I think I found a simple correlation on some of the output bits of Vortex.

The hash result is the output of the V function. I’ll use the notation of Figure 4 in the Vortex documentation, and use X[0] to refer to the least significant bit of word X.

new_B0 and new_A0 are two of the output words of the function V.
new_B0[0] is a function of three bits B1[0], B0[0], and A0[0].
new_A0[0] is a function of three bits B0[0], A1[0], and A0[0].

These two functions share inputs and are correlated. new_B0[0] = new_A0[0] with probability 5/8. This leads to a trivially detectable output bias, and makes the hash function unsuitable for many applications, including key derivation and Hash_DRBG from SP800-90.

Let’s rename the four input bits to A, B, C, and D, and the two output bits to X and Y. We have:

\[X = (A \& D) \oplus B \]
\[Y = (B \& C) \oplus D \]

If A=0 then X = B and Y = <some expression> \oplus D so both output bits are uncorrelated and unbiased.
If C=0 the same applies.

But if A=C=1 we have
\[X = D \oplus B \]
\[Y = B \oplus D \]
and thus
\[X = Y \]

So 3/4 of the time the two output bits are unrelated, and 1/4 of the time they are the same, which leads to X=Y for 5/8 of all inputs.

I haven’t verified this experimentally, but the submitters of Vortex agreed with this analysis.

Cheers!

Niels
Hello,

In response to the bit correlation remark posted by Niels and the other published attacks we have posted a new paper titled: "Security Enhancement of the Vortex Family of Hash Functions" that can be found in our algorithm's new web site: http://math.haifa.ac.il/~vortex

Regards
Shay and Michael