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Abstract 

The second round of the NIST-run public competition is underway to find a new hash algorithm(s) for inclusion 

in the NIST Secure Hash Standard (SHA-3). This paper presents full hardware implementations of all of the second 

round candidates in hardware for all specified message digest variants. In order to determine their computational 

efficiency, a specified aspect in NIST’s round two evaluation criteria, this paper gives an area/speed comparison of 

each design both with and without a hardware interface, thereby giving an overall impression of their performance 

in resource constrained and resource abundant environments. The post-place-and-route implementation results are 

provided for a Virtex-5 FPGA device. The efficiency of the architectures for the hash functions are compared in terms 

of throughput per unit area. 

To the best of the authors’ knowledge, this is the first work to date to present hardware designs which test for all 

message digest sizes (224, 256, 384, 512), and also the only work to include the padding as part of the hardware for 

the SHA-3 hash functions. 

1 Introduction 

The NIST hash competition [1] to select a new hash algorithm(s) for the purpose of ultimately superceding the func

tions in the SHA-2 family is currently nearing the end of the second round evaluation period. The fourteen contesting 

designs for SHA-3 (or the Advanced Hash Standard (AHS)) which advanced to round two are available for public 

comment and scrutiny, and NIST has stated that computational efficiency of the algorithms in hardware, over a wide 

range of platforms, will be addressed during the second round of the contest [1]. The work in this paper is a contin

uation of work in [2], in which three of the five selected hash functions progressed to round two, CubeHash, Grøstl 
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and Shabal. We present updated round two results for these implementations along with baseline implementations for 

each of the other second round designs. 

The rest of this paper is organised as follows. In Section 2 we give a brief description of our design decisions 

and our testing methodology. Section 3 gives an overview of hash functions and the hash function architectures, 

with subsections 3.4–3.13 respectively describing the FPGA implementations of the hash functions in this case study. 

For each hash function, its specification is briefly described; an exploration of the design space is presented; and 

implementation results on the Virtex-5 FPGA platform are supplied. Section 4 gives results for the designs, and 

Section 5 concludes. 

2 Fair Comparison Methodology 

In the NIST competition specifications [1], 6.C , Round 2 Technical Evaluation gives the criteria for hardware testing; 

"Round 2 testing by NIST will be performed on the required message digest sizes" and "the calculation of the time 
required to compute message digests for various length messages". 

As such, the authors felt that for a complete analysis of the hash functions as required by NIST, it was necessary 

to implement as many designs as was necessary for full coverage of all of the message digest sizes, {224, 256, 384, 

512}. While in some cases, all four variants can be output from a single design, where only the initial vectors (IV) and 

truncation differ, others require two or even three different designs to produce the four output digests. The current hash 

standard, SHA-2, was also implemented as a reference point. To allow fair comparison between different designs, all 

designs were implemented in slice logic, using distributed memory instead of dedicated block memory where required. 

Although this does not make the best use of the FPGA, all the designs and their variants can thus be fairly measured 

and analysed. 

For the calculation time, it was decided to also include the padding stages in hardware, required both for the pur

pose of testing the hash functions against the Known Answer Tests (KAT) values provided by each designs submission 

package, and also to give a fair and accurate timing report inclusive of all stages required to hash a message. As there 

are a number of different padding schemes, each of which have differing number of rounds required to complete, the 

padding also has a bearing on the calculation time. 

We developed a hardware wrapper interface [3] which necessarily needed to be published separately due to space 

limitations. This wrapper, freely available on our website, along with all other source code, allows others to test 

their designs, http://www.ucc.ie/en/crypto/, shown in Fig. 1, produces the padding scheme required for a 

particular hash function as well as providing the interface to the outside world. It allows re-use of any padding scheme 

that can be used in multiple hash functions. 

In this case we set the i/o bus widths, w, to 32-bits, a standard word size. This models a realistic communications 

system, and takes into account any bandwidth limitations, as any hash function requiring a large message size, m, will 

be subject to a latency of m/w clock cycles. Our hash functions necessarily take this latency into account, and we 

implemented our designs so as to minimise where possible any delays due to this loading of data, i.e. the hash round 

function should, if possible, take longer than the time required to load a message. We showed in [3] that, while the 

wrapper itself does not affect the clock frequency of the design, counters in the padding block may form the critical 

path and thus affect the timing. 

As such, in the interest of fairness while our main results present area and frequency results inclusive of the 

wrapper, we also present an appendix section detailing the hash results where the padding is implemented in software, 

both exclusive of the wrapper, thereby negating any transmission bottlenecks, and inclusive of the wrapper to allow a 

fair comparison. 

http://www.ucc.ie/en/crypto/,showninFig.1,produces
http:subsections3.4�3.13
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Figure 1: Wrapper Interface 

3 Overview of the Hash Function Architectures 

Table 1 gives the constructions of the different SHA-3 hash functions and their variants as well as the various inputs 

and state sizes in bits. As the {224} variant is almost identical to the {256} and similarly, the {384} to the {512} we 

omit these values. The only notable differences being Keccak, where the message size increases to 1152-bits for {224} 

Table 1: Hash Function Internals 
224/256 384/512 

Design Structure Type Counter Message Salt State Counter Message Salt State 

SHA-2 Merkle-Damgård Add-XOR-Rotate 64 512 - 512 128 1024 - 1024 

Blake HAIFA Add-XOR-Rotate 64 512 128 512 128 1024 256 1024 

BMW Iterative Add-XOR-Rotate 64 512 - 2048 64 1024 - 4096 

Cubehash Iterative Add-XOR-Rotate - 256 - 1024 - 256 - 1024 

Echo HAIFA AES based 64 1536 128 2048 64 1536 128 2048 

Fugue Iterative AES based 64 32 - 96 64 32 - 1148 

Grøstl Iterative AES based 64 512 - 512 64 1024 - 1024 

Hamsi Conc-Permute Serpent based 64 32 - 512 64 64 - 1024 

JH Iterative Block Cipher based 128 512 - 1024 128 512 - 1024 

Keccak Sponge Add-XOR-Rotate - 1088 - 1600 - 576 - 1600 

Luffa Sponge S-box based - 256 - 768 - 256 - 1280 

Shabal Iterative Add-XOR-Rotate - 512 - 1408 - 512 - 1408 

SHAvite-3 HAIFA AES based 64 512 256 256 128 1024 512 512 

SIMD Iterative Block Cipher based 64 512 - 512 64 1024 - 1024 

Skein UBI Add-XOR-Rotate 96 512 - 512 96 512 - 512 



and 832-bits for {384}, and Luffa, where the state size decreases to 1024-bits for {384}. The Structure loosely defines 

the hash function overview, for example, in HAIFA (Hash Iterative Framework) [4] based designs, the counter is fed in 

with the message, whereas, for Merkle-Damgård [5] [6], it is not. The Type describes the design of the hash functions. 

The Counter, Message and Salt all form the inputs to the hash functions, while the State describes the internal size of 

each of the hash functions. 

Table 2 gives the different padding schemes used by the hash functions. There are many different padding schemes 

utilised by the designers of the hash functions, and in some cases varying padding schemes between the different sizes 

of the same hash function. As can be seen from the Table, similarities between some of the different padding schemes 

allow us to generate a generic block for variants of Merkle-Damgård strengthening [7] padding schemes, as well as 

paddings types of all-zeros or one-and-trailing-zeros. 

Understandably this review is somewhat brief and we invite the reader to review the SHA-3 submission documen

tation for a full description of each of the hash functions. 

Table 2: Padding Schemes 
Design Padding Scheme 

SHA224/256 

SHA384/512 

Blake224 

Blake256 

Blake384 

Blake512 

BMW224/256 

BMW384/512 

Cubehash 

Echo224/256 

Echo384/512 

Fugue 

Grøstl224/256 

Grøstl384/512 

Hamsi224/256 

Hamsi384/512 

JH 

Keccak224 

Keccak256 

Keccak384 

Keccak512 

Luffa 

Shabal 

SHAvite3-224/256 

SHAvite3-384/512 

Simd224/256 

Simd384/512 

Skein 

1, 0’s until congruent (448 mod 512), 64-bit message length 

1, 0’s until congruent (896 mod 1024), 128-bit message length 

1, 0’s, until congruent (448 mod 512), 64-bit message length 

1, 0’s, until congruent (447 mod 512), 1, 64-bit message length 

1, 0’s, until congruent (895 mod 1024), 128-bit message length 

1, 0’s, until congruent (894 mod 1024), 1, 128-bit message length 

1, 0’s until congruent (448 mod 512), 64-bit message length 

1, 0’s until congruent (960 mod 1024), 64-bit message length 

1, 0’s until a multiple of 256 (256 = 8 * b, b=32) 

1, 0’s until congruent (1392 mod 1536), 16-bit message digest, 128-bit message length 

1, 0’s until congruent (880 mod 1024), 16-bit message digest, 128-bit message length 

0’s until a multiple of 32, 64-bit message length 

1, 0’s until congruent (448 mod 512), 64-bit block counter 

1, 0’s until congruent (960 mod 1024), 64-bit block counter 

1, 0’s until a multiple of 32, 64-bit message length 

1, 0’s until a multiple of 64, 64-bit message length 

1, 0’s until congruent (384 mod 512), 128-bit message length, min 512-bits added 

1, 0’s until a multiple of 8, append 8-bit representation of 28, append 8-bit representation of 1152/8, 1, 0’s until a multiple of 1152 

1, 0’s until a multiple of 8, append 8-bit representation of 32, append 8-bit representation of 1088/8, 1, 0’s until a multiple of 1088 

1, 0’s until a multiple of 8, append 8-bit representation of 48, append 8-bit representation of 832/8, 1, 0’s until a multiple of 832 

1, 0’s until a multiple of 8, append 8-bit representation of 64, append 8-bit representation of 576/8, 1, 0’s until a multiple of 576 

1, 0’s until a multiple of 256 

1, 0’s until a multiple of 512 

1, 0’s until congruent (432 mod 512), 64-bit message length, 16-bit digest length 

1, 0’s until congruent (880 mod 1024), 128-bit message length, 16-bit digest length 

0’s until a multiple of 512, extra block with message length 

0’s until a multiple of 1024, extra block with message length 

0’s if multiple of 8, else 1, 0s, until a multiple of 512 

In the design of the hash function architectures described in this paper, our main goal was to give a baseline 

comparison between the hash functions using area and throughput. We calculate the throughput as follows: 

# Bits in a message block×Maximum clock frequency Throughput = 
# Clock cycles per message block 

The FPGA platform targeted in the study was the Xilinx Virtex-5 xc5vlx330T-2-ff1738. Each hash function design 

was implemented using VHDL, and Synthesis, Place and Route were carried out using Xilinx ISE v9.2i. We measure 

area of our hash function designs in FPGA slices, as given by the Map report. 

http:throughput.We
http:hashfunction.As
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Figure 2: Blake Figure 3: BMW 

3.1 BLAKE - Aumasson et al. 

For our implementation of BLAKE we further subdivide the compression function into two identical sections, to allow 

re-use of the component blocks and thereby reducing the area. This subdivision increases the latency of the hash 

permutation to complete a round from two to four clock cycles, but reduces the critical path from four adders to two 

adders thus increasing the maximum frequency of the permutation. For the larger variant which requires 32 clocks to 

load a 1024 bit message, it ensures there is no delay where the hash function needs to wait for loading to complete. 

Fig. 2 shows the modified design. 

The Adders and XORs are generated using standard operators (using the ’+’ operator of the IEEE.std logic un

signed package) and the rotation operations were implemented through simple wiring, with multiplexers to select the 

particular subround rotation. The 16 constants required by the initialisation and round stages are stored in distributed 

ROM. 

3.2 Blue Midnight Wish - Gligoroski et al. 

Our implementation of Blue Midnight Wish (BMW) is designed as follows. f0 takes M (i) and H(i−1) as its inputs 

and produces the first half of the quadrupled-pipe value Q
(
a
i) 

. f0 consists of 80 additions/subtractions, as well as 
(i)

XOR’s, bitwise shifts and rotations. f1 takes M (i), H(i−1) and Qa as its inputs and produces the second half of the 
( )

(i) (i) (i)
quadrupled-pipe valueQ . The quadrupled-pipe is then Q(i) = Qa , Q . f1 is the most complex of the functions b b 

performed by BMW, consisting of two sub functions ER1 and ER2. Both ER1 and ER2 contain sixteen modulo 32 

addition operations but ER1 contains more bitwise shift and rotate operations. Both functions use an operation that 

uses modulo 32 additions, subtractions and rotations to combine a block of the message and of the double-pipe with a 
(i) (i)

predefined set of constants. The final function f2 takes M (i), Qa and Qb as inputs and produces the new double-pipe 

value H(i). f2 consists of XOR, bitwise shift, rotation and modulo 32 addition operations. 

A pipelined design was chosen for implementation due to the large amount of additions that need to be performed. 

Each of the functions f0, f1 and f2 make up a stage in the pipelined deign. One operation of the compression cycle 

therefore takes three clock cycles. A diagram of the pipelined designed is shown in Figure 3. 

3.3 CubeHash - Bernstein 

We designed FPGA implementations of the CubeHash compression function with round two parameters as recom

mended by Bernstein in the round 2 tweaks. The rotation and swapping operations are implemented in hardware by 



C 

ROT 7 SWAP 

SWAP 

ROT 11 SWAP 

SWAP 
512 

512 512 

512 

B 

A’ 

’ 

A 

B 

f 

S
M

IX
 

H 

clk 

clk 

F
in

al
 C

al
c

C
M

IX
&

R
O

R
 3

 
R

O
R

1
4

 
R

O
R

1
5

 

S
ta

rt
 S

el
ec

t 

MSG 

clk 

IV 

T
IX

 

Figure 4: Cubehash Figure 5: Fugue 256 

simply re-labelling the relevant signals. Since the state comprises 1024 bits, the same architecture can be used to 

produce message digests with any of the lengths required for SHA-3. Therefore, a CubeHash8/32-256 implementation 

will have the same throughput and throughput per slice performance as a CubeHash8/32-512 implementation. 

The critical path through the compression function consists of two modulo 232 additions and two XOR operations, 

as indicated by the heavy lines in Fig. 4. The compression function is used r = 8 times for each message block Mi 

(i.e. for each message byte in this case, since b = 1). Therefore, we implemented the CubeHash architectures where 

fC is unrolled to a chain of four fC units in series to process a single message block in two clock cycles. Note that the 

figures quoted for include the initial XOR of the message block with the state, and also include the area of the output 

register that stores the result of the last fC calculation in the chain. 

3.4 ECHO - Orange Labs 

The compression function (CF E) for ECHO, operates iteratively as follows: Vi = CF E(Vi−1,Mi, Ci, SALT ) where 

Vi−1 is the current value of the chaining variable, Mi is the current message block, Ci is a counter and SALT is a 

sub-key. 

We designed and evaluated FPGA implementations of the ECHO hash function with an output of {256 & 512} 

bits. In the proposed design, an iterative architecture is used with one BIG.ROUND function and a finite state machine 

(FSM) to control the data-path. Within the BIG.ROUND function, 16 pairs of the AES functions are processed in 

parallel to improve the throughput rate. The S-boxes are implemented using distributed ROM memory. Sub-keys are 

pre-calculated prior to the compression function. An outline of this architecture is provided in Fig. 6. In this design, 

the BIG.ROUND operation is performed in one clock cycle. 

3.5 Fugue - Halevi et al. 

The Fugue hash function was designed by researchers at IBM. The rotation blocks (ROR) operate on different sizes 

for each of the variants, but the overall design remains the same. Fig. 5 shows the operation of F-256. The initial 

round comprises a TIX stage (XOR, truncate, insert and XOR of bytes), a rotation by 3 bytes (ROR3) and a column 

mix (CMIX), all on each of the n blocks, followed by a super mix (SMIX) transformation. This transformation takes a 

4x4 matrix of bytes and passes each byte through an S-box, followed by a linear transformation to generate diffusion. 

This linear transformation is similar to that employed in AES, however, unlike AES, there is cross-mixing between the 

columns. These steps are looped a number of times r depending on the variant, with r = 2, 3, 4 ∈ {224, 256, 384, 512} 
per message block. The final round comprises two more loops of a rotation by three bytes (ROR3), CMIX and SMIX 

(repeated p times), an XOR, and a rotation by 15 or 14 followed by an SMIX (repeated q times). For the different 

variants p = 5, 18, 32 ∈ {224, 256, 384, 512} and q = 13 ∈ {224, 256, 384, 512}. 
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In all variants, the CMIX and linear transformation operations are implemented using combination logic, and the 

rotation operation was implemented through rewiring. As defined in the specifications, for each design we declared 

four blocks where the state words are operated on and shifted along chains of 8-bits. The S-boxes are implemented as 

look up tables using distributed ROM memory. 

3.6 Grøstl - Gauravaram et al. 

The architecture for Grøstl is illustrated in Fig. 7. The first stage in each permutation is the AddRoundConstant block 

which simply performs an XOR on one byte of the ℓ-bit input state. The round constants are stored in distributed 

memory on the FPGA. The SubBytes stage transforms the state, byte by byte, using the AES S-box generated using 

distributed ROM. The SwapBytes transformation was realised in hardware by simply re-labelling the bytes of the state. 

MixBytes is the final stage of the permutation function, and processes each column of the state matrix separately and 

in parallel using combinational logic. An output register was used to store the state at the output of the MixBytes 

transformation. 

The compression function fG for the Grøstl implementation consists of two permutation functions, P and Q. 

Permutations P and Q are identical except for the execution of the AddRoundConstant step, where different round 

constants are used. Therefore, our design choice was to compute Q in parallel by replicating the hardware for P . Two 
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XOR arrays are required to complete the compression function for the input to P , and for the final output Hi. 

3.7 Hamsi - Küçük 

The Hamsi hash function has a concatenate - permute - truncate construction, with the input message expanded and 

concatenated with an initial value or the output from the previous stage of the hash function. This is followed by the 

non linear permutation, made up of XORing the state with a table of predefined constants and a counter, Serpent [8] 

S-boxes and a diffusion operation consisting of several bitwise shifts and XOR’s. Truncation reduces the Hamsi state 

down to the size of the input message. 

A fully parallel design was chosen for implementation as shown in Figure 8. The non-linear permutation P was 

unrolled three times, more unrolling resulted in a congested design for the VHDL. Therefore it takes one clock cycle 

for a normal message block to be hashed and two clock cycles for the final message block. The Serpent based S-boxes 

were generated using distributed ROM. 

3.8 JH - Hongjun Wu 

JH uses the same design for all four varients and is based on simple components. The compression function combines 

a 1024-bit previous hash block (Hi−1), a 512-bit message block (Mi) to produce a 1024-bit hash block (Hi). The 

compression function (CF JH ) is applied to each message block, Mi. The bijective function consists of 35 rounds, 

each consisting of an S-box, linear transformation and permutation, and a single final round consisting of just the S

box. Two 4-bit S-boxes are used, the selected table depending on the value of a round constant. It can also be viewed 

as a 5-bit to 4-bit substitution. The linear transformation implements a (4, 2, 3) maximum distance separable (MDS) 

code over GF (24), and the permutation shuffles the output according to three distinct smaller permuations. The 256

bit round constants can be generated either in parallel with the data path or pre-computed and stored in memory where 

they can be re-used. In the design presented, the full 1024-bit data state is operated on at once. Each round completes 

in one clock cycle. The 256-bit sub-key state is calculated in parallel, as illustrated in Fig. 9. 

The S-box and linear transformation functions are implemented as combinational logic as outlined in the submis

sion documentation, and the grouping and permutation functions are rewiring circuits. In the round constant data path, 

http:constant.It
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only the S-box corresponding to select bit ’0’ is required. Three registers are required for data storage, one each for 

the round constant, message block and data block respectively. 

3.9 Keccak - Bertoni et al. 

Keccak is a hash function based on the sponge construction [9]. The NIST submissions use the same KECCAK-f 
permuation for all variants, with different capacity (c), bitrate (r) and diversifier (d) values, where smaller digest sizes 

have a greater bitrate. The five steps of the permutation consist of addition and multiplication operations in GF (2). 
The full round computes in a single clock cycle, and an extra clock is required for loading in of the message. The 

padded message of length r is loaded in by XOR’ing it with r bits of the state. The 64-bit round constants are defined 

as the output of a linear feedback shift register and can be pre-computed or generated as required. In the design 

presented, they are pre-computed and stored in distributed ROM. Only one register is required and is used to store 

the state value. The HDL implementation provided in the specification documentation was used as a reference for the 

permutation steps in our design. 

3.10 Luffa - De Cannière et al. 

During the round function of Luffa, a message injection and permutation function are applied to these inputs as 

illustrated in Fig. 11. The round function consists of a message injection function (MI) and a permutation function (P). 

The MI can be implemented simply using an array of XOR gates as defined in the specifications. The round function 

is more complex and consists of w non-linear permutation functions, Qj , which execute 8 iterations of a step function, 

where w = 3, 4, 5 ∈ {224/256, 384, 512}. Each Qj performs an input tweak function followed by 8 iterations of the 

step function. The step consists of an S-box transformation, implemented in distributed ROM. The MixWord function 

is a linear permutation of two words and is implemented by a series of shifts and XORs. The final stage of the step 

function is AddConstant in which a predefined step constant is XORed to a single word of the input. 

The step constant is dependant on the current iteration of the round function. The core unit in the implementation 

of Luffa is the Step function which can be executed in a single clock cycle while still maintaining a minimum clock 

delay. Due to the S-box, a clock delay is incurred here. To reduce any further clock delays, the output of one iteration 

of the step function is passed directly to the input of the next. In this way, one round of Qj will take 8 clock cycles. 

Each Qj can be executed in series or in parallel in order to target area or speed optimizations. The only differences 

between each instance are the step constants. Therefore, in order to implement each Qj using a single instance of Q, 

a mux is required to control the selection of the constants. 

http:illustratedinFig.11
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3.11 Shabal - Saphir research project 

Shabal uses a sequential iterative hash construction, to process messages in blocks of ℓm = 512 bits , as shown in 

Fig. 12. The Shabal compression function is based on a Non-Linear Feedback Shift Register (NLFSR) construction. 

We use the precomputed IV to remove the configuration stage and thus remove the initial two message block from the 

latency. When designing Shabal, the XOR, addition and subtraction operations were all implemented in parallel. In the 

permutation P , the rotation operations were implemented through simple wiring. In order to realise the central part of 

the permutation, we adopted a shift-register based approach, where the state words are shifted along chains of 32-bit 

registers. The multiplication operations U and V form the non-linear part of the NLFSR; these were implemented 

using the shift-then-add method. Once the shift registers have been loaded with the appropriate initial values, the 

central permutation result is calculated after 48 clock cycles. The final part of the permutation P adds words from 

the A and C states. For these modulo 232 additions, we expand the addition into 12 × 3 series additions. Using this 

approach, the final result is computed without requiring any extra clock cycles, at the cost of 35 additional adders. 

3.12 SHAvite-3 - Biham et al. 

The compression function for SHAvite-3 is a keyed permutation that is used with the Davies-Meyer construction [10]. 

To achieve a high throughput rate, a fast AES module is needed. Since the AES modules are processed sequentially, 

only one AES block is required in the compression function module. The architecture is shown in Fig. 13. For a 

parallel implementation, a second AES block is required for computation. In the compression function architecture, 

the 256-bit chaining variable is split into two 128-bit parts, namely state0 and state1. the AES function using a 128-bit 

data bus processes state1 in one clock cycle. The output of the AES function will be fed back to be processed again. 

After three AES computations, the output is XORed with the data from the state0 registers. after the XOR operation 

state0 and state1 update and input into the next round computation. In total, 12 rounds are required in CF S3 The 256. 

updated chaining variable or hash output is available after 37 clock cycles. 

The AES S-boxes are implemented using distributed ROM memory. In key-expansion, in the non-linear stage 1 
clock cycle is required to generate every four keys. In the linear stage 1 clock cycle to generate every eight keys. 

The total number of clock cycles required for generating all keys is 25. In order to produce a corresponding key 

ahead of the compression function, the key-expansion module needs to be triggered one clock cycle earlier than the 

compression function. 

3.13 SIMD - Leurent et al. 

SIMD is an iterated hash function, based on the Merkle-Damgård design, with a modified Davies-Meyer function 

compression function using a Fiestel-like block cipher. The design of the the compression function using parallel 
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Figure 14: SIMD Figure 15: Skein 512 

Fiestel ladders allows for high throughput implementations on hardware. The inner state, S, is represented as a 4x4 

matrix of 32-bit words for SIMD-256, or an 8x4 matrix for SIMD-512. The function E consists of four rounds of 

parallel Fiestel Ladders, each composed of eight Fiestel Steps. The Fiestel Step is the core unit of the compression 

function. There are eight Fiestel Steps in each Ladder, with four Ladders in parallel in each Round (eight Ladders for 

SIMD-512) as shown in Fig. 14. 

Registers are placed on the outputs of each Fiestel Step, as well as on each round, in order to minimize the critical 

path and therefore maximise the clock frequency. Removing some of these registers, reduces the number of clock 

cycles required to complete an iteration of the compression function but the effect on the throughput is negated by the 

reduction of the overall clock frequency. There are a total of four rounds in each compression function, followed by a 

final half -round consisting of four parallel Fiestel Ladders consisting of four Fiestel Steps each. 

3.14 Skein 512 - Ferguson et al 

Skein-512 is the primary proposal of the Skein family of algorithms. A Unique Block Iteration (UBI) chaining mode 

takes in the chain value, the message and a ’Tweak’ defined by an 128-bit configuration string derived from the 

message counter and UBI constants. The Threefish algorithm has 72 rounds consisting of four sets of four MIX 

functions followed by a permutation of the eight 64-bit words. Each MIX function consists of a single addition, a 

rotation by a constant, and an XOR. The rotation constants repeat every eight rounds. The key schedule generates the 

subkeys from the chain and a tweak. A finalisation UBI stage consisting of a null message, a Tweak and the previous 

chain. 

For our design of Skein-512 we unrolled four rounds of threefish, Fig. 15. In this way, a UBI message block of 

Skein takes 18 clocks for the rounds to complete, plus 5 for preprocessing and data loading. We use the precomputed 

IV to remove the configuration stage and thus remove the initial message block from the latency. Each subsequent 

message block and the output block are calculated identically. The tweak, which ensures each message block is 

different, is generated by the counter in the padding.The Adders and XORs were generated in a generic fashion and 

the rotation operations were implemented through simple wiring, with multiplexers to select the particular subround 

rotation. 

4 Results 

Table 3 gives the clock count for the various designs. As can be seen from the table, some hash designs require 

extra time to load in the padding scheme, while others have finalisation stages comprising a number of rounds. For 

calculating the throughput, as the size of the message to be hashed increases, these padding and finalisation stages 

http:showninFig.14


Table 3: Hash Function Timing Results 
Hash 

Design 

32-bit load 

#Cycles 

Extra 

Padding 

Padding 

#Cycles 

Message 

Rounds 

Round 

#Cycles 

Long Msg 

#Cycles 

Final 

Rounds 

Final 

#Cycles 

Short Msg 

#Cycles 

SHA224/256 

SHA384/512 

16 

32 

0 

0 

0 

0 

64 

80 

1 

1 

65 

81 

0 

0 

0 

0 

65 

81 

Blake224/256 

Blake384/512 

16 

32 

0 

0 

0 

0 

10 

14 

4 

4 

40 

56 

0 

0 

0 

0 

40 

56 

BMW224/256∗ 

BMW384/512∗ 
16 

32 

0 

0 

0 

0 

1 

1 

4 

4 

4 

4 

1 

1 

3 

3 

7 

7 

Cubehash 8 0 0 16 17 17 160 161 178 

Echo224/256∗ 

Echo384/512∗ 
48 

32 

0 

0 

0 

0 

8 

10 

1 

1 

8 

10 

1 

1 

1 

1 

9 

11 

Fugue224/256 

Fugue384 

Fugue512 

1 

1 

1 

2 

2 

2 

1 

1 

1 

1 

1 

1 

7 

10 

13 

7 

10 

13 

13 

20 

22 

91 

180 

264 

98 

190 

277 

Grøstl224/256∗ 

Grøstl384/512∗ 
16 

32 

0 

0 

0 

0 

10 

14 

1 

1 

10 

14 

0 

0 

0 

0 

10 

14 

Hamsi224/256 

Hamsi384/512 

1 

2 

3 

3 

1 

1 

3 

6 

2 

2 

6 

12 

6 

12 

24 

48 

31 

61 

JH 16 1 1 35 1 38 0 0 38 

Keccak224∗ 

Keccak256∗ 

Keccak384∗ 

Keccak512 

36 

34 

26 

18 

0 

0 

0 

0 

0 

0 

0 

0 

24 

24 

24 

24 

1 

1 

1 

1 

25 

25 

25 

25 

0 

0 

0 

0 

0 

0 

0 

0 

25 

25 

25 

25 

Luffa224/256 

Luffa384 

Luffa512 

8 

8 

8 

0 

0 

0 

0 

0 

0 

8 

8 

8 

1 

1 

1 

8 

8 

8 

1 

2 

2 

8 

16 

16 

16 

24 

24 

Shabal 16 0 0 1 50 50 3 150 200 

SHAvite3-224/256 

SHAvite3-384/512 

16 

32 

0 

0 

0 

0 

12 

14 

3 

4 

36 

56 (70) 

1 

1 

1 

1 

37 

71 

Simd224/256 

Simd384/512 

16 

32 

1 

1 

1 

1 

4 

4 

8 

8 

32(41) 

32(41) 

0.5 

0.5 

4 

4 

36(45) 

36(45) 

Skein 16 0 0 18 22 22 18 22 44 

will have less of an impact on the overall calculation time. However for short messages, they have a big impact. 

We therefore define a short message as the time required to process the padding, a single message block and 

finalisation, and a long message as just the time to process the message block. Note that each hash function 

operates over the state size given in Table 1, and so designs with smaller state sizes will require a larger number of 

rounds to hash the same amount of data as a design with a large state size. This is also reflected in the throughput. 

The larger state sizes however are affected by the loading latency as explained in Section 2. Where the time 

required to hash the message is larger than the time required to load the message this only affects the initial message 
∗loading, but in cases where the load latency is longer than the hash latency (denoted in Tables 3 and 4), there will 

be a delay as the hash waits for data to load. In this scenario the clock count for the throughput needs to take this 

additional delay into consideration. Not given here is the output message load time, which in all cases is the hash 

digest size/output bus size. 

The timing and area results for the implemented hash functions on the Xilinx Virtex-5 xc5vlx330T-2-ff1738 are 

given in Table 4. The -w designation defines the results inclusive of the wrapper, while −nw gives the hash function 

as a stand alone entity. The throughput results given are inclusive of the wrapper with TP-s using Table 3’s clock count 

for a short message, and TP-l using the clock count for a long message where the padding and finalisation stages 

will have little impact on the message. We highlight SHA-2 as the benchmark to compare the others against. The bar 

graphs present throughput and throughput/area results for both long and short messages inclusive of the wrapper. An 

appendix section presents the hash results for the padding implemented in software both inclusive and exclusive of the 

wrapper. 
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Table 4: Hash Function Implementation Results 
Hash 

Design 

Area-w 

(slices) 

Max.Freq-w 

(MHz) 

Area-nw 

(slices) 

Max.Freq-nw 

(MHz) 

TP-l 

(Mbps) 

TP-l/Area 

(Mbps/slice) 

TP-s 

(Mbps) 

TP-s/Area 

(Mbps/slice) 

SHA-2-256 

SHA-2-512 

1,019 

1,771 

125.063 

100.04 

656 

1,213 

125.125 

110.096 

985 

1264 

0.966 

0.713 

985 

1264 

0.966 

0.713 

BLAKE-32 

BLAKE-64 

1,653 

2,888 

91.349 

71.048 

1,118 

1,718 

118.064 

90.909 

1169 

1299 

0.707 

0.449 

1169 

1299 

0.707 

0.449 

BMW-256∗ 

BMW-512∗ 
5,584 

9,902 

14.306 

8.985 

4,997 

9,810 

14.016 

10.004 

457 

287 

0.081 

0.028 

457 

287 

0.081 

0.028 

Cubehash 1,025 166.667 695 166.833 2509 2.447 239 0.233 

ECHO-256∗ 

ECHO-512∗ 
8,798 

9,130 

161.212 

166.667 

7,372 

8,633 

198.926 

166.694 

5373 

18133 

0.61 

1.986 

5373 

5666 

0.61 

0.608 

Fugue-256 

Fugue-384 

Fugue-512 

2,046 

2,622 

3,137 

200 

200.08 

195.81 

1,689 

2,380 

2,596 

200.04 

200.08 

200.16 

914 

640 

481 

0.446 

0.244 

0.153 

60 

33 

22 

0.029 

0.012 

0.007 

Grøstl-256∗ 

Grøstl-512∗ 
2,579 

4,525 

78.064 

113.122 

2,391 

4,845 

101.317 

123.396 

3242 

3619 

1.257 

0.799 

3242 

3619 

1.257 

0.799 

Hamsi-256 

Hamsi-512 

1,664 

7,364 

67.195 

14.931 

1,518 

6,229 

72.411 

16.51 

358 

79 

0.215 

0.01 

69 

15 

0.041 

0.002 

JH 1,763 144.113 1,291 250.125 1941 1.1 1941 1.1 

Keccak-224∗ 

Keccak-256∗ 

Keccak-384∗ 

Keccak-512 

1,971 

1,971 

1,971 

1,971 

195.733 

195.733 

195.733 

195.733 

1,117 

1,117 

1,117 

1,117 

189 

189 

189 

189 

5915 

6263 

8190 

8518 

3 

3.17 

4.15 

4.32 

5915 

6263 

8190 

8518 

3 

3.17 

4.15 

4.32 

Luffa-256 

Luffa-384 

Luffa-512 

2,796 

4,233 

4,593 

166.667 

166.75 

166.667 

2,221 

3,740 

3,700 

166.667 

166.75 

166.75 

5333 

5336 

5336 

1.9 

1.26 

1.16 

2666 

1778 

1777 

0.953 

0.42 

0.58 

Shabal 2,512 143.472 1,583 148.038 1469 0.584 367 0.146 

SHAvite3-256 

SHAvite3-512 

3,776 

11,443 

82.277 

63.666 

3,125 

9,775 

109.17 

59.4 

1170 

931 

0.309 

0.081 

1138 

918 

0.301 

0.08 

SIMD-256 

SIMD-512 

24,536 

44,673 

107.2 

107.2 

22,704 

43729 

107.2 

107.2 

1338 

2677 

0.054 

0.059 

1338 

2677 

0.054 

0.059 

Skein-512 2,756 83.577 1,786 83.654 1945 0.706 973 0.353 

5 Conclusions 

In this paper we presented what we believe to be a methodology for fair and accurate comparisons of the SHA-3 hash 

functions. We implemented and tested all design variants to obtain full coverage of all of the hash functions as required 

by NIST. We developed a hardware wrapper to allow inclusion of padding and interfacing, to obtain the full timing 

and area analysis, and for completeness compared the area and speed of our hash designs both internal and external of 

this wrapper. Finally we presented throughput results for both long and short hash messages inclusive of this wrapper. 
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Appendix 

As described in Section 2, we set the Input and Output bus, w, of our wrapper to 32-bits, a standard word size. Any 

hash function requiring a large message size, m, will be subject to a latency of m/w clock cycles. For these cases the 

clock count for the throughput needs to take this additional delay into consideration. 

Also, while the wrapper itself does not affect the clock frequency, counters in the padding block may form the 

critical path and thus affect the timing, most notably for Haifa based designs. As such, padding in hardware may 

deplement some hash designs more than others. 

In the interest of fairness we present further results to enable a more balanced review of the hash functions in 

hardware. These extra results feature our hash function implementations using an ideal bandwidth, where w = m, 

thereby negating any penalties incurred through transmission bottlenecks. We also present timing results for the 

padding in software both inclusive and exclusive of the Input and Output bus. 
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Figure 28: 224/256 Short Throughput Figure 29: 224/256 Short Tp/Area 
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Figure 30: 384/512 Short Throughput Figure 31: 384/512 Short Tp/Area 
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Figure 32: 224/256 Long Throughput 
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Figure 34: 384/512 Long Throughput Figure 35: 384/512 Long Tp/Area 

Fugue-256 Fugue-256 

32-bit' nput-Output'Bus 

Padding'in'Software 

0 1000 2000 3000 4000 5000 6000
 

32-bit'Input-Output'Bus

Hamsi-256 Hamsi-256 

Padding'in'Software

Cubehash SIMD-256
 

Shabal BM -256
 

Shabal 

 ubehash 

SHA ite3-256
Skein-512 

E HO-256
 

BLAKE-32
 

Luffa-256 

SHA-2-256
 

Groestl-256 

JH
 

Keccak-256 

BM -256
 

Skein-512 

SHA-2-256
 

S M -256
 

SHAvite3-256 

BLAKE-32
 

Luffa-256 

Groestl-256 

JH
 

Keccak-256 

Keccak-224 

ECHO-256
 Keccak-224 

0.0 0.5 1.0 1.5 2.0 2.5 

Throughput'(Mbps) ThroughputlArea'(Mbpslslice) 

Figure 36: 224/256 Short Throughput Figure 37: 224/256 Short Tp/Area 
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