.01

64-bit environment
Edon-R performance in Cycles/Byte with different message lengths in BYTES

 1 10 100 1000 10000 100000
MD Size: 224 1441.00 144.10 24.25 4.92 4.56 4.41
MD Size: 256 481.00 45.70 7.69 4.81 4.57 4.30
MD Size: 384 529.00 49.30 4.93 2.44 2.26 2.29
MD Size: 512 493.00 49.30 5.05 2.50 2.29 2.29

Regards,

Danilo Gligoroski

1 of 1 12/15/2008 9:45 AM

http://people.item.ntnu.no/~danilog/Hash/Additional_Implementations_edonr_Dec2008
mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:danilo.gligoroski@gmail.com

OFFICIAL COMMENT: EDON-R

Subject: OFFICIAL COMMENT: EDON-R

From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>

Date: Sun, 15 Mar 2009 18:02:54 +0100

To: <hash-function@nist.gov>

CC: <hash-forum@nist.gov>

The memoryless meet-in-the-middle attack which is one part of the whole
preimage attack of Khovratovich et. al. [1] on EDON-R hash function has
complexity much bigger than 2^n.

We have showed that in the e-print note:
http://eprint.iacr.org/2009/120.pdf

Our analysis is based on the algorithm given by van Oorschot and Wiener in
[2] for parallel memoryless meet-in-the-middle attack (which is based on the
Floyd’s memoryless algorithm).

Thus, the preimage attack of Khovratovich et. al. [1] on EDON-R is neither

a threat nor a weakening of EDON-R.

Regards,

Danilo Gligoroski

[1] Dmitry Khovratovich, Ivica Nikoli´c, and Ralph-Philipp Weinmann.

Meet-in-the-middle-attack on SHA-3 canditates.

In Fast Software Encryption - 2009, pages 233–250, 2009.

[2] Paul C. Van Oorschot and Michael J.Wiener.

Parallel collision search with cryptanalytic applications.

Journal of Cryptology, 12:1–28, 1999.

3/16/2009 11:51 AM1 of 1

http://eprint.iacr.org/2009/120.pdf
mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:danilo.gligoroski@gmail.com

Re: OFFICIAL COMMENT: EDON-R

Subject: Re: OFFICIAL COMMENT: EDON-R

From: Ivica Nikolic <cube444@gmail.com>

Date: Wed, 18 Mar 2009 08:06:55 -0400

To: Multiple recipients of list <hash-forum@nist.gov>

Dear all,

we have two preliminary comments on this paper, both related to the cost estimation for the

second block (Sec. 3)

1. It seems that the size of the space R does not appear anywhere. In other words, if |R|=1 then
the attacker still has to pay the cost given in Section 3?

2. The parameters n_1 and n_2 seem to be chosen arbitrarily. Where is the justification that
these values are optimal for an attacker? In a traditional birthday attack (using memory),
following the logic in the paper an attacker chooses n_1 = n_2 = 2^n and memory 2^{n/2} and
obtains T_m = 2^{5n/4}.

Best Regards,
Ivica and Ralf

On Sun, Mar 15, 2009 at 6:08 PM, Danilo Gligoroski <danilo.gligoroski@gmail.com> wrote:

The memoryless meet-in-the-middle attack which is one part of the whole

preimage attack of Khovratovich et. al. [1] on EDON-R hash function has

complexity much bigger than 2^n.

We have showed that in the e-print note:

http://eprint.iacr.org/2009/120.pdf

Our analysis is based on the algorithm given by van Oorschot and Wiener
in

[2] for parallel memoryless meet-in-the-middle attack (which is based
on the

Floyd’s memoryless algorithm).

Thus, the preimage attack of Khovratovich et. al. [1] on EDON-R is
neither

a threat nor a weakening of EDON-R.

1 of 2 3/19/2009 8:55 AM

http://eprint.iacr.org/2009/120.pdf
mailto:danilo.gligoroski@gmail.com
mailto:hash-forum@nist.gov
mailto:cube444@gmail.com

--

Re: OFFICIAL COMMENT: EDON-R

Regards,

Danilo Gligoroski

[1] Dmitry Khovratovich, Ivica Nikoli´c, and Ralph-Philipp Weinmann.

Meet-in-the-middle-attack on SHA-3 canditates.

In Fast Software Encryption - 2009, pages 233–250, 2009.

[2] Paul C. Van Oorschot and Michael J.Wiener.

Parallel collision search with cryptanalytic applications.

Journal of Cryptology, 12:1–28, 1999.

Ivica Nikolic
Laboratory of Algorithms, Cryptography and Security,
University of Luxembourg,
6, rue Richard Coudenhove-Kalergi,
L-1359 Luxembourg-Kirchberg
Luxembourg
Tel: +352 46 66 44 5490

2 of 2 3/19/2009 8:55 AM

RE: OFFICIAL COMMENT: EDON-R

Subject: RE: OFFICIAL COMMENT: EDON-R

From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>

Date: Wed, 18 Mar 2009 11:50:58 -0400

To: Multiple recipients of list <hash-forum@NIST.GOV>

> 1. It seems that the size of the space R does not appear anywhere. In other words,
> if |R|=1 then the attacker still has to pay the cost given in Section 3?

For the size of space R are you referring to our note or to the paper and analysis of van Oorschot and Wiener?
In our note – on page 2 we say |R|=2^n (i.e. |R| = n_2).

> 2. The parameters n_1 and n_2 seem to be chosen arbitrarily. Where is the justification

> that these values are optimal for an attacker?

We did not choose the parameters n_1 and n_2. You did it in your attack.

You are defining two mappings f1: D1 --> R, and f2: D2 --> R, where |D1|=2^(n-65) because

of the padding, and |D2|=2^n and then you are trying to find a meet-in-the-middle i.e. two

values a and b such that f1(a)=f2(b).

If you as attackers are complaining that these parameters are not optimal,

then try to define a new attack.

> In a traditional birthday attack (using memory), following the logic in the paper an attacker

> chooses n_1 = n_2 = 2^n and memory 2^{n/2} and obtains T_m = 2^{5n/4}.

Uff, this is serious. You haven’t understood the van Oorschot and Wiener paper.

The parallel memoryless birthday attack (finding collision) is described in section 5.2, and

there the attack have complexity of O(Sqrt(|R|)/m) (m is the number of processors) – equation (7).

Your attack on EDON-R is meet-in-the-middle attack, and its parallel memoryless equivalent is

described in section 5.3 of van Oorschot and Wiener paper.

Best regards,
Danilo!

From: hash-forum@nist.gov [mailto:hash-forum@nist.gov] On Behalf Of Ivica Nikolic
Sent: Wednesday, March 18, 2009 1:05 PM
To: Multiple recipients of list
Subject: Re: OFFICIAL COMMENT: EDON-R

Dear all,

we have two preliminary comments on this paper, both related to the cost estimation for the second block
(Sec. 3)

1 of 3 3/19/2009 8:56 AM

mailto:mailto:hash-forum@nist.gov
mailto:hash-forum@nist.gov
mailto:hash-forum@NIST.GOV
mailto:danilo.gligoroski@gmail.com

RE: OFFICIAL COMMENT: EDON-R

1. It seems that the size of the space R does not appear anywhere. In other words, if |R|=1 then the attacker
still has to pay the cost given in Section 3?

2. The parameters n_1 and n_2 seem to be chosen arbitrarily. Where is the justification that these values are
optimal for an attacker? In a traditional birthday attack (using memory), following the logic in the paper an
attacker chooses n_1 = n_2 = 2^n and memory 2^{n/2} and obtains T_m = 2^{5n/4}.

Best Regards,
Ivica and Ralf

On Sun, Mar 15, 2009 at 6:08 PM, Danilo Gligoroski <danilo.gligoroski@gmail.com> wrote:

The memoryless meet-in-the-middle attack which is one part of the whole

preimage attack of Khovratovich et. al. [1] on EDON-R hash function has

complexity much bigger than 2^n.

We have showed that in the e-print note:

http://eprint.iacr.org/2009/120.pdf

Our analysis is based on the algorithm given by van Oorschot and Wiener
in

[2] for parallel memoryless meet-in-the-middle attack (which is based on
the

Floyd’s memoryless algorithm).

Thus, the preimage attack of Khovratovich et. al. [1] on EDON-R is
neither

a threat nor a weakening of EDON-R.

Regards,

Danilo Gligoroski

[1] Dmitry Khovratovich, Ivica Nikoli´c, and Ralph-Philipp Weinmann.

Meet-in-the-middle-attack on SHA-3 canditates.

In Fast Software Encryption - 2009, pages 233–250, 2009.

2 of 3 3/19/2009 8:56 AM

http://eprint.iacr.org/2009/120.pdf
mailto:danilo.gligoroski@gmail.com

--

RE: OFFICIAL COMMENT: EDON-R

[2] Paul C. Van Oorschot and Michael J.Wiener.

Parallel collision search with cryptanalytic applications.

Journal of Cryptology, 12:1–28, 1999.

Ivica Nikolic
Laboratory of Algorithms, Cryptography and Security,
University of Luxembourg,
6, rue Richard Coudenhove-Kalergi,
L-1359 Luxembourg-Kirchberg
Luxembourg
Tel: +352 46 66 44 5490

3 of 3 3/19/2009 8:56 AM

--

Re: OFFICIAL COMMENT: EDON-R

Subject: Re: OFFICIAL COMMENT: EDON-R

From: gaetan.leurent@ens.fr (Gaëtan Leurent)

Date: Thu, 19 Mar 2009 08:57:24 -0400

To: Multiple recipients of list <hash-forum@nist.gov>

I think that the misunderstanding about the complexity of the
meet-in-the-middle comes from the fact that two different things can be
called meet-in-the-middle:

1. You have a function f and a function g, and you look for a single
golden value (x,y) that happens to satisfies f(x) = g(y), and that
you can test with some other property. This is what you do when you
attack 2DES, for instance: you want to recover the secret key, and
you use a meet-in-the-middle to get a small set of candidates, that
you test using an other plaintext/ciphertext pair. The important
point is that you need to get *all* the colliding pairs.

2. You have a function f and a function g, and you look for any value
(x,y) such that f(x) = g(y). Here you only need *one* colliding pair.

The paper by van Oorschot and Wiener refer to situation 1 when they talk
about meet-in-the-middle. This is why their complexity figure depends
on the size of the *domains* of the functions f and g.

On the other hand, the attack of Khovratovich, Nikolic and Weinmann
refers to situation 2. In this setting the cost of a meet-in-the-middle
is essentially the same as the cost of a collision thanks to the
switching function trick, and it only depends on the size of the *range*
of the functions f and g.

Gaëtan Leurent

1 of 1 3/19/2009 8:58 AM

mailto:hash-forum@nist.gov
mailto:gaetan.leurent@ens.fr

--

Re: OFFICIAL COMMENT: EDON-R

Subject: Re: OFFICIAL COMMENT: EDON-R

From: gaetan.leurent@ens.fr (Gaëtan Leurent)

Date: Fri, 20 Mar 2009 07:47:49 -0400

To: Multiple recipients of list <hash-forum@nist.gov>

Danilo Gligoroski wrote on 19 Mar 2009 15:24:13 +0100:

The second part of meet in the middle attack of Khovratovich and Nikolic

preimage attack on EDON-R cannot be interpreted as a your situation 2.

That is because Khovratovich and Nikolic define two mappings

f1: D1 --> R, and f2: D2 --> R, where |D1|=2^(n-65) because of the padding,

and |D2|=2^n and |R|=2^n. And then they are trying to find one pair (a,b)

such that f1(a)=f2(b).

NOTE different domains D1 and D2, and NOTE the DIFFERENT SIZE of the

DOMAINS!!!

Granted, that is a slight detail that needs to be taken care of.

But you can just reduce the domain D2 to something of size 2^(n-65).
(say by fixing some bits to zero). This means that A8 will not take any
value but stay in some subset. Since 2^(n-65) is bigger that 2^(n/2),
the meet-in-the-middle will still work, and it will be enough for the
attack because they just need *any* match.

Regards,

Gaëtan Leurent

1 of 1 3/20/2009 9:49 AM

mailto:hash-forum@nist.gov
mailto:gaetan.leurent@ens.fr

RE: OFFICIAL COMMENT: EDON-R

Subject: RE: OFFICIAL COMMENT: EDON-R

From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>

Date: Fri, 20 Mar 2009 09:52:30 -0400

To: Multiple recipients of list <hash-forum@nist.gov>

The second part of meet in the middle attack of Khovratovich and Nikolic

preimage attack on EDON-R cannot be interpreted as a your situation 2.
That is because Khovratovich and Nikolic define two mappings
f1: D1 --> R, and f2: D2 --> R, where |D1|=2^(n-65) because of the

padding,
and |D2|=2^n and |R|=2^n. And then they are trying to find one pair

(a,b)
such that f1(a)=f2(b).

NOTE different domains D1 and D2, and NOTE the DIFFERENT SIZE of the
DOMAINS!!!

Granted, that is a slight detail that needs to be taken care of.

But you can just reduce the domain D2 to something of size 2^(n-65).
(say by fixing some bits to zero). This means that A8 will not take any
value but stay in some subset. Since 2^(n-65) is bigger that 2^(n/2),
the meet-in-the-middle will still work, and it will be enough for the
attack because they just need *any* match.

Hi Gaëtan,

Reducing the size of D2 addresses one of the attack problems but not the
the first problem that D1 and D2 are different domains mapped
WITH TWO DIFFERENT functions f1 and f2.
That situation is not described in memoryless birthday attack of
van Oorschot and Wiener paper, but in memoryless meet-in-the-middle attack.

Regards,
Danilo!

1 of 1 3/23/2009 11:26 AM

mailto:hash-forum@nist.gov
mailto:danilo.gligoroski@gmail.com

RE: OFFICIAL COMMENT: EDON-R

Subject: RE: OFFICIAL COMMENT: EDON-R

From: "Danilo Gligoroski" <danilo.gligoroski@gmail.com>

Date: Mon, 23 Mar 2009 07:00:12 -0400

To: Multiple recipients of list <hash-forum@nist.gov>

On Fri, 20 Mar 2009, Danilo Gligoroski wrote:
Reducing the size of D2 addresses one of the attack problems but not the
the first problem that D1 and D2 are different domains mapped
WITH TWO DIFFERENT functions f1 and f2.
That situation is not described in memoryless birthday attack of
van Oorschot and Wiener paper, but in memoryless meet-in-the-middle

attack.

On Mon, 23 Mar 2009, Stefan Lucks wrote:
In short, once you did solve the issue of two different domains for f1 and

f2, you can apply a memoryless birthday attack for MITM purposes.

(This is true if f1 and f2 run at roughly the same speed. If f1 is *much*
slower than f2, you may want to modify f: f(x) = f1(x) if x mod 2^k = 0
and f(x) = f2(x) else. In that case, you need 2^k f-collisions for one
f1-f2-collision. The benefit is, you need to call f1 less frequent.)

Hi Stefen,

EXACTTLY that is what I am saying:

***** FSE paper does not address issues of two different domains and

different sizes! *****

***** HOW YOU ARE GOING TO SOLVE THE ISSUE OF TWO DIFFERENT DOMAINS? *****

I feel that in this discussion we are standing stubbornly on our positions

offering

our own arguments and it is overloading the attention of all others members

of this forum.

I propose instead of *patching* via this forum the old attack that is not

working or has

so many undefined parts, the authors of that attack (or maybe you, or

anybody else) should

publish a new attempt and a new attack.

1. In the analysis of the new attack, please precise how you are going to

"fuse"

two domains D1 and D2 for two different functions f1() and f2().

2. Compute the "slowing down" factor with additional 2^k f-collisions (since

one

of the functions is much slower than the other)!

3. EDON-R team will analyze that new attack and give the appropriate

opinion.

Best regards,
Danilo!

1 of 1 3/23/2009 11:05 AM

mailto:hash-forum@nist.gov
mailto:danilo.gligoroski@gmail.com

Page 1 of 2

From: hash-forum@nist.gov on behalf of Danilo Gligoroski [danilo.gligoroski@gmail.com]
Sent: Monday, May 25, 2009 5:40 PM
To: Multiple recipients of list
Subject: OFFICIAL COMMENT: EDON-R

Hi,

If EDON-R hash function would be accepted to go in the second round
of NIST SHA-3 hash competition it will be tweaked by the following
tweak:

Instead of the old compression function

R(oldPipe, M),

now the compression function have the following feedback:

R(oldPipe, M) xor oldPipe xor M',

where M is represented in two parts i.e. M = (M0, M1), and M' = (M1,
M0).

The introduced tweak does not invalidates the cryptanalytic efforts
so far to analyze the quasigroup operations used in EDON-R, as well
as its function R(). It also does not affect much the speed of the
function. However, this tweak prevents finding free-start collisions
and prevents all attacks based on free-start collisions. With the
introduced tweak EDON-R has a structure as a double-pipe PGV7 hash
scheme, since the function R(oldPipe, M) is a bijection if the value
of M is kept fixed.

The speed of the optimized 32-bit version on defined reference
platform with Intel C++ v11.0.072 is 6.70 cycles/byte for n=224,256
and 10.73 cycles/byte for n=384,512.

The speed of the optimized 64-bit version on defined reference
platform with Intel C++ v11.0.072 is 4.87 cycles/byte for n=224,256
and 2.70 cycles/byte for n=384,512.

The new package (documentation, source code, optimized code, new test
values) can be downloaded from
http://people.item.ntnu.no/~danilog/Hash/EdonRv20.zip

5/27/2009

http://people.item.ntnu.no/~danilog/Hash/EdonRv20.zip
mailto:danilo.gligoroski@gmail.com
mailto:hash-forum@nist.gov

Page 2 of 2

On behalf of the EDON-R team:

Danilo Gligoroski and Vlastimil Klima

5/27/2009

Page 1 of 1

From: Niels Ferguson [niels@microsoft.com]
Sent: Friday, July 31, 2009 8:05 PM
To: hash-function@nist.gov
Cc: hash-forum@nist.gov
Subject: OFFICIAL COMMENT: EDON-R
Attachments: Edon-R-attack.pdf

Peter Novotney and myself found detectable correlations in Edon‐R.

Abstract:
The Edon‐R compression function has a large set of useful differentials that produce easily detectable output bit
biases. We show how to construct such differentials, and use them to create a distinguisher for Edon‐R‐512 that
requires around 2^{54} compression function evaluations (or 2^{28} evaluations after a pre‐computation of
2^{66} evaluations). The differentials can also be used to attack a variety of MAC and KDF constructions when
they use Edon‐R‐512.

I have attached the paper; it should also appear soon on eprint.iacr.org as 2009/455

Cheers!

Niels

8/3/2009

http:eprint.iacr.org

Detectable correlations in Edon-R

Peter Novotney Niels Ferguson
peternov@microsoft.com niels@microsoft.com

July 31, 2009

Abstract

The Edon-R compression function has a large set of useful differ­
entials that produce easily detectable output bit biases. We show how
to construct such differentials, and use them to create a distinguisher
for Edon-R-512 that requires around 254 compression function evalu­
ations (or 228 evaluations after a pre-computation of 266 evaluations).
The differentials can also be used to attack a variety of MAC and KDF
constructions when they use Edon-R-512.

1 Introduction

Edon-R [1] is one of the candidate hash functions in the NIST SHA-3 com­
petition.1 It performs fewer operations per input bit than any of the other
candidate functions. This makes it the fastest candidate by a significant
margin [2], but also a tempting target for cryptanalysis.

One surprising property of Edon-R is that out of the 14 nonlinear bijective
mappings used in the compression function, 7 have inputs that depend only
on the message block and not on the previous chaining state. This allows the
attacker to fully predict the propagation of values and differences in these
functions. Due to the internal structure a differential from the message block
can bypass another 4 nonlinear functions leaving only 3 ‘active’ nonlinear
functions that a differential has to pass through.

Our basic attack is a distinguishing attack. We show that an attacker can
find two strings L and L ′ such that the function f : X ≈→ H(X |L)⊕H(X |L ′)

1As we were finalizing this paper, NIST announced the round 2 candidates for the
SHA-3 competition. Edon-R was not selected for round 2.

1

mailto:niels@microsoft.com
mailto:peternov@microsoft.com

has easily detectable biases when H is the Edon-R hash function. For an
ideal hash function, f behaves like a random mapping and does not have
biases.

The attack can be extended to recover the intermediate hash state just
before the last block, which breaks a number of common usage patterns for
hash functions such as some KDF and MAC constructions.

2 An overview of Edon-R

We give a short overview of those parts of Edon-R that are used in our
attack. More details can be found in the Edon-R specifications [1].

Let n ∈ {256, 512} be the output size of the hash function. (The other
output sizes are simple variations of these two sizes, which we will ignore.)

Given a message M the first step is to pad it. We append a single ’1’ bit,
and as many ’0’ bits as needed to make the length 2n − 64 mod 2n. We then
append the length of M as a 64-bit integer to get a padded message whose
length is a multiple of 2n bits.

The padded message is split into 2n-bit blocks M0, . . . , Mk−1 where k =
⌈(length(M) + 65)/2n⌉. The blocks are processed by iterating the compres­
sion function:

H0 := some constant
Hi+1 := C(Hi,Mi)

The chaining values Hi are each 2n bits long; the result of Edon-R consists
of one half of the final chaining value Hk.

Our attack involves the last compression function, shown in figure 1. The
lines are n-bit values; each n-bit value is internally represented as a vector
of 8 words each of 32 bits (for the n = 256 case) or 64 bits (for the n = 512
case). At the top we have the two halves of the message block Ma and Mb.
The functions f and g are nonlinear bijections on n bits, and R is a function
that reversed the order of the 8 words in the vector. The addition boxes
represent word-by-word addition. The two halves of the chaining state come
in as Ha and Hb and the final result of the hash function is H at the bottom.
The colors relate to some details of our attack and can be ignored for the
moment.

2

g

f R

g

f

g

f

f

g

g

g f

g

f

fR

Ma Mb

Ha

Hb

H

C

D

E

Figure 1: Edon-R compression function

The f and g functions are the nonlinear elements used in Edon-R. They
have limited diffusion; each input bit will affect at least 15 of the output
bits, but that is nowhere near full diffusion for a 256-bit or 512-bit function.

Our presentation is a little bit different from the one used in the Edon-R
specifications. The Quasigroup operation A ∗ B from [1] can be written as
f(A) + g(B) where f and g can be expressed in terms of the � functions
from [1] section 2.1.2 as

f(x) := �1(�2(x))
g(x) := �1(�3(x))

3

These are the f and g boxes in our figure. In the canonical description there
are 16 of these functions. In two cases, the same function is applied twice
to the same data; we have optimized that in our figure and have only 14 f
and g functions.

3 Our attack

Our attack is a differential attack. We treat the chaining value (Ha,Hb) as
unknown and try to find a differential from (Ma,Mb) to H. If we can find
an input difference that leads to a detectable bias in the output, then we
have a distinguishing attack on Edon-R.

In more detail, our attack finds a length m and two strings L and L ′ such
that H(X |L)⊕H(X |L ′) has biased bits when X varies over all m-bit strings.
We always choose m to be a multiple of 2n; we can then treat the hashing
of X as choosing a random chaining value (Ha, Hb) as chaining input to the
last compression function, and the strings L consist of the message in the
last message block.

We use the names of intermediate values as shown in figure 1. For the
differential, (Ha,Hb) is fixed; C, D, E, and H are values in the compression

′function that processes L, and C ′ , D ′ , E ′, and H values in the compression
function that processes L ′ .

To reduce the mixing of the message and the chaining value we always choose
′ L and L ′ such that C = C . This means that the white functions in the

figure have inputs that do not change in our differential. The red Functions
have inputs that depend only on the message, which is known. The green
functions have inputs that depend only on the chaining value. The three
yellow functions are the only ones whose inputs depend on both the message
and the chaining value.

3.1 Biases when ignoring the padding

We first show how we can construct a differential from (Ma,Mb) to H if we
ignore the padding that is always part of Mb. We choose a random fixed
value for C and choose low Hamming-weight values for D and D ′ . (Thus,
D and D ′ have most bits set to 0.) As both f and g are invertible, these

′ ′values determine Ma, Mb, E, M , M , and E ′ .a b

4

w median bias largest bias
1 ≈ 2−2.9 ≈ 2−1.7

2 ≈ 2−3.6 ≈ 2−2.7

4 ≈ 2−5.8 ≈ 2−4.6

6 ≈ 2−8.4 ≈ 2−6.1

8 ≈ 2−11.6 ≈ 2−10.3

10 ≈ 2−13.6 ≈ 2−10.9

Table 1: Biases of the most biased output bit for D value of weight w

The values Ha and Hb represent the intermediate result of hashing the string
X. To measure biases in H(X | L) ⊕ H(X | L ′) we choose random values
for (Ha,Hb) and compute the compression function with this chaining value

′ ′ ′and both (Ma,Mb) and (M ,M) to get H and H . We then look at the bits a b
′of H ⊕ H for biases taken over the random choice of the chaining values.

Our differential consists of two paths; a low Hamming-weight difference
from D going down through two functions, and a heavy differential from E
going through one function. These two differences are combined to give the
difference in H.

We experimentally measured the biases this produces in Edon-R-512. For
each maximum weight w we ran 10 experiments. In each experiment we
chose C random, and chose D and D ′ randomly in the set of all values

′with Hamming weight w. We then computed the corresponding Ma, M ,a
′ ′ Mb, Mb, E, and E ′, and finally computed H ⊕ H for 230 random values

of (Ha,Hb). We then measured the bias of the most biased bit. Table 1
reports the median and largest bias of our 10 experiments for each of the
maximum weights w. For a truly random function, we’d expect one of the
512 output bits to have a bias of around 3.1 standard deviations, which is
a bias of 2−14.4 for our 230 samples. As can be seen, the biases in Edon-R­
512 are easily detectable. Even the median bias for w = 10 is 5.2 standard
deviations away from the mean.

3.2 Dealing with the padding

′The procedure above does not produce an Mb and M with suitable padding. b
We can construct a differential that respects the padding rules using some
more computing power.

5

L B9E8C2EB4052E4A897599BAE4E429C7015C5D754EA06AE2C1B7BD38706DA9EF4
3329A53CDD47883F63E72A67917E4BBF64983BB7E50B9C0CCBE9A04C23158B5F
28687DBE5D5063EA85AFBDDD839DB59A1AFC715B4469EB056320447244C3B302
76A1020D19507242CD5E081FBCF17C793366B7D2BE63A285BF333E2F3E119427

L’ 5D57AE8FCA5E979AD6A78D0C4213D42A32DDFE07C394C2F4CD0140A1B44ECEE2
EFEC661C5DB2DA5FA4EF9A40672C7CC679E93CA5207F1C6DCDA6F81C9E7574CF
045CA1D71E9B634E0EA06AA3A4F00F3F73FB75DD3C11194DE92AF59AE360FF9C
CBB512243ABAE0A25FBFC6D8412E935B79B15F1188CC225FBF333E2F3E119427

Table 2: Trailing strings for m = 2851923422810615808 with bias 2−6.6

To get the most freedom, we restrict ourselves to Edon-R-512 and always
choose our last message block to contain 2n−65 bits of message, one padding
bit, and 64 bits of length encoding.

If we are given a length m for the string X then we have a 65-bit restriction
′on the value of Mb and Mb. We thus expect to have to try 265 different

values for D before we find one with the right padding value. (There are ()
512 ≈ 268 values of Hamming-weight 10, so we can use w = 10.) Another 10

265 tries will produce a suitable value for D ′ so there is a one-off cost of 266

to find suitable L and L ′ for a given length m.

Thus, for any length of X that is a multiple of 2n we can, in about 266

operations, find values for L and L ′ that produce easily detectable biases.

If the length m is only partially specified or can be freely chosen, we can do
better. We choose random D values in our low Hamming-weight set and we
keep those whose corresponding Mb has an acceptable length value. (There
are 11 bits in Mb that always have to have an exact value; the padding bit
must be ’1’ and the 10 least significant bits of the length field must encode
the integer 1024 − 65 = 959.) Once we collect enough suitable values for D
we will find two that have the same length value.

We implemented this variant with no restriction on the length (other than
the 11 bits mentioned above) and for length m = 2851923422810615808
found the strings L and L ′ which are shown, including the padding, in
table 2. To generate such pairs we have to try 211 values for D to generate
one valid Mb value, and then collect 227 valid Mb values before we get a
collision on the 54 remaining length bits. Thus the total computational cost
of finding the L’s is around 238 . This took less than a day on one of our

6

home machines. This pair produces an output bias in one bit of 2−6.6 .

The bias produced by the L values is easily measured by computing just
the last block with random chaining inputs. But to measure the bias using
only the full hash function requires the hashing of very long X values. If we
want to minimize the overall cost of creating the L values and verifying the
bias using the full hash function we can restrict m to be at most 2k for some
k. We have to try 211+64−k values for D to get a valid Mb value, and then
collect 2(k−10)/2 valid Mb values to create the collision on the length value.
Finally, detecting a bias of 2−14 (for w = 10) requires around 228 evaluations
each of which uses 2 ·2k−10 block computations for a cost of 2k+19. The total
cost is thus 211+64−k+k/2−5 +2k+19 = 270−k/2 +2k+19 which is minimal when
we choose k ≈ 34. We thus estimate that finding suitable L and L ′ values
and then detecting the resulting bias on the full hash function can be done
in about 254 compression function evaluations.

3.3 Further attacks

Suppose we have an oracle with an unknown string K that is a multiple of
2n bits long. On input of a non-empty string L the oracle returns H(K | L).
We can use our differentials to recover the intermediate state after hashing
K, and thus impersonate the oracle in future.

We use our differentials in the same way differentials are used in key-recovery
attacks on block ciphers. We think of (Ha, Hb) as the ’key’, the green func­
tions in figure 1 as the key schedule, and the yellow functions as the block
cipher. We generate a large set of differential pairs (L, L ′) for the length
of K. We then guess the value for one or more bits of the last ’round key’
(e.g. the output of the lowest green g function) and experimentally compute
the expected bias for each of our differential pairs for this guess. We then
compare that to the actual results. With enough (L, L ′) pairs it quickly
becomes obvious what the right value is for the key bit. Once we know a
few of the key bits, the biases will tend to increase and make our work even
simpler.

Our biases for w = 1 are in the order of 2−3 so we need around 26 differential
pairs for one bit. (We can choose a new random C value for each pair so
we don’t have to use heavier values for D.) It costs 266 to produce each
differential pair so the total cost of the attack is around 272 per recovered
bit. Thus, we expect that the full (Ha,Hb) state can be recovered in around

7

216 queries and 282 computational steps.

There are several common constructions that are susceptible to this type of
attack. For example, many key derivation functions, including NIST SP800­
56A, can be attacked in this way, giving the attacker the power to compute
all derived keys.

Also MAC(K, M) := H(K |M) is a strong MAC function if H is a good hash
function, but our attack allows existential forgeries in around 215 queries
after a pre-computation of 282 steps when Edon-R-512 is used as the hash
function.

3.4 Edon-R-256

We have not tried our methods on Edon-R-256. Because the block size is
smaller the diffusion is slightly better, so we expect the workload of the
attack to increase somewhat. We think it is likely that applying our tech­
niques to Edon-R-256 will result in an attack, but the computational cost
might be too large for us to generate an actual example.

3.5 Possible improvements

Our attack is the result of a very preliminary analysis of Edon-R. Rather
than study the propagation of differentials through the Edon-R function we
used brute computational force to show that correlations exist. This takes
less time, but it ignores a lot of the structure of the function, and thus misses
out on many opportunities to improve the attack. Below are just some of
the areas that we believe improvements can be made in:

better differentials Our choices for D and D ′ have been purely random
in the set of values with weight w, and we have computed the resulting
output biases experimentally. Even within the small set of experiments
that we ran we found that some differences lead to much higher biases
than other differences. A more detailed analysis of the differential
propagation will no doubt result in ways of finding better differentials.

subtraction vs. xor We looked at H(X | L) ⊕ H(X | L ′), but given that
the last operation in the compression function is an addition, it might
be interesting to look at H(X | L) � H(X | L ′) where � is the word­

8

wise subtraction. This preserves the group structure of the last mixing
operations and might lead to better biases.

Multi-bit correlations For simplicity we have limited ourselves to single
bit biases. We expect that analyzing multiple output bits together (e.g.
using a �2 test) will produce biases that are more easily detectable.

More attention to detail In several places we ignore details that can help
the attacker, or use a simple but pessimistic estimate of the effec­
tiveness of the attack. A more detailed analysis should improve our
attacks.

4 Comments on Edon-R

Looking at figure 1 it is surprising to see how much processing is done on the
message block without involving the chaining value. Half of the 14 nonlinear
bijections have inputs that do not depend on the chaining value.

If we rewrite Edon-R a bit, we can think of the pair (g(C), D) as the mes­
sage block. The 7 red and white functions become an expensive message
expansion function that computes a third block value E. The remaining 7
nonlinear functions perform the actual compression. In this representation
the padding rule becomes complicated, but that affects only the last block.

Intuitively this feels like an inefficient use of computational resources. Half
the time is spent in the message expansion to compute a single extra block
that then affects the output of the compression function almost directly.

Another question is whether it is useful to apply the f and g functions to
Ha and Hb respectively. These would be useful if an attacker could get non­
random patterns in the chaining value, but an attacker that can do that can
create non-random patterns in the hash function output too.

An alternate design for a compression function based on 14 nonlinear per­
mutations would be to build a block cipher using a 14-round Feistel network
with a very simple key schedule, and run this in one of the standard hashing
modes. This would achieve a similar speed as Edon-R in software, but it
would seem to be much harder to attack.

9

4.1	 Edon-R’s proof of security against differential cryptanal­
ysis

In [1] section 3.5 the Edon-R submitters provide a proof that Edon-R is
secure against differential cryptanalysis. They show that a single bit differ­
ence in Ma or Mb will not lead to a detectable difference patterns in the
output.

We believe this analysis is incomplete. It shows that a single-bit input
difference does not lead to a detectable output difference, but it does not take
differentials into account that start out with many bits, then narrow down
to one or just a few bits halfway through the computation, and then fan out
again. From experience we know that the highest probability differentials
are often of this form, and the proof provides no upper bound on their
probability.

Our attack is exactly of that form. We have a big difference in the mes­
sage block which narrows down to a low Hamming-weight difference halfway
through the computation.

5 Acknowledgements

We would like to thank Danilo Gligoroski and the other members of the
Edon-R team for their encouragement and support. They were also kind
enough to provide us with the description of the inverse f and g functions.

6 Conclusion

Edon-R has insufficient mixing between the message block and the chain­
ing state. This leads to message differentials with detectable biases in the
output, which can be used to recover the chaining state input to the last
compression function if the attacker controls only the last message block.
This breaks a variety of protocols and algorithms in which hash functions
are used.

10

References

[1] Danilo Gligoroski, Rune Steinsmo Ødesg̊ard, Marija Mihova, Svein
Johan Knapskog, Ljupco Kocarev, Aleš Drápal, “Cryptographic Hash
Function Edon-R” http://people.item.ntnu.no/~danilog/Hash/
Edon-R/Supporting_Documentation/EdonRDocumentation.pdf,
Submission to NIST, 2008

[2] Skein team. “Engineering comparison of SHA-3 candidates”, http://
www.skein-hash.info/sha3-engineering, retrieved April 19, 2009.

11

www.skein-hash.info/sha3-engineering
http://people.item.ntnu.no/~danilog/Hash

Page 1 of 1

From: hash-forum@nist.gov on behalf of Danilo Gligoroski [danilo.gligoroski@gmail.com]
Sent: Saturday, August 01, 2009 3:15 AM
To: Multiple recipients of list
Subject: RE: OFFICIAL COMMENT: EDON-R

Hi,

I can confirm findings reported in the paper of Novotney‐Ferguson.

Namely, I have independently checked and repeated Ferguson‐Novotney experiments

and I can confirm that they are correct (Peter – thanks for your C source code).

Although there is a simple fix that Niels suggested in a private e‐mail message to me,

having in mind that EDON‐R is not selected in 14 candidates of the second round SHA‐3 –

there is no point of considering its further fixing and development

(until – as one mentioned on some forum – we have SHA‐4 or NESSIE 2.0 competition for

ultra‐fast crypto primitives ☺ hehe).

Best regards,

Danilo Gligoroski

From: hash-forum@nist.gov [mailto:hash-forum@nist.gov] On Behalf Of Niels Ferguson
Sent: Saturday, August 01, 2009 2:21 AM
To: Multiple recipients of list
Subject: OFFICIAL COMMENT: EDON-R

Peter Novotney and myself found detectable correlations in Edon‐R.

Abstract:
The Edon‐R compression function has a large set of useful differentials that produce easily detectable output bit
biases. We show how to construct such differentials, and use them to create a distinguisher for Edon‐R‐512 that
requires around 2^{54} compression function evaluations (or 2^{28} evaluations after a pre‐computation of
2^{66} evaluations). The differentials can also be used to attack a variety of MAC and KDF constructions when
they use Edon‐R‐512.

I have attached the paper; it should also appear soon on eprint.iacr.org as 2009/455

Cheers!

Niels

8/3/2009

http:eprint.iacr.org
mailto:mailto:hash-forum@nist.gov
mailto:hash-forum@nist.gov
mailto:danilo.gligoroski@gmail.com
mailto:hash-forum@nist.gov

