
FPGA Implementations of the Round Two SHA-3 Candidates

Brian Baldwin†, Neil Hanley†, Mark Hamilton†, Liang Lu†† ,

Andrew Byrne‡, Maire O’Neill†† and William P. Marnane†

†Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography

Department of Electrical & Electronic Engineering

University College Cork, Ireland

{brianb,markh,neilh,liam}@eleceng.ucc.ie

‡School of Mathematical & Geospatial Sciences,

RMIT University, Melbourne, Australia

andrew.byrne@rmit.edu.au

††The Institute of Electronics, Communications & Information Technology

Queen’s University Belfast, Belfast, UK

{l.lu, m.oneill}@ecit.qub.ac.uk

August 27, 2010

Abstract

The second round of the NIST-run public competition is underway to find a new hash algorithm(s) for inclusion

in the NIST Secure Hash Standard (SHA-3). This paper presents full hardware implementations of all of the second

round candidates in hardware for all specified message digest variants. In order to determine their computational

efficiency, a specified aspect in NIST’s round two evaluation criteria, this paper gives an area/speed comparison of

each design both with and without a hardware interface, thereby giving an overall impression of their performance

in resource constrained and resource abundant environments. The post-place-and-route implementation results are

provided for a Virtex-5 FPGA device. The efficiency of the architectures for the hash functions are compared in terms

of throughput per unit area.

To the best of the authors’ knowledge, this is the first work to date to present hardware designs which test for all

message digest sizes (224, 256, 384, 512), and also the only work to include the padding as part of the hardware for

the SHA-3 hash functions.

1 Introduction

The NIST hash competition [1] to select a new hash algorithm(s) for the purpose of ultimately superceding the func

tions in the SHA-2 family is currently nearing the end of the second round evaluation period. The fourteen contesting

designs for SHA-3 (or the Advanced Hash Standard (AHS)) which advanced to round two are available for public

comment and scrutiny, and NIST has stated that computational efficiency of the algorithms in hardware, over a wide

range of platforms, will be addressed during the second round of the contest [1]. The work in this paper is a contin

uation of work in [2], in which three of the five selected hash functions progressed to round two, CubeHash, Grøstl

1

mailto:m.oneill}@ecit.qub.ac.uk
mailto:brianb,markh,neilh,liam}@eleceng.ucc.ie

and Shabal. We present updated round two results for these implementations along with baseline implementations for

each of the other second round designs.

The rest of this paper is organised as follows. In Section 2 we give a brief description of our design decisions

and our testing methodology. Section 3 gives an overview of hash functions and the hash function architectures,

with subsections 3.4–3.13 respectively describing the FPGA implementations of the hash functions in this case study.

For each hash function, its specification is briefly described; an exploration of the design space is presented; and

implementation results on the Virtex-5 FPGA platform are supplied. Section 4 gives results for the designs, and

Section 5 concludes.

2 Fair Comparison Methodology

In the NIST competition specifications [1], 6.C , Round 2 Technical Evaluation gives the criteria for hardware testing;

"Round 2 testing by NIST will be performed on the required message digest sizes" and "the calculation of the time
required to compute message digests for various length messages".

As such, the authors felt that for a complete analysis of the hash functions as required by NIST, it was necessary

to implement as many designs as was necessary for full coverage of all of the message digest sizes, {224, 256, 384,

512}. While in some cases, all four variants can be output from a single design, where only the initial vectors (IV) and

truncation differ, others require two or even three different designs to produce the four output digests. The current hash

standard, SHA-2, was also implemented as a reference point. To allow fair comparison between different designs, all

designs were implemented in slice logic, using distributed memory instead of dedicated block memory where required.

Although this does not make the best use of the FPGA, all the designs and their variants can thus be fairly measured

and analysed.

For the calculation time, it was decided to also include the padding stages in hardware, required both for the pur

pose of testing the hash functions against the Known Answer Tests (KAT) values provided by each designs submission

package, and also to give a fair and accurate timing report inclusive of all stages required to hash a message. As there

are a number of different padding schemes, each of which have differing number of rounds required to complete, the

padding also has a bearing on the calculation time.

We developed a hardware wrapper interface [3] which necessarily needed to be published separately due to space

limitations. This wrapper, freely available on our website, along with all other source code, allows others to test

their designs, http://www.ucc.ie/en/crypto/, shown in Fig. 1, produces the padding scheme required for a

particular hash function as well as providing the interface to the outside world. It allows re-use of any padding scheme

that can be used in multiple hash functions.

In this case we set the i/o bus widths, w, to 32-bits, a standard word size. This models a realistic communications

system, and takes into account any bandwidth limitations, as any hash function requiring a large message size, m, will

be subject to a latency of m/w clock cycles. Our hash functions necessarily take this latency into account, and we

implemented our designs so as to minimise where possible any delays due to this loading of data, i.e. the hash round

function should, if possible, take longer than the time required to load a message. We showed in [3] that, while the

wrapper itself does not affect the clock frequency of the design, counters in the padding block may form the critical

path and thus affect the timing.

As such, in the interest of fairness while our main results present area and frequency results inclusive of the

wrapper, we also present an appendix section detailing the hash results where the padding is implemented in software,

both exclusive of the wrapper, thereby negating any transmission bottlenecks, and inclusive of the wrapper to allow a

fair comparison.

http://www.ucc.ie/en/crypto/,showninFig.1,produces
http:subsections3.4�3.13

ack_in

Controller

Register
Shift

Output

Unit

Padding

Input
Shift

Register

lb
_

h
_

in

ac
k

_
h

_
in

d
p

_
h

_
in

d
p

_
h

_
o

u
t

ac
k

_
h

_
o

u
t

sel_in

m

mes_in

3

d_in w
Hash Block

d_out

d

hash_out

w

2sel_outctr_en

ctr_cl

dp_in

lb_in lb_out

dp_out

ack_out

Figure 1: Wrapper Interface

3 Overview of the Hash Function Architectures

Table 1 gives the constructions of the different SHA-3 hash functions and their variants as well as the various inputs

and state sizes in bits. As the {224} variant is almost identical to the {256} and similarly, the {384} to the {512} we

omit these values. The only notable differences being Keccak, where the message size increases to 1152-bits for {224}

Table 1: Hash Function Internals
224/256 384/512

Design Structure Type Counter Message Salt State Counter Message Salt State

SHA-2 Merkle-Damgård Add-XOR-Rotate 64 512 - 512 128 1024 - 1024

Blake HAIFA Add-XOR-Rotate 64 512 128 512 128 1024 256 1024

BMW Iterative Add-XOR-Rotate 64 512 - 2048 64 1024 - 4096

Cubehash Iterative Add-XOR-Rotate - 256 - 1024 - 256 - 1024

Echo HAIFA AES based 64 1536 128 2048 64 1536 128 2048

Fugue Iterative AES based 64 32 - 96 64 32 - 1148

Grøstl Iterative AES based 64 512 - 512 64 1024 - 1024

Hamsi Conc-Permute Serpent based 64 32 - 512 64 64 - 1024

JH Iterative Block Cipher based 128 512 - 1024 128 512 - 1024

Keccak Sponge Add-XOR-Rotate - 1088 - 1600 - 576 - 1600

Luffa Sponge S-box based - 256 - 768 - 256 - 1280

Shabal Iterative Add-XOR-Rotate - 512 - 1408 - 512 - 1408

SHAvite-3 HAIFA AES based 64 512 256 256 128 1024 512 512

SIMD Iterative Block Cipher based 64 512 - 512 64 1024 - 1024

Skein UBI Add-XOR-Rotate 96 512 - 512 96 512 - 512

and 832-bits for {384}, and Luffa, where the state size decreases to 1024-bits for {384}. The Structure loosely defines

the hash function overview, for example, in HAIFA (Hash Iterative Framework) [4] based designs, the counter is fed in

with the message, whereas, for Merkle-Damgård [5] [6], it is not. The Type describes the design of the hash functions.

The Counter, Message and Salt all form the inputs to the hash functions, while the State describes the internal size of

each of the hash functions.

Table 2 gives the different padding schemes used by the hash functions. There are many different padding schemes

utilised by the designers of the hash functions, and in some cases varying padding schemes between the different sizes

of the same hash function. As can be seen from the Table, similarities between some of the different padding schemes

allow us to generate a generic block for variants of Merkle-Damgård strengthening [7] padding schemes, as well as

paddings types of all-zeros or one-and-trailing-zeros.

Understandably this review is somewhat brief and we invite the reader to review the SHA-3 submission documen

tation for a full description of each of the hash functions.

Table 2: Padding Schemes
Design Padding Scheme

SHA224/256

SHA384/512

Blake224

Blake256

Blake384

Blake512

BMW224/256

BMW384/512

Cubehash

Echo224/256

Echo384/512

Fugue

Grøstl224/256

Grøstl384/512

Hamsi224/256

Hamsi384/512

JH

Keccak224

Keccak256

Keccak384

Keccak512

Luffa

Shabal

SHAvite3-224/256

SHAvite3-384/512

Simd224/256

Simd384/512

Skein

1, 0’s until congruent (448 mod 512), 64-bit message length

1, 0’s until congruent (896 mod 1024), 128-bit message length

1, 0’s, until congruent (448 mod 512), 64-bit message length

1, 0’s, until congruent (447 mod 512), 1, 64-bit message length

1, 0’s, until congruent (895 mod 1024), 128-bit message length

1, 0’s, until congruent (894 mod 1024), 1, 128-bit message length

1, 0’s until congruent (448 mod 512), 64-bit message length

1, 0’s until congruent (960 mod 1024), 64-bit message length

1, 0’s until a multiple of 256 (256 = 8 * b, b=32)

1, 0’s until congruent (1392 mod 1536), 16-bit message digest, 128-bit message length

1, 0’s until congruent (880 mod 1024), 16-bit message digest, 128-bit message length

0’s until a multiple of 32, 64-bit message length

1, 0’s until congruent (448 mod 512), 64-bit block counter

1, 0’s until congruent (960 mod 1024), 64-bit block counter

1, 0’s until a multiple of 32, 64-bit message length

1, 0’s until a multiple of 64, 64-bit message length

1, 0’s until congruent (384 mod 512), 128-bit message length, min 512-bits added

1, 0’s until a multiple of 8, append 8-bit representation of 28, append 8-bit representation of 1152/8, 1, 0’s until a multiple of 1152

1, 0’s until a multiple of 8, append 8-bit representation of 32, append 8-bit representation of 1088/8, 1, 0’s until a multiple of 1088

1, 0’s until a multiple of 8, append 8-bit representation of 48, append 8-bit representation of 832/8, 1, 0’s until a multiple of 832

1, 0’s until a multiple of 8, append 8-bit representation of 64, append 8-bit representation of 576/8, 1, 0’s until a multiple of 576

1, 0’s until a multiple of 256

1, 0’s until a multiple of 512

1, 0’s until congruent (432 mod 512), 64-bit message length, 16-bit digest length

1, 0’s until congruent (880 mod 1024), 128-bit message length, 16-bit digest length

0’s until a multiple of 512, extra block with message length

0’s until a multiple of 1024, extra block with message length

0’s if multiple of 8, else 1, 0s, until a multiple of 512

In the design of the hash function architectures described in this paper, our main goal was to give a baseline

comparison between the hash functions using area and throughput. We calculate the throughput as follows:

Bits in a message block×Maximum clock frequency Throughput =
Clock cycles per message block

The FPGA platform targeted in the study was the Xilinx Virtex-5 xc5vlx330T-2-ff1738. Each hash function design

was implemented using VHDL, and Synthesis, Place and Route were carried out using Xilinx ISE v9.2i. We measure

area of our hash function designs in FPGA slices, as given by the Map report.

http:throughput.We
http:hashfunction.As

V0
V1
V2
V3

V0

V1
V2
V3

V4

V5

V4
V5

V14 V14

V15 V15

ROM�BLOCKS

INIT

V

MSG

COUNT
SALT

CHAIN

IV

MD

A B C D

M
(i)

CONSTfinal

IV H

Q

R
eg

a
Q

R

eg

H

R
egf0

b

1f 2f

Figure 2: Blake Figure 3: BMW

3.1 BLAKE - Aumasson et al.

For our implementation of BLAKE we further subdivide the compression function into two identical sections, to allow

re-use of the component blocks and thereby reducing the area. This subdivision increases the latency of the hash

permutation to complete a round from two to four clock cycles, but reduces the critical path from four adders to two

adders thus increasing the maximum frequency of the permutation. For the larger variant which requires 32 clocks to

load a 1024 bit message, it ensures there is no delay where the hash function needs to wait for loading to complete.

Fig. 2 shows the modified design.

The Adders and XORs are generated using standard operators (using the ’+’ operator of the IEEE.std logic un

signed package) and the rotation operations were implemented through simple wiring, with multiplexers to select the

particular subround rotation. The 16 constants required by the initialisation and round stages are stored in distributed

ROM.

3.2 Blue Midnight Wish - Gligoroski et al.

Our implementation of Blue Midnight Wish (BMW) is designed as follows. f0 takes M (i) and H(i−1) as its inputs

and produces the first half of the quadrupled-pipe value Q
(
a
i)

. f0 consists of 80 additions/subtractions, as well as
(i)

XOR’s, bitwise shifts and rotations. f1 takes M (i), H(i−1) and Qa as its inputs and produces the second half of the
()

(i) (i) (i)
quadrupled-pipe valueQ . The quadrupled-pipe is then Q(i) = Qa , Q . f1 is the most complex of the functions b b

performed by BMW, consisting of two sub functions ER1 and ER2. Both ER1 and ER2 contain sixteen modulo 32

addition operations but ER1 contains more bitwise shift and rotate operations. Both functions use an operation that

uses modulo 32 additions, subtractions and rotations to combine a block of the message and of the double-pipe with a
(i) (i)

predefined set of constants. The final function f2 takes M (i), Qa and Qb as inputs and produces the new double-pipe

value H(i). f2 consists of XOR, bitwise shift, rotation and modulo 32 addition operations.

A pipelined design was chosen for implementation due to the large amount of additions that need to be performed.

Each of the functions f0, f1 and f2 make up a stage in the pipelined deign. One operation of the compression cycle

therefore takes three clock cycles. A diagram of the pipelined designed is shown in Figure 3.

3.3 CubeHash - Bernstein

We designed FPGA implementations of the CubeHash compression function with round two parameters as recom

mended by Bernstein in the round 2 tweaks. The rotation and swapping operations are implemented in hardware by

C

ROT 7 SWAP

SWAP

ROT 11 SWAP

SWAP
512

512 512

512

B

A’

’

A

B

f

S
M

IX

H

clk

clk

F
in

al
 C

al
c

C
M

IX
&

R
O

R
 3

R

O
R

1
4

R

O
R

1
5

S
ta

rt
 S

el
ec

t

MSG

clk

IV

T
IX

Figure 4: Cubehash Figure 5: Fugue 256

simply re-labelling the relevant signals. Since the state comprises 1024 bits, the same architecture can be used to

produce message digests with any of the lengths required for SHA-3. Therefore, a CubeHash8/32-256 implementation

will have the same throughput and throughput per slice performance as a CubeHash8/32-512 implementation.

The critical path through the compression function consists of two modulo 232 additions and two XOR operations,

as indicated by the heavy lines in Fig. 4. The compression function is used r = 8 times for each message block Mi

(i.e. for each message byte in this case, since b = 1). Therefore, we implemented the CubeHash architectures where

fC is unrolled to a chain of four fC units in series to process a single message block in two clock cycles. Note that the

figures quoted for include the initial XOR of the message block with the state, and also include the area of the output

register that stores the result of the last fC calculation in the chain.

3.4 ECHO - Orange Labs

The compression function (CF E) for ECHO, operates iteratively as follows: Vi = CF E(Vi−1,Mi, Ci, SALT) where

Vi−1 is the current value of the chaining variable, Mi is the current message block, Ci is a counter and SALT is a

sub-key.

We designed and evaluated FPGA implementations of the ECHO hash function with an output of {256 & 512}

bits. In the proposed design, an iterative architecture is used with one BIG.ROUND function and a finite state machine

(FSM) to control the data-path. Within the BIG.ROUND function, 16 pairs of the AES functions are processed in

parallel to improve the throughput rate. The S-boxes are implemented using distributed ROM memory. Sub-keys are

pre-calculated prior to the compression function. An outline of this architecture is provided in Fig. 6. In this design,

the BIG.ROUND operation is performed in one clock cycle.

3.5 Fugue - Halevi et al.

The Fugue hash function was designed by researchers at IBM. The rotation blocks (ROR) operate on different sizes

for each of the variants, but the overall design remains the same. Fig. 5 shows the operation of F-256. The initial

round comprises a TIX stage (XOR, truncate, insert and XOR of bytes), a rotation by 3 bytes (ROR3) and a column

mix (CMIX), all on each of the n blocks, followed by a super mix (SMIX) transformation. This transformation takes a

4x4 matrix of bytes and passes each byte through an S-box, followed by a linear transformation to generate diffusion.

This linear transformation is similar to that employed in AES, however, unlike AES, there is cross-mixing between the

columns. These steps are looped a number of times r depending on the variant, with r = 2, 3, 4 ∈ {224, 256, 384, 512}
per message block. The final round comprises two more loops of a rotation by three bytes (ROR3), CMIX and SMIX

(repeated p times), an XOR, and a rotation by 15 or 14 followed by an SMIX (repeated q times). For the different

variants p = 5, 18, 32 ∈ {224, 256, 384, 512} and q = 13 ∈ {224, 256, 384, 512}.

MSG

128

B
IG

.M
ix

C
o

lu
m

n
s AES_K1 AES_K2

AES_K1 AES_K2

AES_K1 AES_K2

… …

2K

2K

fsm_ctrl fsm_ctrl
2K 2K

BIG.Round BIG.Final

Key1 schedule

SALT (key2)

Vinit

Out

256

512

Vnew

2K 2K 2K

2K

1.5K

512
512

64

B
IG

.S
h

if
t

R
o
w

s

Figure 6: Echo

Round

XTime512 512

8 8

512

X4Time

[15,8]

[7,0]

[23,16]

[31,24]

[39,32]

[47,40]

[55,48]

[63,56]

64

64
8

512

8

512

8 8

AddRoundConstant SubBytes ShiftBytes MixBytes

Constant

Figure 7: Groestl

In all variants, the CMIX and linear transformation operations are implemented using combination logic, and the

rotation operation was implemented through rewiring. As defined in the specifications, for each design we declared

four blocks where the state words are operated on and shifted along chains of 8-bits. The S-boxes are implemented as

look up tables using distributed ROM memory.

3.6 Grøstl - Gauravaram et al.

The architecture for Grøstl is illustrated in Fig. 7. The first stage in each permutation is the AddRoundConstant block

which simply performs an XOR on one byte of the ℓ-bit input state. The round constants are stored in distributed

memory on the FPGA. The SubBytes stage transforms the state, byte by byte, using the AES S-box generated using

distributed ROM. The SwapBytes transformation was realised in hardware by simply re-labelling the bytes of the state.

MixBytes is the final stage of the permutation function, and processes each column of the state matrix separately and

in parallel using combinational logic. An output register was used to store the state at the output of the MixBytes

transformation.

The compression function fG for the Grøstl implementation consists of two permutation functions, P and Q.

Permutations P and Q are identical except for the execution of the AddRoundConstant step, where different round

constants are used. Therefore, our design choice was to compute Q in parallel by replicating the hardware for P . Two

H

T
ru

n
ca

ti
o
n

H
 r

eg
 IV

last block

P/Pf

M
sg

 E
x
p
an

si
o
n

M(i)

C
o
n
ca

te
n
at

io
n

256

sb
o

x

m
d

s

p
er

m

1024

sb
o

x

m
d

s

p
er

m

512

H

IV

M

IV

Figure 8: Hamsi Figure 9: JH

XOR arrays are required to complete the compression function for the input to P , and for the final output Hi.

3.7 Hamsi - Küçük

The Hamsi hash function has a concatenate - permute - truncate construction, with the input message expanded and

concatenated with an initial value or the output from the previous stage of the hash function. This is followed by the

non linear permutation, made up of XORing the state with a table of predefined constants and a counter, Serpent [8]

S-boxes and a diffusion operation consisting of several bitwise shifts and XOR’s. Truncation reduces the Hamsi state

down to the size of the input message.

A fully parallel design was chosen for implementation as shown in Figure 8. The non-linear permutation P was

unrolled three times, more unrolling resulted in a congested design for the VHDL. Therefore it takes one clock cycle

for a normal message block to be hashed and two clock cycles for the final message block. The Serpent based S-boxes

were generated using distributed ROM.

3.8 JH - Hongjun Wu

JH uses the same design for all four varients and is based on simple components. The compression function combines

a 1024-bit previous hash block (Hi−1), a 512-bit message block (Mi) to produce a 1024-bit hash block (Hi). The

compression function (CF JH) is applied to each message block, Mi. The bijective function consists of 35 rounds,

each consisting of an S-box, linear transformation and permutation, and a single final round consisting of just the S

box. Two 4-bit S-boxes are used, the selected table depending on the value of a round constant. It can also be viewed

as a 5-bit to 4-bit substitution. The linear transformation implements a (4, 2, 3) maximum distance separable (MDS)

code over GF (24), and the permutation shuffles the output according to three distinct smaller permuations. The 256

bit round constants can be generated either in parallel with the data path or pre-computed and stored in memory where

they can be re-used. In the design presented, the full 1024-bit data state is operated on at once. Each round completes

in one clock cycle. The 256-bit sub-key state is calculated in parallel, as illustrated in Fig. 9.

The S-box and linear transformation functions are implemented as combinational logic as outlined in the submis

sion documentation, and the grouping and permutation functions are rewiring circuits. In the round constant data path,

http:constant.It

1600
M H

1600

V0

V
 H1

Vw−1

1600

θ π ιρ χ

constants2

select ctr

"00000...000"

C’

Message M
message

padding

m
0 m

N

C’
0Q

Q1

Q2

0Q

Q1

Q2

P P

MIMI

C’ C’’

Figure 10: Keccak f(1600) Figure 11: Luffa

only the S-box corresponding to select bit ’0’ is required. Three registers are required for data storage, one each for

the round constant, message block and data block respectively.

3.9 Keccak - Bertoni et al.

Keccak is a hash function based on the sponge construction [9]. The NIST submissions use the same KECCAK-f
permuation for all variants, with different capacity (c), bitrate (r) and diversifier (d) values, where smaller digest sizes

have a greater bitrate. The five steps of the permutation consist of addition and multiplication operations in GF (2).
The full round computes in a single clock cycle, and an extra clock is required for loading in of the message. The

padded message of length r is loaded in by XOR’ing it with r bits of the state. The 64-bit round constants are defined

as the output of a linear feedback shift register and can be pre-computed or generated as required. In the design

presented, they are pre-computed and stored in distributed ROM. Only one register is required and is used to store

the state value. The HDL implementation provided in the specification documentation was used as a reference for the

permutation steps in our design.

3.10 Luffa - De Cannière et al.

During the round function of Luffa, a message injection and permutation function are applied to these inputs as

illustrated in Fig. 11. The round function consists of a message injection function (MI) and a permutation function (P).

The MI can be implemented simply using an array of XOR gates as defined in the specifications. The round function

is more complex and consists of w non-linear permutation functions, Qj , which execute 8 iterations of a step function,

where w = 3, 4, 5 ∈ {224/256, 384, 512}. Each Qj performs an input tweak function followed by 8 iterations of the

step function. The step consists of an S-box transformation, implemented in distributed ROM. The MixWord function

is a linear permutation of two words and is implemented by a series of shifts and XORs. The final stage of the step

function is AddConstant in which a predefined step constant is XORed to a single word of the input.

The step constant is dependant on the current iteration of the round function. The core unit in the implementation

of Luffa is the Step function which can be executed in a single clock cycle while still maintaining a minimum clock

delay. Due to the S-box, a clock delay is incurred here. To reduce any further clock delays, the output of one iteration

of the step function is passed directly to the input of the next. In this way, one round of Qj will take 8 clock cycles.

Each Qj can be executed in series or in parallel in order to target area or speed optimizations. The only differences

between each instance are the step constants. Therefore, in order to implement each Qj using a single instance of Q,

a mux is required to control the selection of the constants.

http:illustratedinFig.11

C

256

state0 128

B

P

C−M

B+M

Α⊕
AA out hi-1

W
256

Bout

B

M state1

Cout

AES
XOR

128

128

128

128

128

128

128

State1_

update

hi

Figure 12: Shabal Figure 13: SHAvite-3

3.11 Shabal - Saphir research project

Shabal uses a sequential iterative hash construction, to process messages in blocks of ℓm = 512 bits , as shown in

Fig. 12. The Shabal compression function is based on a Non-Linear Feedback Shift Register (NLFSR) construction.

We use the precomputed IV to remove the configuration stage and thus remove the initial two message block from the

latency. When designing Shabal, the XOR, addition and subtraction operations were all implemented in parallel. In the

permutation P , the rotation operations were implemented through simple wiring. In order to realise the central part of

the permutation, we adopted a shift-register based approach, where the state words are shifted along chains of 32-bit

registers. The multiplication operations U and V form the non-linear part of the NLFSR; these were implemented

using the shift-then-add method. Once the shift registers have been loaded with the appropriate initial values, the

central permutation result is calculated after 48 clock cycles. The final part of the permutation P adds words from

the A and C states. For these modulo 232 additions, we expand the addition into 12 × 3 series additions. Using this

approach, the final result is computed without requiring any extra clock cycles, at the cost of 35 additional adders.

3.12 SHAvite-3 - Biham et al.

The compression function for SHAvite-3 is a keyed permutation that is used with the Davies-Meyer construction [10].

To achieve a high throughput rate, a fast AES module is needed. Since the AES modules are processed sequentially,

only one AES block is required in the compression function module. The architecture is shown in Fig. 13. For a

parallel implementation, a second AES block is required for computation. In the compression function architecture,

the 256-bit chaining variable is split into two 128-bit parts, namely state0 and state1. the AES function using a 128-bit

data bus processes state1 in one clock cycle. The output of the AES function will be fed back to be processed again.

After three AES computations, the output is XORed with the data from the state0 registers. after the XOR operation

state0 and state1 update and input into the next round computation. In total, 12 rounds are required in CF S3 The 256.

updated chaining variable or hash output is available after 37 clock cycles.

The AES S-boxes are implemented using distributed ROM memory. In key-expansion, in the non-linear stage 1
clock cycle is required to generate every four keys. In the linear stage 1 clock cycle to generate every eight keys.

The total number of clock cycles required for generating all keys is 25. In order to produce a corresponding key

ahead of the compression function, the key-expansion module needs to be triggered one clock cycle earlier than the

compression function.

3.13 SIMD - Leurent et al.

SIMD is an iterated hash function, based on the Merkle-Damgård design, with a modified Davies-Meyer function

compression function using a Fiestel-like block cipher. The design of the the compression function using parallel

A B C D A B C D A B C D A B C DW 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Round

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3

Step 0

Step 7

Ladder 0

Step 0

Step 7

Ladder 1

Step 0

Step 7

Ladder 2

Step 0

Step 7

Ladder 3

A0 B0 C0 D0

Plaintext

Permute

Sub
Key

Figure 14: SIMD Figure 15: Skein 512

Fiestel ladders allows for high throughput implementations on hardware. The inner state, S, is represented as a 4x4

matrix of 32-bit words for SIMD-256, or an 8x4 matrix for SIMD-512. The function E consists of four rounds of

parallel Fiestel Ladders, each composed of eight Fiestel Steps. The Fiestel Step is the core unit of the compression

function. There are eight Fiestel Steps in each Ladder, with four Ladders in parallel in each Round (eight Ladders for

SIMD-512) as shown in Fig. 14.

Registers are placed on the outputs of each Fiestel Step, as well as on each round, in order to minimize the critical

path and therefore maximise the clock frequency. Removing some of these registers, reduces the number of clock

cycles required to complete an iteration of the compression function but the effect on the throughput is negated by the

reduction of the overall clock frequency. There are a total of four rounds in each compression function, followed by a

final half -round consisting of four parallel Fiestel Ladders consisting of four Fiestel Steps each.

3.14 Skein 512 - Ferguson et al

Skein-512 is the primary proposal of the Skein family of algorithms. A Unique Block Iteration (UBI) chaining mode

takes in the chain value, the message and a ’Tweak’ defined by an 128-bit configuration string derived from the

message counter and UBI constants. The Threefish algorithm has 72 rounds consisting of four sets of four MIX

functions followed by a permutation of the eight 64-bit words. Each MIX function consists of a single addition, a

rotation by a constant, and an XOR. The rotation constants repeat every eight rounds. The key schedule generates the

subkeys from the chain and a tweak. A finalisation UBI stage consisting of a null message, a Tweak and the previous

chain.

For our design of Skein-512 we unrolled four rounds of threefish, Fig. 15. In this way, a UBI message block of

Skein takes 18 clocks for the rounds to complete, plus 5 for preprocessing and data loading. We use the precomputed

IV to remove the configuration stage and thus remove the initial message block from the latency. Each subsequent

message block and the output block are calculated identically. The tweak, which ensures each message block is

different, is generated by the counter in the padding.The Adders and XORs were generated in a generic fashion and

the rotation operations were implemented through simple wiring, with multiplexers to select the particular subround

rotation.

4 Results

Table 3 gives the clock count for the various designs. As can be seen from the table, some hash designs require

extra time to load in the padding scheme, while others have finalisation stages comprising a number of rounds. For

calculating the throughput, as the size of the message to be hashed increases, these padding and finalisation stages

http:showninFig.14

Table 3: Hash Function Timing Results
Hash

Design

32-bit load

#Cycles

Extra

Padding

Padding

#Cycles

Message

Rounds

Round

#Cycles

Long Msg

#Cycles

Final

Rounds

Final

#Cycles

Short Msg

#Cycles

SHA224/256

SHA384/512

16

32

0

0

0

0

64

80

1

1

65

81

0

0

0

0

65

81

Blake224/256

Blake384/512

16

32

0

0

0

0

10

14

4

4

40

56

0

0

0

0

40

56

BMW224/256∗

BMW384/512∗
16

32

0

0

0

0

1

1

4

4

4

4

1

1

3

3

7

7

Cubehash 8 0 0 16 17 17 160 161 178

Echo224/256∗

Echo384/512∗
48

32

0

0

0

0

8

10

1

1

8

10

1

1

1

1

9

11

Fugue224/256

Fugue384

Fugue512

1

1

1

2

2

2

1

1

1

1

1

1

7

10

13

7

10

13

13

20

22

91

180

264

98

190

277

Grøstl224/256∗

Grøstl384/512∗
16

32

0

0

0

0

10

14

1

1

10

14

0

0

0

0

10

14

Hamsi224/256

Hamsi384/512

1

2

3

3

1

1

3

6

2

2

6

12

6

12

24

48

31

61

JH 16 1 1 35 1 38 0 0 38

Keccak224∗

Keccak256∗

Keccak384∗

Keccak512

36

34

26

18

0

0

0

0

0

0

0

0

24

24

24

24

1

1

1

1

25

25

25

25

0

0

0

0

0

0

0

0

25

25

25

25

Luffa224/256

Luffa384

Luffa512

8

8

8

0

0

0

0

0

0

8

8

8

1

1

1

8

8

8

1

2

2

8

16

16

16

24

24

Shabal 16 0 0 1 50 50 3 150 200

SHAvite3-224/256

SHAvite3-384/512

16

32

0

0

0

0

12

14

3

4

36

56 (70)

1

1

1

1

37

71

Simd224/256

Simd384/512

16

32

1

1

1

1

4

4

8

8

32(41)

32(41)

0.5

0.5

4

4

36(45)

36(45)

Skein 16 0 0 18 22 22 18 22 44

will have less of an impact on the overall calculation time. However for short messages, they have a big impact.

We therefore define a short message as the time required to process the padding, a single message block and

finalisation, and a long message as just the time to process the message block. Note that each hash function

operates over the state size given in Table 1, and so designs with smaller state sizes will require a larger number of

rounds to hash the same amount of data as a design with a large state size. This is also reflected in the throughput.

The larger state sizes however are affected by the loading latency as explained in Section 2. Where the time

required to hash the message is larger than the time required to load the message this only affects the initial message
∗loading, but in cases where the load latency is longer than the hash latency (denoted in Tables 3 and 4), there will

be a delay as the hash waits for data to load. In this scenario the clock count for the throughput needs to take this

additional delay into consideration. Not given here is the output message load time, which in all cases is the hash

digest size/output bus size.

The timing and area results for the implemented hash functions on the Xilinx Virtex-5 xc5vlx330T-2-ff1738 are

given in Table 4. The -w designation defines the results inclusive of the wrapper, while −nw gives the hash function

as a stand alone entity. The throughput results given are inclusive of the wrapper with TP-s using Table 3’s clock count

for a short message, and TP-l using the clock count for a long message where the padding and finalisation stages

will have little impact on the message. We highlight SHA-2 as the benchmark to compare the others against. The bar

graphs present throughput and throughput/area results for both long and short messages inclusive of the wrapper. An

appendix section presents the hash results for the padding implemented in software both inclusive and exclusive of the

wrapper.

K e c c a k -2 5 6

K e c c a k -2 2 4

E C H O

L u "" a

G r. e st I

C u b e h a s h

S k e i n -5 1 2

J H

S h a b a I

S M
S H i t e 3

B L K E -3 2

S H -2
 u g u e

B M
H a s i

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0

3 2 -b i t n p u t -O u tp u t B u s

P a d d i n g i n H a r d w a re

T h r . u g h p u t (M b p s)

2 2
4
25

 6
H

 as
h

e s

ig
 n
L.

 ng
 M

e s
sa

ge

Figure 16: 224/256 Long Throughput

Keccak-256

Keccak-224

Cubehash

Lu""a

Gr.estl

JH

SHA-2

BLAK -32

Skein-512
 CHO

Shabal
 ugue

SHA ite3

SIMD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Thr.ughputlArea (Mbpslslice)

22
4l
25

6
H
as

h
D
es

ig
n
L.

ng
 M

es
sa

ge

Figure 17: 224/256 Long Tp/Area

BM 32-bit Input-Output Bus

Ha si Padding in Hardware

Hamsi Hamsi

BMW 32-bit nput-Output Bus

 ugu"-512 Padding in Hardwar"
SIMD Padding in Hardware

 ugu"-384 SHAvite3

 H it"3 ugue-512

 H -2 ugue-384
B3 KE-64 BLAKE- 4

 haba Shabal

 H Skein-512

 k"in-512 SHA-2

Cub"hash roestl

 M H
 ro"st Luffa-512

3uffa-384 Luffa-384

3uffa-512 ECHO

K"ccak-384 Cubehash

K"ccak-512 Keccak-384

ECHO Keccak-512

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 1 2 3 4

Throughput (Mbps) ThroughputlArea (Mbpslslice)

Figure 18: 384/512 Long Throughput Figure 19: 384/512 Long Tp/Area

BMW 32-bit Input-Output Bus

2
25

sh
D

gn
"
h

rt'
M

g
38

4l
2
H
a

si
gn

 L
g
M

g
24

l
6'
H
a

'
es

i
'

"
es

sa
e

51
sh

D
e

on
es

sa
e

Fugue Fugue

Hamsi Hamsi 32-bit' nput-Output'Bus 32-bit'Input-Output'Bus

Cubehash Padding'in'Hardware

"haba BM
BM "habal

"kein-512 ubehash

"H -2 "HA ite3
"H ite3 "kein-512

BL KE-32 HO

" M BLAK -32
JH Lu""a

Lu""a "HA-2

Gr"est JH

ECHO Gr"estl

Keccak-224 Keccak-224

Keccak-256 Keccak-256

1000 2000 3000 4000 5000 6000 0.0 0.5 1.0 1.5 2.0 2.5

Thr"ughput'(Mbps) Thr"ughputlArea'(Mbpslslice)

Figure 20: 224/256 Short Throughput Figure 21: 224/256 Short Tp/Area

"IMD Padding'in'Hardware

22
4
25

6'
H
as

h'

es

ig
n'

38
4!

gn

 3
"s

sa
"

"
h"

rt'
M
es

sa
ge

51

2
H
as

h
"s

i
on

g
M

g

0 3.0

Table 4: Hash Function Implementation Results
Hash

Design

Area-w

(slices)

Max.Freq-w

(MHz)

Area-nw

(slices)

Max.Freq-nw

(MHz)

TP-l

(Mbps)

TP-l/Area

(Mbps/slice)

TP-s

(Mbps)

TP-s/Area

(Mbps/slice)

SHA-2-256

SHA-2-512

1,019

1,771

125.063

100.04

656

1,213

125.125

110.096

985

1264

0.966

0.713

985

1264

0.966

0.713

BLAKE-32

BLAKE-64

1,653

2,888

91.349

71.048

1,118

1,718

118.064

90.909

1169

1299

0.707

0.449

1169

1299

0.707

0.449

BMW-256∗

BMW-512∗
5,584

9,902

14.306

8.985

4,997

9,810

14.016

10.004

457

287

0.081

0.028

457

287

0.081

0.028

Cubehash 1,025 166.667 695 166.833 2509 2.447 239 0.233

ECHO-256∗

ECHO-512∗
8,798

9,130

161.212

166.667

7,372

8,633

198.926

166.694

5373

18133

0.61

1.986

5373

5666

0.61

0.608

Fugue-256

Fugue-384

Fugue-512

2,046

2,622

3,137

200

200.08

195.81

1,689

2,380

2,596

200.04

200.08

200.16

914

640

481

0.446

0.244

0.153

60

33

22

0.029

0.012

0.007

Grøstl-256∗

Grøstl-512∗
2,579

4,525

78.064

113.122

2,391

4,845

101.317

123.396

3242

3619

1.257

0.799

3242

3619

1.257

0.799

Hamsi-256

Hamsi-512

1,664

7,364

67.195

14.931

1,518

6,229

72.411

16.51

358

79

0.215

0.01

69

15

0.041

0.002

JH 1,763 144.113 1,291 250.125 1941 1.1 1941 1.1

Keccak-224∗

Keccak-256∗

Keccak-384∗

Keccak-512

1,971

1,971

1,971

1,971

195.733

195.733

195.733

195.733

1,117

1,117

1,117

1,117

189

189

189

189

5915

6263

8190

8518

3

3.17

4.15

4.32

5915

6263

8190

8518

3

3.17

4.15

4.32

Luffa-256

Luffa-384

Luffa-512

2,796

4,233

4,593

166.667

166.75

166.667

2,221

3,740

3,700

166.667

166.75

166.75

5333

5336

5336

1.9

1.26

1.16

2666

1778

1777

0.953

0.42

0.58

Shabal 2,512 143.472 1,583 148.038 1469 0.584 367 0.146

SHAvite3-256

SHAvite3-512

3,776

11,443

82.277

63.666

3,125

9,775

109.17

59.4

1170

931

0.309

0.081

1138

918

0.301

0.08

SIMD-256

SIMD-512

24,536

44,673

107.2

107.2

22,704

43729

107.2

107.2

1338

2677

0.054

0.059

1338

2677

0.054

0.059

Skein-512 2,756 83.577 1,786 83.654 1945 0.706 973 0.353

5 Conclusions

In this paper we presented what we believe to be a methodology for fair and accurate comparisons of the SHA-3 hash

functions. We implemented and tested all design variants to obtain full coverage of all of the hash functions as required

by NIST. We developed a hardware wrapper to allow inclusion of padding and interfacing, to obtain the full timing

and area analysis, and for completeness compared the area and speed of our hash designs both internal and external of

this wrapper. Finally we presented throughput results for both long and short hash messages inclusive of this wrapper.

6 Acknowledgements

This material is based upon works supported by the Science Foundation Ireland under Grant No. 06/MI/006.

The support of the Informatics Commercialisation initiative of Enterprise Ireland is gratefully acknowledged.

32-bit'Input-Output'Bus

Padding'in'Ha=dwa=e

0 2000 4000 6000 8000

32-bit nput-Output Bus

Padding in Hardware

38
4l
51

2
H
as

h

es

ig
n
S
ho

rt
M
es

sa
ge

o 1 2 3 4

Hamsi Hamsi

Fugue-512 Fugue-512

38
4
5

H
as

h'
D
es

i
'

t'M
e

e
12

gn
ss
ag

'
"
ho

=

Fugue-384 Fugue-384

Cubehash

BM
BMW

S M
SHA ite3"haba

"H ite3 Shabal

"kein-512 Cubehash

"H -2
 u a-384

B K -64
 B AK - 4

 u a-512 Skein-512

 u a-384 u a-512

 H
 CHO

"IMD
 SHA-2

�=oest
 CHO

Groestl

JH

Keccak-384
Keccak-512

Keccak-384
Keccak-512

Th=oughput'(Mbps) ThroughputlArea (Mbpslslice)

Figure 22: 384/512 Short Throughput Figure 23: 384/512 Short Tp/Area

References

[1] NIST, “National institute of standards and technology. [docket no.: 070911510-7512-01] announcing request

for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family,” Federal Register,

November 2007.

[2] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P. McEvoy, W. Pan, and W. P. Marnane, “Fpga implemen

tations of sha-3 candidates: CubeHash, Grøstl, LANE, Shabal and Spectral Hash,” in Digital Systems Design,
Euromicro Symposium on, 2009, pp. 783–790.

[3] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane, “A hardware wrapper for

the SHA-3 hash algorithms,” Cryptology ePrint Archive, Report 2010/124, 2010.

[4] E. Biham and O. Dunkelman, “A framework for iterative hash functions - HAIFA,” Cryptology ePrint Archive,

Report 2007/278, 2007.

[5] R. C. Merkle, “One way hash functions and DES,” in Advances in Cryptology — CRYPTO ’89, ser. LNCS,

G. Brassard, Ed., vol. 435. Springer-Verlag, 1989, pp. 428–446.

[6] I. Damgård, “A design principle for hash functions,” in Advances in Cryptology — CRYPTO ’89, ser. LNCS,

G. Brassard, Ed., vol. 435. Springer-Verlag, 1989, pp. 416–427.

[7] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied Cryptography. Boca Raton, FL,

USA: CRC Press, Inc., 1996.

[8] E. Biham, R. J. Anderson, and L. R. Knudsen, “Serpent: A new block cipher proposal,” in Fast Software Encryp

tion — FSE ’98, ser. LNCS, S. Vaudenay, Ed., vol. 1372. Springer-Verlag, 1998, pp. 222–238.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “On the indifferentiability of the Sponge Construction,”

pp. 181–197, 2008.

[10] R. S. Winternitz, “A secure one-way hash function built from DES,” in IEEE Symposium on Security and Privacy.

IEEE Press, 1984, pp. 88–90.

Appendix

As described in Section 2, we set the Input and Output bus, w, of our wrapper to 32-bits, a standard word size. Any

hash function requiring a large message size, m, will be subject to a latency of m/w clock cycles. For these cases the

clock count for the throughput needs to take this additional delay into consideration.

Also, while the wrapper itself does not affect the clock frequency, counters in the padding block may form the

critical path and thus affect the timing, most notably for Haifa based designs. As such, padding in hardware may

deplement some hash designs more than others.

In the interest of fairness we present further results to enable a more balanced review of the hash functions in

hardware. These extra results feature our hash function implementations using an ideal bandwidth, where w = m,

thereby negating any penalties incurred through transmission bottlenecks. We also present timing results for the

padding in software both inclusive and exclusive of the Input and Output bus.

F u g u e -2 5 6

H a m s i -2 5 6

I d e a l I n p u t -O u t p u t B u s

T h r o u g h p u t (M b p s)

Keccak-224

ECHO-256

Keccak-256

Cubehash

Groestl-256

JH

Luffa-256

Skein-512

SHA-2-256

BLAKE-32

Shabal
 u'ue-256

SHA�ite3-256

BM -256

Ha si-256

SIMD-256

0 1 2 3 4

Ideal Input-Output Bus

Paddin' in Software

Throu'hputlArea (Mbpslslice)

P a d d i n g i n S o f tw a r e

0 5000 10000 15000 20000 25000 30000 35000 40000

SHA-2-256

38
4l
51

2
H
as
h
D
es
'g
n
Lo

ng
 M
es
sa
ge

22
4l
25
6
H
as
h
D
es
i'
n
Lo
n'
 M
es
sa
'e

38
4!
51
2
H
as
h

es
ig
n
Lo
ng
 M
es
sa
ge

22

4
25

6
H

as
h

D
es

ig
n

Lo
ng

 M
es

sa
ge

BLAKE-32

Shabal
SIMD-256

SHAvite3-256

BM v -256

Skein-512

Cubehash

JH

Groes tl-256

Luffa-256

Keccak-256
Keccak-224
ECHO-256

Figure 24: 224/256 Long Throughput Figure 25: 224/256 Long Tp/Area

Hamsi-512 Hams'-512

Fugue-512 SIMD-512Ideal Input-Output Bus

Padding in Software

0 5000 10000 15000 20000 25000

Ideal Input-Output Bus

Padd'ng 'n Software

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fugue-384 SHA�'te3-512

SHA�ite3-512 Fugue-512

SHA-2-512
 Fugue-384

Shabal BMv-512

BLAKE- 4
 BLAKE- 4

Skein-512 Shabal

Cubehash SHA-2-512

BM -512
 Ske'n-512

SIM -512
 Luffa-512

 H
 Luffa-384

Keccak-512 JH

Luffa-512 Groestl-512

Luffa-384 Keccak-512

Keccak-384 Cubehash

Groestl-512 ECHO-512

ECHO-512
 Keccak-384

Throughput (Mbps) ThroughputlArea (Mbpslsl'ce)

Figure 26: 384/512 Long Throughput Figure 27: 384/512 Long Tp/Area

ThroughputlArea"(Mbpslslice)

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

P : d d in g ' i n ' " o f tw : r e

 dea nput-Output Bus

Padding in Software

Fugue-256 Fugue-256

Hamsi-256 Hamsi-256 Ideal"Input-Output"Bus

22
4l
25

sh
 D

gn
 L

g
M
es
sa
ge

ss
a

22
4l

2
sh

"D
si

gn
S

ho
ge

6
H
a

es
i

on
38

4l
51

2
H
as
h
D
es
ig
n
S
ho

rt
M
e

ge

56
"H

a
e

"
rt"

M
es

sa

Cubehash

Shaba
Skein-512

SH -2-256

BM -256

S M -256

SH ite3-256

B KE-32

 uffa-256

 H

 roest -256
Keccak-256
Keccak-224

ECHO-256

SIMD-256 Padding"in"Software

Shabal

BMI-256

Cubehash

SHAvite3-256

Skein-512

BLAKE-32

Luffa-256

SHA-2-256

JH

Groestl-256

ECHO-256

Keccak-256

Keccak-224

0 1 2 3 40 5000 10000 15000 20000 25000 30000 35000

Throughput (Mbps)

Figure 28: 224/256 Short Throughput Figure 29: 224/256 Short Tp/Area

H : m s i -5 1 2

Keccak-384

ECHO-512

Keccak-512

Groestl-512

B AKE- 4

Skein-512
 uffa-384
 uffa-512

Cubehash

Shabal

BMI-512

SHA�ite3-512

SIMD-512

Fugue-512

Hamsi-512

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ideal Input-Output Bus

Padding in Software

ThroughputlArea (Mbpslslice)

3.0

Fugue-512 de:l' nput-Output'Bus Fugue-384

Fugue-38
cubeh:sh

"h:b:l
"HAvite3-512

"kein-512

"HA-2-512

BM�-512

B AKE-

 uff:-512

 uff:-38
SHA-2-512

JH
" M -512

 H

Kecc:k-512
Kecc:k-38
Groestl-512

EcHO-512

Throughput'(Mbps)

Figure 30: 384/512 Short Throughput Figure 31: 384/512 Short Tp/Area

ECHO-256

Keccak-224

Keccak-256

Luffa-256

JH

Groestl-256

Cubehash

Skein-512

SHAvite3-256

S MD-256

Shabal
BLAKE-32

SHA-2-256
 ugue-256

BM -256

Ha si-256

0 1000 2000 3000 4000 5000 6000

32-bit nput-Output Bus

Padding in Software

Throughput (Mbps)

Figure 32: 224/256 Long Throughput

Keccak-224

SIMD-256

0.0 0.5 1.0 1.5 2.0 2.5

ThroughputlArea (Mbpslslice)

Figure 33: 224/256 Long Tp/Area

BM -256 32-bit Input-Output Bus

Ha si-256 Padding in Software

SHA�ite3-256

 ugue-256

Shabal
ECHO-256

BLAKE-32

SHA-2-256

Skein-512

Groestl-256

JH

Luffa-256

Cubehash

Keccak-256

g
"
ho

r
22
4
25
6
H
as
h
D
es
ig
n
Lo
ng
 M
es
sa
ge

38

51

2'
H
:s
h'

es
i
n'

t'M
es
s:
ge

22

4
25

6
H
as

h

es

ig
n
S
ho

rt
M
es

sa
ge

38
4
51

2
H
as

h
D
es

ig
n
S
ho

rt
M
es

sa
ge

22
4
2

sh
'
si
'

t'M
es
sa

38
4!

51
sh

 D
gn

 L
g

M
es

sa
56
'H
a

e
gn
S
ho
r

ge

2
H

a
es

i
on

ge

32-bit Input-Output Bus

Padding in Software

0 1000 2000 3000 4000 5000 6000 7000 8000

32-bit Input-Output Bus

Padding in Software

0.0 0.5 1.0 1.5 2.0 2.5

Hamsi-512 Hamsi-512

BMI-512 BMI-512

Fugue-512 SIMD-512

38
4l

51
2

H
as

h
D

es
ig

n
S

ho
rt

M
es

sa
ge

22

4l
2

sh
'D

si
'

t'M
es

sa
38
4l
51

sh
 D

gn
 L

g
M
es
sa

56
'H
a

e
gn

S
ho

r
ge

2
H
a

es
i

on
geFugue-384 SHA�ite3-512

SHAvite3-512 ugue-512

SHA-2-512
 ugue-384
Shabal BLAKE- 4

BLAKE-64
 Shabal

Skein-512 SHA-2-512

Cubehash Groestl-512

SIMD-512
 ECHO-512

JH
 Skein-512

Groestl-512 Luffa-384

Keccak-512 Luffa-512

Luffa-512 JH

Luffa-384 Keccak-512

Keccak-384 Cubehash

ECHO-512
 Keccak-384

Throughput (Mbps) ThroughputlArea (Mbpslslice)

Figure 34: 384/512 Long Throughput Figure 35: 384/512 Long Tp/Area

Fugue-256 Fugue-256

32-bit' nput-Output'Bus

Padding'in'Software

0 1000 2000 3000 4000 5000 6000

32-bit'Input-Output'Bus

Hamsi-256 Hamsi-256

Padding'in'Software

Cubehash SIMD-256

Shabal BM -256

Shabal

 ubehash

SHA ite3-256
Skein-512

E HO-256

BLAKE-32

Luffa-256

SHA-2-256

Groestl-256

JH

Keccak-256

BM -256

Skein-512

SHA-2-256

S M -256

SHAvite3-256

BLAKE-32

Luffa-256

Groestl-256

JH

Keccak-256

Keccak-224

ECHO-256
 Keccak-224

0.0 0.5 1.0 1.5 2.0 2.5

Throughput'(Mbps) ThroughputlArea'(Mbpslslice)

Figure 36: 224/256 Short Throughput Figure 37: 224/256 Short Tp/Area

Hamsi-512 Hamsi-512

32-bit Input-Output Bus

fadding in Software

32-bit Input-Output Bus

Fugue-512 Fugue-512

Fugue-384 Fugue-384 Padding in Software

Cubehash BMI-512

BM -512

Shabal

SH ite3-512

Skein-512

SH -2-512

BL KE-64

Luffa-512

Luffa-384

SIMD-512

JH

Groestl-512

Keccak-512

Keccak-384

SIMD-512

SHAvite3-512

Shaba
Cubehash

Skein-512

B AKE- 4

 uffa-512

 uffa-384
SHA-2-512

Groest -512
ECHO-512

JH

Keccak-512

ECHO-512

0 1000 2000 3000 4000 5000 6000

Throughput (Mbps)

7000 8000

Keccak-384

0.0 0.5 1.0 1.5 2.0 2.5

ThroughputlArea (Mbpsls ice)

3.0

Figure 38: 384/512 Short Throughput Figure 39: 384/512 Short Tp/Area

3.0

3.0

