
Evaluation of SHA-3 Candidates for 8-bit
 
Embedded Processors
 

Stefan Heyse, Ingo von Maurich, Alexander Wild, Cornel Reuber, Johannes
 
Rave, Thomas Poeppelmann, Christof Paar
 

Horst Görtz Institute for IT Security
 
Ruhr University Bochum
 
44780 Bochum, Germany
 

{firstname.lastname}@rub.de 

Abstract. In 2007, NIST published a call for participation in a contest 
for a new standardized hash function, the future SHA-3. The call targets 
software oriented designs and suggests optimization for high-performance 
platforms. However, NIST explicitly encourages the evaluation of the 
candidates on 8-bit platforms. In this paper we present an implementa
tion of several SHA-3 candidates, namely BLAKE, Blue Midnight Wish, 
Grøstl, and SHAvite-3 on an 8-bit microcontroller platform. While BMW 
shows the highest throughput, BLAKE seems to be the best balanced 
solution for 8-bit platforms. 

1 Introduction 

In 2007, NIST published a call for participation in a contest for a new standard
ized hash function, the future SHA-3 [13]. NIST required the submission of two 
implementations, one optimized for 32-bit architectures and one optimized for 
64-bit architectures. The call even specifies a reference platform for both profiles, 
showing that performance on high-end microprocessors is of great concern for 
the final choice of the SHA-3. 

Nevertheless, NIST also encourages the evaluation of the candidates on 8-bit 
platforms. Small embedded microprocessors are widely used in various appli
cations, including smart cards, household appliances, medical devices, trans
portation systems and many more. Many of these applications require efficient 
cryptography. Consequently, we expect a wide interest in finding out whether 
SHA-3 candidates can be efficiently implemented on small 8-bit embedded mi
croprocessors. 

Compared to the SHA-3 reference platform, 8-bit microprocessors are heavily 
constrained in resources such as program memory and RAM. Besides through
put, efficiency has an additional meaning in this context: resources needed by 
an implementation of a hash function should be kept small, since embedded 
applications are very often cost constrained. In fact, in many situations mem
ory consumption can be more crucial than throughput, in particular since many 
embedded applications only process small payloads. 

In this paper we present an implementation of several SHA-3 candidates on 
an 8-bit microcontroller platform. Out of 64 submitted candidates, 14 candidates 
have been chosen to enter the second round of the SHA-3 competition. Out of 
these 14, we present implementation results for BLAKE, Blue Midnight Wish, 
Grøstl, and SHAvite-3, together with an implementation of Lane. Following a 
short description of the implementation platform in Section 2, we describe the 

mailto:firstname.lastname}@rub.de


different implementations in Section 3. The paper concludes with a comparison 
of the results in Section 4. 

2 Target Platform 

Our implementations are designed for 8-bit AVR processors, a family of 8-bit 
RISC microcontrollers widely used in many embedded applications. The Atmel 
AVR processors operate at clock frequencies of up to 32MHz, provide few kBytes 
of SRAM, up to hundreds of kBytes of Flash program memory, and additional 
EEPROM or mask ROM. The devices of the AVR family have 32 general purpose 
registers of 8-bit word size. A powerful example is the Atmel ATmega128 general 
purpose microcontroller [2]. The AVR core is also available as a smart card 
processor known as the AT90SCxxx family [1]. 

AVR microcontrollers can be programmed in AVR-assembler and in C. The 
presented implementations are designed to be executable on an AVR processor 
providing 1 KByte SRAM and a few KBytes of program memory. All imple
mentations were tested and run on a developer smart card equipped with an 
ATMega163 microcontoller. All algorithms are completely implemented in AVR 
assembler. 

3 Implementations 

In this section we describe the implementations of the different algorithms. Not 
all ciphers are equally well suited for an implementation on an 8-bit platform. 
We tried to choose the ciphers which fit the 8-bit platform well. For each cipher 
details and specific features of the implementation are given together with a 
short description of that cipher. 

3.1 BLAKE 

BLAKE is a family of four hash functions that were proposed by Aumasson et 
al. [3] as a candidate for SHA-3. The iteration mode is HAIFA [6], its internal 
structure is the local wide-pipe [4] and its compression algorithm is a derivate 
of the stream cipher ChaCha [5]. BLAKE-32 operates on 32-bit words, has a 
block size of 512 bits, allows 128 bits of optional salt and produces a 256-bit 
hash value. The compression function takes as input a 8-byte chaining value h, 
a 16-byte message block m, a 4-byte salt s and a 2-byte counter t. Its output 
is a new chain value h'. The compression function is split into three different 
parts. At the beginning an initialization part generates a 16-word state out of 
the chain value, salt, counter and constants. The round function is then iterated 
ten times where in each round the function Gi is applied eight times on different 
words of the state. This function is the most time-critical part of BLAKE-32. 
The finalization generates a new chain value h' from the state, initial chain value 
and salt. BLAKE-32 uses three arithmetic operations: a 32-bit XOR, a 32-bit 
addition modulo 232 and 32-bit rotations with different numbers of rotations. 
To perform these operations on a 8-bit platform, special care has to be taken. 
The 32-bit XOR can simply be reduced to four 8-bit XORs and the 32-bit addi
tion can be broken down to four 8-bit additions with carry. Rotations are more 
complicated as there are four different rotations distances (7, 8, 12, 16) used in 
BLAKE-32 and for each rotation new code has to be written. The designers of 

2 



BLAKE implemented the compression functionof BLAKE-32 on a PIC18F2525 
8-bit microcontroller with a memory requirement of 2470 bytes of program mem
ory and 274 bytes of data memory. Generating a message digest for sufficiently 
large messages requires 406 cycles/byte. 

Our implementation of BLAKE-32 on an Atmel ATmega163 requires 1804 
bytes of program memory, consisting of 160 bytes for the permutation table, 32 
bytes for the initialization vectors, 64 bytes for the constants and 1548 bytes 
of code. We require 251 bytes of data memory split into 64 bytes for the state, 
64 bytes for constants, 64 bytes for the current message block, 32 bytes for the 
chain value, 16 bytes for the salt, eight bytes for the counter and three bytes for 
temporary data. Our implementation occupies 11.0% of the program memory 
and 24.5% of the data memory of the ATMega163. With 323.6 cycles/byte for 
sufficiently large messages it outperforms the implementation of the designers 
by 20.3% while reducing the required program memory by 27% and the re
quired data memory by 9%. This improvement is mainly achieved due to an 
increase in performance of the function Gi that is called 80 times per round. In 
Table 1 the cycle count for each line of Gi of the original is compared with our 
implementation. 

The code starts with an initialization function that resets the counter, loads 
the constants, the salt and the initialization vectors from the program memory 
to the data memory. Having the constants in the data memory saves four cycles 
each time a 32-bit constant is accessed. This is crucial as two constants are 
accessed during one iteration of Gi. The hash function checks if the current 
message block is the last message block and if this is the case it appends the 
correct padding. After the straightforward initialization of the state, the round 
function begins. The correct inputs for Gi are prepared and Gi is called. At the 
transition from G3 to G4 the input d, which corresponds to the state variable 
v15, has already been input to G3 therefore loading it again can be skipped. 
As stated earlier, Gi is the most time-consuming function and has the highest 
impact on the overall performance of BLAKE-32. We therefore tried to remove 
every unnecessary cycle in this function. The current implementation loads the 
entries of the permutation table σ from the program memory as this table would 
require another 160 byte of data memory. However, if more data memory usage 
is not a problem the permutation table could be loaded into the data memory 
during the initialization phase. This would save two cycles per Gi call, leading 
to a total of 160 cycles per block and a overall performance of 321.1 cycles/byte. 

3.2 BMW 

The first version of the Blue Midnight Wish (BMW) hash function and the 
tweaked version for the second round of the SHA3 competition have been devel
oped by Gligoroski et. al. [11]. In this paper we only deal with the first version 
but the results can be used as a basis to evaluate the performance of the second 
version proposal. BMW supports the implemented 256-bit and a 224-bit variant 
which only differs in minor aspects as well as a 384/512-bit variant which is too 
complex for a constrained device like the ATMega AVR. 

The general execution flow of BMW is to set up the initial double pipe H 

and then process incoming message blocks by applying the f0, f1 and f2 function 
to iteratively generate new values for H and the double pipe Q. When a signal 
indicates that the last block is to be processed, the padding is applied to that 
last block. In case that the length of the last block is greater than 447 bits the 

3 



Table 1. Comparison between costs of the function Gi 

Line of Gi Original Our code Improvement 
(PIC) (AVR) 

a ← a + b + (mσr (2i) ⊕ cσr (2i+1)) 76 cycles 53 cycles 30,3 % 
d ← (d ⊕ a) » 16 24 cycles 7 cycles 70,8 % 
c ← c + d 24 cycles 4 cycles 83,3 % 
b ← (b ⊕ c) » 12 34 cycles 28 cycles 17,6 % 
a ← a + b + (mσr (2i+1) ⊕ cσr (2i)) 67 cycles 41 cycles 38,8 % 
d ← (d ⊕ a) » 8 22 cycles 9 cycles 59,1 % 
c ← c + d 24 cycles 4 cycles 83,3 % 
b ← (b ⊕ c) » 7 29 cycles 14 cycles 51,7 % 
Preparing input, calling function 22 cycles 73 cycles -231,8 % 

Sum 322 cycles 233 cycles 27,6 % 

padding is extended into a second block. After that, the hash output is present 
in the memory area of the double pipe H . Unlike other variants, BMW is not 
based on AES but uses shift, rotation, modulo addition and XOR operations on 
32-bit words in the 224/256-bit variant. This is comfortable and fast on standard 
32-bit CPUs but a challenge on an eight-bit AVR. 

In our implementation we start by setting up the double pipe H with initial 
values. To save space in the program memory and due to their pattern, these 
values are created on the fly. This is also faster than loading them from the 
program memory. The first of the following iteratively applied fj functions is 
f0 which carries out the bijective transform of W = A(M ⊕ H) in the first 
part. A simple optimization is to precompute Xi = Mi ⊕ Hi as these values 
are needed multiple times. Moreover, every line can be generalized as Wi = 
Xa ◦Xb ◦Xc ◦Xd ◦Xe which makes it possible to design an assembler routine that 
is given the indexes of X and the designated operation (addition or subtraction). 
This routine can be called for every of the sixteen lines and therefore saves a 
huge amount of program memory. In our implementation this is done by using 
the LSB r0 of every register to encode the operation and r7..1 to store an offset 
allowing efficient pointer arithmetic. In some lines (e.g. W5) the used values of Xi 

are not entirely ordered which makes it necessary to subtract a given correction 
offset which is applied after Xa. The resulting Wi needs no extra space in the 
RAM as it is stored in the second half of the quadruple pipe Q. 

In the next part of the f0 function the previously computed values Wi are 
now the input of the s0, s1, s2, s3 and s4 functions resulting in the first half of 
the quadruple pipe Q. They require mostly shifting and XORing of the input 
which is expensive on the AVR because each register can only be shifted one 
position left or right in a single cycle. Furthermore, all operations take place 
on 32-bit words requiring a chained shift of four registers in order to perform 
one SHL1 or SHR1 function. Therefore, an increase in execution speed can 
be gained by tuning every shift and rotation sequence by hand and considering 
the fact that shifts or rotations by a multitude of eight costs almost no cycles 
on the AVR, as they can be performed by simply moving the registers. Next 
the f1 function, which is designed as a weak block cipher takes the message 
block M and the first part of the quadruple pipe Q as input and outputs the 
second part of the quadruple pipe Q. This is achieved by multiple calls of the 

4 



expand1(j) and expand2(j) functions. The expand1(j) function reuses the s0..4 

functions of f0. To make them applicable in both parts, a small modification 
in the implementation indicates whether the result should be stored in memory 
(f0) or added to some registers for further use (f1). Moreover, the constant Kj 

is precomputed and added in every iteration. After that the f2 function takes 
the message block M and the quadruple pipe Q as input and outputs the new 
double pipeH , which also stores the hash after the final round. As the cumulative 
temporary variables XL and XH are used in every line of f2 they are not placed 
in memory but held in the first eight registers. For code size reduction a generic 
function works on every line, after the non-generic part has been done. In H0 

to H7 the only non-generic part is the number of shifts of XH and Q. For H8 

to H15 the rotation of H and the shift of XL has to be performed prior to the 
application of a generic function. 

3.3 Grøstl 

The hash function Grøstl [10] is one of the candidates that advanced to the sec
ond round of the NIST SHA-3 competition. It is based on an iterated structure 
using a single compression function. This function is build around the permuta
tions P and Q, which utilize the same ideas as the AES round function. Due to 
the bigger state of Grøstl, 512–bit for Grøstl-244/256 and 1024–bit for Grøstl
384/512, the round transformations were slightly changed. The most noticeable 
change compared to the AES [8], despite the bigger state, is the lack of a key, 
which was left out to prevent weak key attacks. P and Q are used to construct 
the compression function, which has the form f(h,m) = P (h⊕m)⊕Q(m)⊕h. In 
this case h is either the previous block processed by f or an initialization vector, 
whereas m denotes the message block to be hashed. Both permutations are build 
from the same round structure, which is applied ten or 14 times depending on 
internal state’s size. During each round the functions AddRoundConstant, Sub-
Bytes, ShiftBytes and MixBytes are applied to the internal data. The behavior 
of the first function marks the only difference between the permutations P and 
Q. According to the running permutation, a derived round counter is added to a 
distinct byte in the state. SubBytes uses the AES S–Box to perform a non–linear 
transformation by substituting every value in the state with the corresponding 
value from the S–Box. The ShiftBytes function shifts the bytes within a row 
cyclically, depending on the row number. Following this is the last step in the 
permutation function called MixBytes. This function can be described as a ma
trix multiplication in F256, which is defined with the same irreducible polynomial 
as in the AES. In contrast to the AES algorithm another circular matrix B with 
higher values is used. After all blocks have been processed an output transfor
mation is used to cut down the internal state to the output size. In this step the 
permutation P is used again. 

The Grøstl algorithm uses a byte–oriented structure to represent the inter
nal state, which is a perfect fit for the 8–bit AVR microcontroller. Due to the 
resource constraints on the chosen controller only the 512–bit state size version 
was implemented. To save cycles, the functions AddRoundConstant, SubBytes 
and ShiftBytes were merged into one function. This allows to perform the nec
essary operations without repeated RAM access. As storing and loading each 
byte costs four cycles, 512 cycles are saved each round. The next step would 
be to include MixBytes into this combined function to save another 256 cycles. 
Unfortunately, this is only possible by increasing the amount of needed RAM, 

5 

http:P(h�m)�Q(m)�h.In


as the MixBytes operation can not be performed in–place. AddRoundConstant, 
SubBytes and ShiftBytes operate only on the byte level, meaning that the val
ues in the state do not affect each other. MixBytes however combines different 
values of the state to new values by a matrix multiplication. In–place calculation 
would replace values needed for later calculations. Therefore, additional RAM 
for out–of–place calculation of this function is needed. This is not the only dif
ficult point in implementing the Grøstl MixBytes function. Due to the size and 
high values in the multiplication matrix B, this step is the most expensive to 
implement. The drawback can be minimized by using a 256–byte look–up table 
for the multiplication with two. Using look–up tables for other multiplications 
does not result in a performance increase, so that the two–times table can be 
used again, minimizing the needed program memory. Another way, optimizing 
MixBytes, is to reuse intermediate results, which is easily possible by calculat
ing whole columns at a time. The performance could be potentially increased by 
copying the look–up tables into the RAM before calling the function. Given the 
specification of the used device this was however not feasable. 

3.4 Lane 

Lane is an iterated cryptographic hash function which reuses components from 
the AES block cipher [12]. We implemented the Lane-256 function which uses a 
digest length of 256-bit, a blocksize of 512-bit and a chaining value of 256-bit. 
The Lane compression function consists of a message expansion part in which 
the 512-bit message and the 256-bit chaining value get expanded and separated 
into six 256 Bit states w0 to w6. Each state is transformed by the permutation 
P and the results are XORed together in groups of three. The resulting two 
states are then used as input to the permutation Q. The XORed outputs of the 
two Q permutations form the output of the Lane compression function. Both 
permutations consist of repeated calls of the round function which is based on 
the components known from the AES block cipher. 

The architecture of the AVR microcontroller only provides 32 8-bit registers. 
Six of these are already used for addresspointers while another eight are used for 
temporary values and the computation of the constants. This allows us to store 
only one half of the state in the registers. As we will see later on in each round 
inside the permutations only the last step (SwapColumns) requires both 128-bit 
states as input. Therefore we can perform the permutations on the 128-bit state 
in the registers but we need to reload the second part of the state every round. 

The round functions inside the permutations are specified a repetitions of 
transformations which are mostly known from the AES block cipher. The Sub-
Bytes transformation is identical to the corresponding function of the AES but 
operates on a larger state. For our 8-Bit implementation this transformation was 
implemented as a lookup table which is stored in the program memory. Since the 
ShiftRows operation is just a permutation of the 128-bit AES state this function 
could be included in the SubBytes operation with a cost of only four cycles. 
The next transformation is the MixColumns operation. As described in [12] the 

6 



transformation for each columns of the 128 Bit state can be computed as follows: 

' y = y2 ⊕ y3 ⊕ 2y0 ⊕ 3y10 
' y = y0 ⊕ y3 ⊕ 2y1 ⊕ 3y21 
' y = y0 ⊕ y1 ⊕ 2y2 ⊕ 3y3 (1) 
2 
' y = y1 ⊕ y2 ⊕ 2y3 ⊕ 3y03 

Since 2yi may require a reduction step while 3yi is only the XOR of 2yi and yi 
we compute all the 2yi values for a column in a first step. With these values we 
build two temporary values yt0 = 2y1 ⊕ y2 ⊕ y3 and yt1 = y0 ⊕ y1 ⊕ 2y3. The new 
column can then be computed as: 

' y = yt0 ⊕ y1 ⊕ 2y00 
' y = yt0 ⊕ y0 ⊕ 2y21 
' y = yt1 ⊕ y3 ⊕ 2y2 (2) 
2 
' y = yt1 ⊕ y2 ⊕ 2y03 

This way for each byte only three XOR operations are needed compared to four 
using the naive implementation. The speed of the MixColumns operation highly 
influences the overall speed of the compression function since it is used in all 
rounds in both permutations. 

The AddConstants operation XORs a constant to each column of the state. 
Due to the limited memory of the microcontroller the constants can not be stored 
and therefore need to be calculated during runtime using the LFSR specified in 
the Lane algorithm. Depending on the round counter r one half of a 64-bit 
counter holding the number of message bits hashed so far is added to the fourth 
column of the first AES state. Because only 4-byte of the counter are needed for 
the addition while 8-byte need to be stored, the counter is written in the RAM 
rather than in the registers. The SwapColumns operation exchanges the third 
and fourth columns of the first 128-bit state with the first and second column of 
the second 128-bit state. Due to this operation we can not operate only on one 
half of the 256-bit state over the whole permutation. Therefore, each round the 
first part of the state in the registers needs to be exchanged with the second part 
of the state in the RAM. To reduce the RAM access the SwapColumns operation 
can be performed while loading the state for the next round. This increases the 
performance of the implementation but requires additional 256 Bits of RAM. 

3.5 SHAvite-3 

SHAvite-3 is composed of a compression function and an iteration function. 
To transform a block cipher into a compression function SHAvite-3 uses the 
Davies-Meyer transformation. The used block cipher build upon a Feistel struc
ture with an AES round as building block. As iteration function SHAvite-3 uses 
Hash Iterative Framework (HAIFA) which is needed to handle arbitrary mes
sage length [6][14]. 

SHAvite-3 uses two different compression functions. One to build hashes less 
equal than 256 bit and one to build hashes larger than 256 bit. Scope in this paper 
is only the function for a bit length up to 256 bit. The state of the compression 
function is initialized with a fixed value and divided into two parts, R0 and L0. 
R0 is XORed with a subkey and put into three iterative AES round functions 

7 



with two additional subkeys. The last AES round has an all zero subkey. After 
this, R0 is XORed with L0 resulting in R1 and R0 will be L1. This construction 
will be iterated twelve times. The message to be hashed is only used to calculate 
the subkeys. Altogether 36 128-bit subkeys for twelve iterations are needed. The 
first four subkeys consist of the message itself. For further subkeys the message 
is put into an AES round with a salt as key and the result is XORed with a 
counter and old subkeys. 

Besides of a few XORs and iterations the whole complexity stems from the 
AES round function. A complete implementation of AES is not applicable here, 
because instead of 16 sequential AES rounds only three rounds with a changed 
key derivation is used. Therefore, the implementation on an AVR XMEGA with 
AES module will would not improve the implementation. The AES round func
tion is called 52 times per block. To speed up the implementation a fast AES 
round function is essential. One implementation trick is to combine SubBytes 
and ShiftRows. This means the output of the S-Box only has to be saved in 
other registers. Another trick is to store the S-Box at specific positions in pro
gram memory. The AES S-Box has a size of 256 byte and the AVR program 
memory is addressed byte-wise. This means if the S-Box is stored at an address 
with the lower address byte being zero, the upper address byte is always the 
same for each S-Box entry. This saves a few cycles during the address calcu
lation. Our implementation calculates eight subkeys while a call. To speed up 
the implementation all 36 subkeys could be calculated at once, but this would 
require 576 byte in RAM just for the subkeys. The decision for the alternative 
with the eight subkey calculations was just a time, size tradeoff. 

In the original SHAvite-3 paper an 8-bit implementation was estimated with 
20370 cycles per block. Our implementation requires about 21100 cycles and is 
therefore as fast as expected. The additional cycles could be a result from the 
not considered storing complexity. The state has a bit length of 256 bit and 
fits exactly into the 32 AVR registers, but then no registers are remaining for 
temporary results or pointers. Because of the Feistel structure, only half of the 
state has to be handled at once. The other half can be pushed on the stack for 
later use [7]. 

4 Results and Conclusion 

We now present the achieved results for our implementations. In Table 2, the 
code size includes all precomputed tables. Also the RAM value includes the 
necessary space for the 64 byte message block, which is hashed. The values in 
the short message column are measured for a message which is only in the size 
of a single block. These values include the time for initialization, padding and a 
single round of the corresponding hash function. Finally, the last column is an 
asymptotic value for very large messages, where the time for initialization and 
padding is negligible. The first and last block of a message are not included in 
this value, because they need a special handling. 

Although performance is always of high interest for the choice of an algo
rithm, in embedded systems the code size and RAM consumption often play a 
significant role a well. The less resources are used, the smaller and consequently 
cheaper the used microcontroller can be [9]. By performance, BMW is outper
forming the other implementations, followed by BLAKE and SHAvite-3. Grøstl 
is the only candidate that shows a significant difference in performance for the 

8 



Table 2. Size and Performance Results 

Hashfunction code size RAM Short message Long message 

BLAKE-32 1804 bytes 251 bytes 332 cycles/byte 324 cycles/byte 
BMW-256 3558 bytes 320 bytes 247 cycles/byte 227 cycles/byte 
Grøstl-256 4852 bytes 261 bytes 1044 cycles/byte 687 cycles/byte 
Lane 2088 bytes 104 bytes 600 cycles/byte 588 cycles/byte 
SHAvite-3 5254 bytes 232 bytes 338 cycles/byte 331 cycles/byte 

hashing of long messages, but its overall performance is not very good. In terms 
of code size, BLAKE and to a certain extend also Lane do quite well with about 
2 kBytes of code. The other implementations are significantly larger. The RAM 
requirement of Lane is also outstandingly low. 

BLAKE shows the best overall performance, featuring small resource con
sumption and a decent throughput. BMW gives a slightly better throughput at 
the cost of roughly doubling the code size. Grøstl and to a lesser extend SHAvite
3 are less interesting due to the large code size and, in the case of Grøstl, the 
considerably lower throughput. 

9 



References 

1. Atmel Corp. Overview of Secure AVR Microcontrollers 8-/16-bit RISC CPU, 2007. 
http://www.atmel.com/products/SecureAVR/. 

2. Atmel Corp. Specifications of the ATmega128 Microcontroller, 2007. http://www. 
atmel.com/dyn/resources/prod_documents/doc2467.pdf. 

3. J. Aumasson, L. Henzen, W. Meier, and R. Phan. SHA-3 proposal BLAKE. Sub
mission to NIST, 2008. 

4. J. Aumasson, W. Meier, and R. Phan. The hash function family LAKE. In Fast 
Software Encryption, pages 36–53. Springer, 2008. 

5. D. Bernstein. ChaCha, a variant of Salsa20. See http://cr.yp.to/chacha.html. 
6. E. Biham and O. Dunkelman. A framework for iterative hash functions HAIFA. 

In Second NIST Cryptographic Hash Workshop. Citeseer, 2006. 
7. E. Biham and O. Dunkelman. The shavite-3 hash function. Submission to NIST 

(Round 02), 2009. 
8. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp

tion Standard. Springer Verlag, Berlin, Heidelberg, New York, 2002. 
9. T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A Survey of 

Lightweight Cryptography Implementations, November/December 2007. 
10. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, 

M. Schlffer, and S. S. Thomsen. Grøstl – a SHA-3 candidate. Submission to 
NIST, 2008. 

11. D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amundsen, and S. F. 
Mjolsnes. Cryptographic hash function blue midnight wish. Submission to NIST 
(Round 2), 2009. 

12. S. Indesteege. The lane hash function. Submission to NIST, 2008. 
13. NIST. Announcing Request for Candidate Algorithm Nominations for a New Cryp

tographic Hash Algorithm (SHA3) Family. Federal Register / Vol. 72, No. 212 / 
Notices, November 2007. 

14. R. S. Winternitz. A secure one-way hash function built from des. In IEEE Sym
posium on Security and Privacy, pages 88–90, 1984. 

10 

http://cr.yp.to/chacha.html
http://www
http://www.atmel.com/products/SecureAVR

