
1 

Resource-Efficient Implementation of Blue
 
Midnight Wish-256 Hash Function on Xilinx
 

FPGA Platform
 
Mohamed El Hadedy1,2, Martin Margala 2, Danilo Gligoroski3 and Svein J. Knapskog 1 

1The Norwegian Center of Excellence for Quantifiable Quality of Service in Communication
 
Systems(Q2S),
 

Norwegian University of Science and Technology (NTNU),
 
O.S.Bragstads plass 2E, N-7491 Trondheim, Norway
 
mohamed.elhadedy@q2s.ntnu.no, Knapskog@q2s.ntnu.no 

2 Department of Electrical and Computer Engineering, University of Massachusetts Lowell, 
Ball 301, One University Ave, Lowell, MA 01854, USA 

Mohamed Aly@uml.edu, Martin Margala@uml.edu 

3Department of Telematics, Faculty of Information Technology, Mathematics and Electrical Engineering,
 
The Norwegian University of Science and Technology (NTNU),
 

O.S.Bragstads plass 2E, N-7491 Trondheim, Norway
 
danilog@item.ntnu.no 

Abstract 

This paper presents the design and analysis of an area efficient implementation of the SHA-3 candidate Blue 
Midnight Wish (BMW-256) hash function with digest size of 256 bits on an FPGA platform. Our architecture is based 
on a 32 bit data-path. A fully autonomous implementation of BMW on Xilinx Virtex-5 FPGA requires 84 slices and 
two blocks of memory: one memory block to store the intermediate values and hash constants and the other memory 
block to store the instruction controls. The proposed implementation achieves a throughput of 28 Mpbs. 

I. INTRODUCTION 

To obtain efficient and secure computerized information handling, hash functions are used in countless protocols 
and algorithms. Until now, two generations of SHA algorithms have been standardized and widely deployed 
SHA-1, and SHA-2, and although they have some similarities, they have also significant differences [1]. SHA
1 is the most frequently used member of the SHA hash family, employed in hundreds of different applications 
and protocols. However, in 2005, we witnessed a significant theoretical breakthrough in breaking the current 
cryptographic standard SHA-1 [2]. The discovered mathematical weaknesses which were shown to exist indicated 
the need for replacement with a stronger hash function [3], although there exist another family of standardized 
hash function called SHA-2 which officially replaced SHA-1 in 2010. 

The SHA-2 family is a family of four algorithms that differ from each other by different digest size, different 
initial values and different word size. The digest sizes are: 224, 256, 384 and 512 bits. Although no attacks have 
yet been reported on the SHA-2 variants, their operational performance is in many settings less than desirable, 
and the National Institute of Standards and Technology (NIST) have felt the need for an improved new family of 
hash functions [4]. At the end of 2007, NIST decided to invite cryptographic algorithms designers and developers 
to participate in an open competition running between 2008 and 2012 for choosing a new candidate for the next 
cryptographic hash standard SHA-3. This work is now well underway, as the competition is about to enter into 
its third phase, in which five of the strongest candidates will be singled out for the final testing until a winner 
may be declared in 2012. The Blue Midnight Wish (BMW) hash function is one of the candidates promoted to 
the second round of the SHA-3 competition and implemented in software, it is one of the fastest proposed new 
designs running in the competition [5]. In this paper, we proposed a hardware design of BMW-256 which is simple, 
area efficient and provides significant throughput improvements over previous work. The proposed BMW-256 hash 
function core is implemented in FPGA using Virtex XCV300 and Virtex 5 XC5VLX110 devices. 

The rest of the paper is organized as follows. In Section 2, we describe briefly the compression function of 
the second round version of the BMW-256 algorithm, while Section 3 contains the architectural description of the 

mailto:danilog@item.ntnu.no
mailto:Margala@uml.edu
mailto:Aly@uml.edu
mailto:Knapskog@q2s.ntnu.no
mailto:mohamed.elhadedy@q2s.ntnu.no


2 

Fig. 1: Graphical representation of the hash function Blue Midnight Wish 

design. In Section 4, the BMW hashing operations are detailed out. In section 5, the synthesis results of the FPGA 
implementation are given and comparisons with other related works are shown. Finally, in section 6, our conclusions 
are presented, and some observations and possibilities for future work are discussed. 

II. THE HASH FUNCTION OF BLUE MIDNIGHT WISH – 256 

The BMW-256 has function is shown in Fig. 1. We refer to the variant that creates a 256 bit message digest 
as BMW-256. The basic data block which is used is 32 bits long. The algorithm has four different operations in 
the hash computation stage: bit-wise logical word XOR, word addition and subtraction, shifts (left or right), and 
rotate left. The BMW uses a double pipe design to increase the resistance against generic multi-collision attacks 
and length extension attacks. In the double pipe design, the sizes of the inputs to the compression function are 
twice the message digest size. The inputs to the compression function are the message blocks M(i) of size 512 bits, 
along with the initialization vector H(i−1) of 512 bits (previous double pipe) and the output is the current double 
pipe H(i). 

The hash function has two main parts: 1. Message digesting part and 2. Finalization part as it is shown in Fig. 
1. The first part uses three separate functions f0, f1 and f2 to define the so called “compression function” of Blue 
Midnight Wish. The output of the compression function is H(i) = (H(i) , H(i) ,..., H(i) 

15 ). There are two inputs for the 0 1 
, H(i−1)function f0: The first argument consists of sixteen 32-bit words, which are working as initial values H(i−1) ,..,0 1 

H(i−1) , M(i). The second argument consists of sixteen 32-bit words, which represent the input message block: M(i) 
15 0 1 

,..., M(i) 
15 . 

The function f0(M(i), H(i−1)) computes M(i) ⊕ H(i−1) and produces Q(i) as the first part of the extended a 

(quadrupled) pipe, hence Q(
a
i) (Q(i) , Q(i) ,..., Q(i)= 15 ). The inputs for the function f1 are three different arguments, 0 1 

the message block M(i), the previous double-pipe H(i−1) and the value of Q(i). The function f1(M(i), H(i−1), Q(i) )a a 

computes the second part of the extended (quadrupled) pipe Q(i), hence Q(i) (Q(i) , Q(i) , ..., Q(i)= 31 ).b b 16 17 

The third function f2 also takes three arguments; the message block M(i) and the values of both Q(i) and Q(i) .a b 

The function f2(M(i), Q(
a
i) , Q(i)) computes the new double-pipe value H(i), i.e. H(i) = (H(i) , H(i) ,..., H(i) ).b 0 1 15 

The second part (finalization) contains of the same compression function defined in the message digesting part 
, H(i−1)(so it uses the same functions f0, f1 and f2), but instead of initial values H(i−1) ,..., H(i−1), it use Constant f inal 

0 1 15 j 

= (Constant f inal , Constant f inal ,... , Constant f inal ) values and the role that was played by the input message block 0 1 15 



3 

Fig. 2: BLUE MIDNIGHT WISH-256 Core Architecture 

Fig. 3: Parallel Shifter/Rotator Block 

in the previous message digesting part, now will be played by the last obtained double-pipe H(i) = (H(i) , H(i) ,...,0 1 
H(i) 

15 ). 

III. BLUE MIDNIGHT WISH256 CORE ARCHITECTURE 

Fig. 2 shows the complete architecture of the entire BMW core process, which includes six main hardware 
operative parts, Memory unit, Parallel Shifter/Rotator, ALU (Arithmetic Logic Unit), Temporary Register, Output 
Buffer and Control Unit. Their operations are as follows: 

Parallel Shifter/Rotator: It contains a 5 x 32 Mux matrix each one is a 2 x 1 multiplex with a large encoder (5 X 11). 
This component is responsible for the shift and rotation operations of the 32 bit words. It receives 32 bit parallel 
data from the memory Block and transmits 32 bit parallel data to the ALU. That happens dependent on the value 
of the shifter control word. Because we have 46 operations in the BMW hash core, the width of shifter control word 
is 6 control bits as shown in Fig. 3. 

ALU : The ALU component offers three different operations in the hash computation stage: bit-wise logical word 
XOR, word addition and subtraction (modulo 232). The ALU component receives 32 bit data words from the Parallel 
Shifter/Rotator and the Temporary Register and transmit the output to the Temporary Register to work as a parallel 
accumulator. 

Temporary Register: It contains a 32 Mux 2 x 1 and a shift register. The Temporary Register works as an accumulator. 
It receives 32 bit words from The Memory Unit and The ALU and transmits data 32 bit words to the ALU and the 
output stage. 

Memory unit: To implement the BMW-256 core memory block, we used an FPGA block RAM of size 256 x 32 bits. 
As we mentioned in section 3.1, the memory block contains a ROM to store the BMW-256 constants Kj, J=0,1,..., 15 
, H(i−1) and the Constant j

f inal . In addition, the memory block contains sufficient RAM to store the BMW-256 input 

message blocks (M(i) , M(i) ,..., M(i) 
15 ), the intermediate values of the BMW hash function, and the final double pipe 0 1 

values H(i) = (H(i) , H(i) , H(i) ,...,H(i) 
0 1 2 15 ). 



4 

Fig. 4: BMW-256 Control Unit 

Control Unit: It has been designed as a 2048 x 25 bit Instruction Block RAM, an 11 bit up counter load bit and 
a Control FSM (Finite State Machine) as shown in Fig. 4. it contains three operative parts, all of them working 
together to produce 8 bit memory address words to control the memory block traffic with the other BMW-256 
sub-systems. The Control Unit produces the 14 bit control word to control the data flow between the BMW-256 
core sub-systems. The Control Unit subsystems are working as follows: 

once the Start and Load signals becomes high, the organization of the sixteen input messages inside RAM location 
is started. Subsequently, the Load signal becomes low and the Instruction Block RAM starts to control the BMW 
hashing core to execute the f0, f1, and f2 according to the BMW-256 algorithm operations which was described 
in section 2. Finally, the Round signal becomes high, and BMW hashing core starts to transfer the H(i) ,H(i) ,...,H(i) 

0 1 15 
values in the message locations and and transfer Const f inal vaules in the H(i) ,H(i) ,...,H(i) locations. After that 0 1 15 
the Final signal becomes high and the final hash output. The Control FSM is used to organize the movement of 
instructions from the up counter load according to the value of each of the signals Load, Round and Final. 

IV. BLUE MIDNIGHT WISH-256 HASHING OPERATIONS 

In this section we describe how the computation hash core works to execute the internal functions in BMW-256. 
As an example, we will explain how to XOR two blocks of data present in locations number 4 and 5 in the Memory 
Unit, and write the result in location number 7. First, the Control Unit gives order to the Memory Unit to choose 
location number 4. Then the Control Unit asks the Temporary Register to pick up the data from the data bus 
and subsequently the same operation happens with location number 5. However, instead of using the Temporary 
Register, the Parallel Shifter/Rotator picks up the data. Now, the Control Unit asks the Shift/Rotate Encoder to 
give order to the ALU to add these data and store them in the Temporary Register. Finally, the Control Unit gives 
order to the Memory Unit to pick up the data and place them in location number 7. Because we used the Parallel 
Shift/Rotate, and the parallel Arithmetic Logic Unit which has an output size of 32 bit, we succeeded to reduce 
the number of cycles for each operation shown in Table I (page 5). Using the BMW-256 operations in Table I, we 
see that we can execute the function f0 in 413 cycles, function f1 in 476 cycles and finally function f3 in 171 cycles. 

V. PERFORMANCE EVALUATION 

The BMW-256 core has been designed in VHDL and it was synthesized (synthesis, placement and routing) using 
ISE foundation 10.1 [7] in VIRTEX XCV300-6PQ240 and VIRTEX 5 XC5VLX110 Xilinx devices. In Table II, we 
compare this implementation optimized for small FPGAs with the previous similar implementation. By using the 
proposed structure we have spent around 96% less area compared to previous design for BMW-256 on the same 
FPGA VIRTEX 5 XC5VLX110 device while increasing the measured throughput around 27 times. 

VI. CONCLUSION AND FUTURE WORK 

In this paper we have presented an FPGA implementation of a new BMW-256 hashing core structure with 256 
bits of message digest using a parallel shifter/rotator and a parallel 32 bit word arithmetic logic unit (ALU). The 
BMW-256 core receives 16 message words of 32 bits and processes them. The goal was to use as small area as 
possible in order to minimize the hardware cost. For the future work, we will take on the challenge to improve 
this design. The goal is to improve the throughput while keeping the optimized the area usage. It will certainly be 
beneficial in some future usage scenarios to do a full implementation in ASIC. 



5 

TABLE I: BLUE MIDNIGHT WISH-256 hashing core operations (execution times) 

Operation Proposed BMW-256[8] 
Load 1 1 
XOR 3 32 
ADD 1 32 
SUB 1 32 
S0 4 127 
S1 4 128 
S2 4 129 
S3 4 132 
S4 4 34 
S5 2 34 
R1 1 3 
R2 1 7 
R3 1 13 
R4 1 16 
R5 1 19 
R6 1 23 
R7 1 27 

TABLE II: BLUE MIDNIGHT WISH-256 performance results 

Algorithm Name FPGA Type Area(Slice) Frequency [MHZ] Throughput Memory Blocks 

Proposed Virtex XCV300 
Virtex5 XC5VLX110 

895 
84 

38 
116 

9 Mbps 
28 Mbps 

1 
2 

BMW-256 [8] Virtex XCV300 
Virtex5 XC5VLX110 

2147 
1980 

60 
264 

1.07 Mbps 
5Mbps 

—— 
—– 

REFERENCES 

[1] National Institute of Standards and Technology,	 ”Secure Hash Standard (SHS), FIPS PUB 180-3”, Federal 
Information Processing Standards Publication, October 2008, http://csrc.nist.gov/publications/fips/fips180-3/ 
fips180-3 final.pdf 

[2] X. Wang, A. C. Yao, and F. Yao. ”Cryptanalysis on SHA-1 hash function”. In proceeding of The Cryptographic 
hash workshop. National Institute of Standards and Technology, November 2005. 

[3] NIST	 (2006). ”NIST Comments on Cryptanalytic Attacks on SHA-1”. http://csrc.nist.gov/groups/ST/hash/ 
statement.html 

[4] William E. Burr, ”Cryptographic Hash Standards: Where Do We Go from Here?”, IEEE Security and Privacy, Vol. 4, 
No. 2, pp. 88-91, Mar./Apr. 2006, doi:10.1109/MSP.2006.37 

[5] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, Jorn Amundsen and S. F. Mjolsnes, ”Cryptographic Hash 
Function BLUE MIDNIGHT WISH”, Submission to NIST (Round 2) of SHA-3 Competition, September 2009 

[6] D. Gligoroski, V. Klima, ”A Document describing all modications made on the Blue Midnight Wish cryptographic hash 
function before entering the Second Round of SHA-3 hash competition”, http://people.item.ntnu.no/∼danilog/Hash/ 
BMW-SecondRound/Supporting Documentation/Round2Mods.pdf 

[7] Xilinx, ”Device Package User Guide”, 2010 http://www.xilinx.com/support/documentation/user guides/ug112. 
pdf” 

[8] M. El Hadedy, D. Gligoroski, S. J. Knapskog,	 ”Low Area Implementation of the Hash Function ”Blue Midnight 
Wish - 256” for FPGA platforms”. In Proceedings of The International Conference on Intelligent Networking and 
Collaborative Systems. IEEE Computer Society 2009 ISBN 978-0-7695-3858-7. 

http://www.xilinx.com/support/documentation/user
http://people.item.ntnu.no/�danilog/Hash
http:doi:10.1109/MSP.2006.37
http://csrc.nist.gov/groups/ST/hash
http://csrc.nist.gov/publications/fips/fips180-3

