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Abstract. Four out of the 14 second round candidates of the NIST SHA-3 cryptographic hash algo
rithm competition are so-called AES-inspired algorithms which share common structure and features 
with AES or even use it as a subroutine. This paper focuses on two of them, Fugue and Grøstl, and 
studies how efficiently logic can be shared in implementations combining them with AES. It will be 
shown that adding AES into the data paths is cheap both in terms of area and delay and, consequently, 
combined implementations are feasible in practice. Especially Grøstl achieves very small overheads. 
Such implementations have importance in a large variety of applications because they offer high-speed 
computations of a cryptographic hash algorithm and a block cipher with an area cost that is only slightly 
larger than a hash algorithm implementation alone. The paper presents methods to embed AES com
putation(s) into the data paths of both Fugue and Grøstl and presents prototype implementations on 
an Altera Cyclone III FPGA. 

1 Introduction 

Certain candidate algorithms submitted to the SHA-3 competition are AES-inspired meaning that their 
design has been strongly influenced by the design of AES [1]: they share common structure and features or 
even use AES as a subroutine. AES-inspired algorithms in the second round of the competition are ECHO [2], 
Fugue [3], Grøstl [4], and SHAvite-3 [5]. They offer a unique opportunity to design implementations that 
share most of the resources (silicon area, programmable logic resources, program code, etc.) between AES 
and a hash algorithm and consequently provide both algorithms with significantly fewer resources. This paper 
studies resource sharing from the hardware point-of-view and presents several prototype implementations on 
a field-programmable gate array (FPGA). 

ECHO and SHAvite-3 use AES directly as a subroutine. Therefore, they can support plain AES com
putations with negligible overheads. Grøstl and Fugue, on the other hand, are only inspired by AES: they 
share common structure and features with AES, but do not use it directly. It is, therefore, uncertain how 
easily support for AES could be added and how much overhead it would introduce into area requirements 
and computation delays. In this paper, we show that both of them (and, especially, Grøstl) can be efficiently 
combined with AES. Implementations of Fugue have been introduced in [3, 6] and Fugue has been shown 
to provide good performance with area requirements which are smaller than for most other candidates [6]. 
Implementations of Grøstl have been more intensively studied and they are available in [4, 6–10]. Grøstl 
has been shown to scale to both low-cost [10] and high-throughput [6, 9] applications. Studies comparing 
candidates have shown that Grøstl offers a good balance between area and speed [6, 7, 9, 10]. Grøstl offers 
faster performance than Fugue, but requires more area [6]. None of the papers discussed combining Fugue 
or Grøstl with AES and this is the first paper studying this issue for any of the SHA-3 candidates. 

Sharing the data path between two or more cryptographic algorithms is not a new idea. Combined 
architectures have been presented for MD5 and SHA-1 in [11–13], for MD5 and RIPEMD-160 in [14], and 
for MD5, SHA-1, and RIPEMD-160 in [15]; i.e., all the above work has shared the data path of two or more 
cryptographic hash algorithms into one compact design. However, it would be of much greater relevance to 
have a compact, high-performance combined implementation of a block cipher and a cryptographic hash 
algorithm because then two truly different functionalities could be offered at once. It would be even more 
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important if both algorithms would be widely used in many applications—something that AES already is 
and SHA-3 will most likely become. 

Previous efforts to provide support for cryptographic hash algorithms and block ciphers with a single 
design are generic cryptoprocessors, such as, Cryptonite [16] or CryptoManiac [17], or instruction set 
extensions for cryptography, e.g., in [18]. Because of the generality of such designs, their performance and 
area requirements are necessarily worse than the ones of algorithm-specific implementations, such as the 
ones that will be described in this paper. 

Intel is including an AES instruction set extension in the Intel Core family processors starting from the 
beginning of 2010 [19]. The adaptability of these instructions for AES-inspired SHA-3 candidates was recently 
studied in [20] where they concluded that ECHO and SHAvite-3, which use AES directly as a subroutine, 
are the only second round candidates that are likely to benefit from the instruction set extension. Grøstl 
and Fugue’s designs were stated to be “too distant” to be able to take advantage from it [20]. However, we 
shall see in this paper that the differences between the data paths of AES, Fugue, and Grøstl are minor and, 
as a consequence, it could be possible to incorporate support for Fugue or Grøstl into AES instruction set 
extensions with reasonable overheads. 

The remainder of the paper builds up as follows. Section 2 presents AES, Fugue, and Grøstl. Sections 3 
and 4 discuss the similarities and differences of AES with Fugue and Grøstl, respectively, together with 
methods to combine the algorithms. Architectures based on the findings are introduced in Sect. 5 and 6 and 
implementation results on an Altera Cyclone III FPGA are provided in Sect. 7. Section 8 ends the paper 
with comparisons of the implementations, discussion about the consequences of the findings, and suggestions 
for future work. 

2 Algorithms 

This section describes the three algorithms studied in the paper. Some details considered unrelevant for this 
paper are omitted in order to keep the discussion clear; interested readers are referred to the standard [1] 
and the submission documents [3, 4] for details. 

The algorithms have several variants. AES can use either 128-bit, 192-bit, or 256-bit keys and the variants 
are called AES-128, AES-192, or AES-256 depending on the key length. Fugue and Grøstl both come with 
four variants: Fugue-224, Fugue-256, Fugue-384, Fugue-512, Grøstl-224, Grøstl-256, Grøstl-384, and Grøstl
512 where the values denote the lengths of the hashes. Again, in order to keep the discussion clear, we focus 
on specific variants: AES-128 (128-bit key), Fugue-256, and Grøstl-256 (256-bit hashes). In the following, 
Fugue refers to Fugue-256, Grøstl to Grøstl-256, and AES to AES-128 unless explicitly stated otherwise. 
Most of the ideas can be straightforwardly generalized to the other variants. 

2.1 Advanced Encryption Standard (Rijndael) 

AES encrypts messages in 128-bit blocks with a 128-bit encryption key K. Each block is encrypted by 
iterating a round transformation 10 times. Each round involves a 128-bit round key, k, derived from K 
with KeyExpansion routine. A block is represented as a 4 × 4 matrix of bytes called the State. Each byte is 

4 3interpreted as an element of the finite field GF (28) : GF (2)[x]/x8 +x +x +x+1. The round transformation 
consists of the following transformations: 

SubBytes handles each byte b of the State separately. It consists of two steps: (1) a multiplicative inverse 
in GF (28) (00 maps to itself) and (2) an affine transformation defined by b′ = b(i+4) mod 8 + b(i+6) mod 8 +i 

b(i+7) mod 8 + ci, where bi is the ith bit of the byte b and c = 63. 

ShiftRows shifts the rows of the State cyclically to the left by i bytes, where 0 ≤ i ≤ 3 is the index of the 
row; i.e., the first row is not shifted, the second is shifted by one byte, the third by two, and the last by 
three. 

MixColumns operates each column of the State separately. A column is interpreted as a polynomial over 
GF (28) and multiplied modulo x4 +1 with the polynomial 03x3 +01x2 +01x+02. MixColumns can be seen 
as a matrix multiplication where a 4-byte vector (the column) is multiplied with a 4× 4 matrix from the left 
(the matrix is given in (3) in Sect. 3.2). MixColumns is omitted in the last round. 
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AddRoundKey adds a roundkey to the State with a bitwise exclusive-or (xor). 

KeyExpansion derives 128-bit round keys from the encryption key. The expansion is carried out iteratively. 
Four bytes of the previous 128-bit round key are mapped with SubBytes and a round constant, 02i where 
i is the round index, is xorred to one of these bytes. The bytes are then shifted by one byte, after which a 
new round key is obtained with four 32-bit xors. The reader is referred to [1] for more details. 

2.2 Fugue 

Fugue-256 generates a 256-bit hash H for a message M which is first padded (see [3] for details) and split 
into t 32-bit blocks mi. Fugue-256 uses a 960-bit chaining value, h, which is initialized with an initial value 
h0 = iv and split into 32-bit words Si where 0 ≤ i ≤ 29. Then, h is updated for each mi with the following 
transformation sequence: TIX, ROR3, CMIX, SMIX, ROR3, CMIX, and SMIX (see below for details), of 
which the AES-inspired SMIX transformation is by far the most complex transformation. 

When all mi have been processed, the computation ends with a final round consisting of the following 
transformations: ROR3, CMIX, SMIX, ROR15, ROR14, and 32-bit bitwise xors. Most notably, SMIX is 
applied 36 times during this sequence. Finally, H is constructed as S1|S2|S3|S4|S15|S16|S17|S18. Next, the 
aforementioned transformations are discussed with more details. 

TIX and CMIX are both sequences of 32-bit bitwise xors. TIX is the following sequence of operations: 
S10 = S10 ⊕ S0, S0 = mi, S8 = S8 ⊕ S0 = S8 ⊕ mi, and S1 = S1 ⊕ S24. CMIX performs the following xors: 
S0 = S0 ⊕ S4, S1 = S1 ⊕ S5, S2 = S2 ⊕ S6, S15 = S15 ⊕ S4, S16 = S16 ⊕ S5, and S17 = S17 ⊕ S6. 

ROR3, ROR14, and ROR15 rotate the 32-bit words of the chaining value to the right by as many 
positions as described in the name: Si = S(i−r) mod 30 where r is 3, 14, or 15 for ROR3, ROR14, and ROR15, 
respectively. 

SMIX updates the first 128 bits of h, i.e., S0 . . . S3, in two steps. The first step is SubBytes of AES: 
each byte is mapped with a multiplicative inverse in GF (28) followed by the affine transformation. The 
second step called Super-Mix is inspired by MixColumns of AES. However, it differs from MixColumns so 
that MixColumns handles each column separately whereas Super-Mix introduces cross-mixing between the 
columns. Similarly as MixColumns, also Super-Mix can be seen as a matrix multiplication: a 16-byte vector 
(S0| . . . |S3) is multiplied from the left with a 16 × 16 matrix (the matrix is given in (4) in Sect. 3.2). 

2.3 Grøstl 

Grøstl-256 generates a 256-bit hash H for a message M with a compression function f . M is padded (see [4] 
for details) and split into t 512-bit message blocks mi. The function f updates a 512-bit chaining value h 
(with an initial value h0 = iv) by iterating hi ← f(hi−1, mi) for i = 1, . . . , t. The compression function f is 
constructed from two permutations, P and Q, as follows: 

f(h, m) = P (h⊕ m)⊕ Q(m)⊕ h . (1) 

When f has been applied to all t message blocks, H is obtained with an output transformation Ω in the 
following way: 

H = Ω(h) = trunc256(P (h)⊕ h) (2) 

where trunc256 returns the rightmost 256 bits of its input. 
As shown above, the core of Grøstl is formed by the P and Q permutations. They are strongly influenced 

by the design of AES. P and Q are almost identical and the following description applies to both of them 
unless explicitly stated otherwise. The 512-bit inputs of the permutations are represented as an 8× 8 matrix 
of bytes, called the State, and each byte is, again, interpreted as an element of GF (28). The permutations 
are performed by applying a round transformation 10 times. The round transformation consists of four 
transformations which are described below: 

AddRoundConstant adds (xor) a round-dependent constant to the State. The constant is i 00 . . . 00 for 
the P permutation and 00 0000 00 00 00 00 (i⊕ ff) 00 . . . 00 for the Q permutation, where i is the index of the 
round. 
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SubBytes is similar to SubBytes of AES. The only exception is that Grøstl has a 512-bit State and, 
therefore, SubBytes operates on 64 bytes instead of 16 as in AES. 

ShiftBytes is also principally the same operation as ShiftRows in AES: again, a row is shifted cyclically to 
the left by i bytes. The difference is that there are eight rows. 

MixBytes operates on each column of the State separately. A column is interpreted as a polynomial over 
GF (28) and multiplied modulo x8+1 with the polynomial 02x7+03x6+04x5+05x4+03x3+05x2+07x+02. 
The matrix for the matrix multiplication is given in (5) in Sect. 4.4. 

3 Observations: Fugue 

In the following, we focus on SMIX because it is the only AES-inspired part of Fugue. A natural way to 
implement SMIX is to use a 128-bit data path which we will discuss in the following. 

3.1 SubBytes 

SubBytes can be shared between AES and Fugue’s SMIX without any modifications. This is a major advan
tage because SubBytes is the most significant contributor to both area requirements and critical path delay 
of a typical AES [21] or Fugue [3] implementation. 

3.2 Super-Mix and MixColumns 

As mentioned, MixColumns and Super-Mix can be represented as a matrix multiplication B× A where A is 
either the 4-byte column or the 16-byte vector, S0|S1|S2|S3, for AES and Fugue, respectively. In the case of 
AES, B is the following 4× 4 matrix: 

⎡ ⎤ 
02 03 01 01 

⎢ ⎥01 02 03 01 
⎢ ⎥BAES = .	 (3) 
⎣	01 01 02 03 ⎦ 

03 01 01 02 

Super-Mix of Fugue employs the following 16× 16 matrix: 
⎡	 ⎤ 

01 04 07 01 01 00 00 00 01 00 00 00 01 00 00 00 
⎢	 ⎥00 01 00 00 01 01 04 07 00 01 00 00 00 01 00 00 
⎢	 ⎥ 
⎢	 ⎥00 00 01 00 00 00 01 00 07 01 01 04 00 00 01 00 
⎢	 ⎥ 
⎢	 ⎥00 00 00 01 00 00 00 01 00 00 00 01 04 07 01 01 
⎢	 ⎥ 
⎢	 ⎥00 00 00 00 00 04 07 01 01 00 00 00 01 00 00 00 
⎢	 ⎥ 
⎢	 ⎥00 01 00 00 00 00 00 00 01 00 04 07 00 01 00 00 
⎢	 ⎥ 
⎢	 ⎥00 00 01 00 00 00 01 00 00 00 00 00 07 01 00 04 
⎢	 ⎥ 
⎢	 ⎥04 07 01 00 00 00 00 01 00 00 00 01 00 00 00 00 
⎢	 ⎥

BS-Mix = 
⎢	 ⎥ . (4) 
⎢ 00 00 00 00 07 00 00 00 06 04 07 01 07 00 00 00 ⎥ 
⎢	 ⎥ 
⎢ 00 07 00 00 00 00 00 00 00 07 00 00 01 06 04 07 ⎥ 
⎢	 ⎥ 
⎢ 07 01 06 04 00 00 07 00 00 00 00 00 00 00 07 00 ⎥ 
⎢	 ⎥ 
⎢ 00 00 00 07 04 07 01 06 00 00 00 07 00 00 00 00 ⎥ 
⎢	 ⎥ 
⎢	 ⎥00 00 00 00 04 00 00 00 04 00 00 00 05 04 07 01 
⎢	 ⎥ 
⎢	 ⎥01 05 04 07 00 00 00 00 00 04 00 00 00 04 00 00 
⎢	 ⎥ 
⎣ 00 00 04 00 07 01 05 04 00 00 00 00 00 00 04 00 ⎦ 

00 00 00 04 00 00 00 04 04 07 01 05 00 00 00 00 

Clearly, it is possible to represent the four independent column operations computed in MixColumns of AES 
as a single matrix multiplication. In that case, the resulting 16×16 matrix is such that its diagonal consists of 
four BAES matrices and the other elements are zeros. Comparing this matrix to (4) reveals that four elements 
are the same in these matrices (bolded in (4)) and, consequently, they can be shared in an implementation. 
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3.3 ShiftRows 

SMIX does not have an operation that would relate to ShiftRows of AES. Because SubBytes targets to 
individual bytes, ShiftRows can be performed either before or after SubBytes. The superiority of these two 
cases is highly platform dependent. In the first case, we either rearrange the bytes (AES) or do nothing 
(Fugue) before SubBytes. In the second case, it would be natural to embed ShiftRows into the combined 
Super-Mix and MixColumns transformation; i.e., we constuct the 16× 16 matrix performing the four column 
operations of MixColumns so that it performs also ShiftRows. Unfortunately, this results in a situation where 
no elements can be shared in an implementation between MixColumns and Super-Mix (cf. Sect. 3.2). 

3.4 KeyExpansion 

The above discussion considered only the main data path of AES, but each round also requires a round key 
from KeyExpansion. There are essentially two options to provide the round keys: (1) they are input into the 
data path from an external source or (2) their computation is embedded into the data path itself. 

The option (1) is trivial: either KeyExpansion is computed simultaneously with an external circuitry or 
the round keys are stored into memory before the computation from where the correct round key is fetched 
for each round. Both of these alternatives are used in numerous AES implementations and they can be 
directly adapted to a combined AES and Fugue (or Grøstl) implementation; hence, we do not discuss this 
option further. 

The option (2) reuses the resources of SMIX data path for KeyExpansion. The heaviest operation in 
KeyExpansion is SubBytes transformation applied to four bytes and this can be shared entirely by utilizing 
SubBytes needed in both AES and SMIX. This option is discussed further in Sect. 5.3 after presenting the 
architecture of the data path. 

4 Observations: Grøstl 

Although Grøstl is defined almost identically to AES, AES implementations or instructions cannot be directly 
utilized in implementing Grøstl [20]. The difficulties originate from the facts that ShiftBytes and MixBytes 
differ slightly from ShiftRows and MixColumns and the States have different sizes. 

Grøstl can be efficiently implemented using 512-bit data path and registers [4, 6–9]. Therefore, it is 
tempting to ask whether the data path and registers could be shared so that they would enable four parallel 
AES encryptions, each having 128-bit data path and registers. In the following, we shall concentrate on this 
possibility because support for fewer parallel encryptions can be easily derived from it by dropping out logic 
of some encryptions. 

4.1 States 

The most straightforward way of fitting four AES States into one Grøstl State would be to simply concatenate 
the four 128-bit States: m1|m2|m3|m4. In this case, one AES State would occupy two columns of the Grøstl 
State. This approach would complicate the combination of ShiftBytes and ShiftRows and, hence, we use the 
following representation. 

Let mi,j denote the jth 32-bit word of mi so that mi,1 is the most significant (the leftmost) word 
and mi,4 is the least significant (the rightmost) word. The message blocks are then concatenated as fol
lows: m1,1|m2,1|m1,2|m2,2|m1,3|m2,3| m1,4|m2,4|m3,1|m4,1|m3,2|m4,2|m3,3|m4,3|m3,4|m4,4. Now, m1 forms the 
upper-left corner, m2 the lower-left corner, m3 the upper-right corner, and m4 the lower-right corner of the 
8× 8 matrix. This setup is depicted in Fig. 1a. 

4.2 SubBytes 

SubBytes can be shared between AES and Grøstl without any modifications. This is, again, a major advantage 
because SubBytes plays a major role also in Grøstl implementations [7]. 
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(a)	 (b) 

Fig. 1: Merge of ShiftBytes and ShiftRows. (a) Four AES States (shown in different shades of gray) fit into one Grøstl 
State; bytes of the leftmost columns of the AES States are highlighted with X. (b) States after applying ShiftBytes; 
the arrows denote the 12 swaps required to construct four parallel ShiftRows (the two lower States swap positions). 

4.3 ShiftBytes and ShiftRows 

Although both ShiftBytes and ShiftRows rotate the row i by i bytes, the differences in the sizes of the States 
complicate combining these transformations. Applying ShiftBytes to four AES States moves parts of the 
States on the left into the regions of the States on the right, and vice versa; see Fig. 1b. Hence, 16 byte 
swaps are necessary in order to restore the original setup where the four AES States occupy the corners of 
the Grøstl State matrix: 6 byte swaps for the upper half and 10 for the lower half. However, if we allow 
the two States in the lower half to swap positions, only 12 byte swaps are needed (six for both halves). 
The order of the States is correct in the end of an encryption because AES (also AES-192 and AES-256) 
consists of an even number of rounds; hence, ShiftRows is applied an even number of times. Fig. 1b shows 
this construction. 

4.4 MixBytes and MixColumns 

The matrix multiplication performing MixBytes multiplies an 8-byte vector A with the following 8×8 matrix: 
⎡	 ⎤ 
02 02 03 04 05 03 05 07 

⎢	 ⎥07 02 02 03 04 05 03 05 
⎢	 ⎥ 
⎢	 ⎥05 07 02 02 03 04 05 03 
⎢	 ⎥ 
⎢	 ⎥03 05 07 02 02 03 04 05 
⎢	 ⎥BGrøstl = .	 (5) 
⎢	 ⎥05 03 05 07 02 02 03 04 
⎢	 ⎥ 
⎢	 ⎥04 05 03 05 07 02 02 03 
⎢	 ⎥ 
⎣	03 04 05 03 05 07 02 02 ⎦ 

02 03 04 05 03 05 07 02 

Because one column of the 8 × 8 matrix includes two columns from two different AES States, the matrix 
BAES is extended to perform two column operations simultaneously (cf. Sect. 3.2 where the matrix was 
extended to perform four column operations): 

⎡	 ⎤ 
02 03 01 01 00 00 00 00 

⎢	 ⎥01 02 03 01 00 00 00 00 
⎢	 ⎥ 
⎢	 ⎥01 01 02 03 00 00 00 00 
⎢	 ⎥ 
⎢	 ⎥03 01 01 02 00 00 00 00 
⎢	 ⎥BAES, ext. =	 . (6) 
⎢	 ⎥00 00 00 00 02 03 01 01 
⎢	 ⎥ 
⎢	 ⎥00 00 00 00 01 02 03 01 
⎢	 ⎥ 
⎣	00 00 00 00 01 01 02 03 ⎦ 

00 00 00 00 03 01 01 02 

Ten elements (bolded in (6)) are the same also in BGrøstl and, hence, they can be shared in an implementation. 
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4.5 KeyExpansion 

As discussed in Sect. 3.4, there are essentially two options to provide the round keys: (1) they are provided 
from an external source or (2) the data path is reused for KeyExpansion. The option (2) is especially 
attractive in the case of Grøstl. In Sect. 4.1, we placed four AES States into a Grøstl State. If KeyExpansion 
is embedded into the data path, we dedicate either one or two of these slots for the round key(s) and, 
consequently, the number of parallel AES computations decreases to three or two, respectively. In the first 
case, all three AES computations share a common key whereas both computations can have different keys 
in the second case. This option is discussed further in Sect. 6.3. 

5 Implementations: Fugue 

The observations of Sect. 3 can be exploited (with minor modifications) in implementations with different 
data path widths, but in the following we shall consider the simplest case: the 128-bit data path for SMIX. 
Fig. 2a presents the high-level architecture and Fig. 2b shows the 128-bit main data path (SMIX). 

5.1 High-level Architecture 

The high-level architecture shown in Fig. 2a includes the main data path (Fig. 2b), a register for h, logic 
for the simple transformations, and a multiplexer for selecting the inputs for the data path. The control 
signals (select signals for multiplexers) are omitted for clarity. The architecture has a 128-bit input interface 
and it returns an 288-bit output instead of the 32-bit input and 256-bit output of a straightforward Fugue 
implementation. 

Fugue requires two clock cycles for every 32-bit mi. TIX, ROR3, CMIX, and SMIX transformations are 
computed during the first clock cycle and ROR3, CMIX, and SMIX during the second. When all mi have 
been processed ROR3, CMIX, and SMIX are iterated 10 times after which XOR1, ROR15, and SMIX and 
XOR2, ROR14, and SMIX are both iterated 13 times. The hash H is in the most significant 256 bits of the 
output: S1| . . . |S4|S15| . . . |S18 (S4 and S15 are updated with xors of the XOR1 block). 

AES computation starts by setting the register to zero and by selecting m ⊕ K as the input, where K 
is the encryption key. The result is returned after the data path has been iterated ten times (by using the 
multiplexer’s second input from the right). The AES-related inputs of the multiplexer are arranged so that 
they perform ShiftRows. The encrypted message is in the least significant 128 bits of the output: S0| . . . |S3. 

5.2 The Data Path 

The 128-bit data path shown in Fig. 2b implements the round transformations of AES and Fugue’s SMIX. 
Each signal in Fig. 2b represents one byte. Bytes are ordered column-wise so that the first column of the 
AES State is on the left. The data path operates from top to bottom as follows. 

SubBytes is computed with 16 S-boxes and the transformation is the same for both AES and Fugue. 
Implementation of SubBytes mostly determines the efficiency of AES implementations and, consequently, 
a lot of work has been devoted for optimizing it. In the implementations of this paper, SubBytes uses the 
composite field S-boxes from [22], but all other implementation options could be used without touching the 
other parts of the data path. 

Super-Mix and MixColumns are implemented in two steps. Bytes are first fed into a multiplication 
layer which multiplies bytes bi with 02, 03, 04, 05, 06, and 07, as shown in (3) and (4), using bitwise xors 
and xtime-blocks. An xtime-block multiplies a byte with x (02) in GF (28). The results, together with 00 
and bi, are routed through the shift net to the xor layer. The xor layer computes the result of the matrix 
multiplication with sixteen xor trees. The inputs to the xor trees are selected with multiplexers. For example, 
the xor tree of the leftmost byte computes 01b0 ⊕ 04b1 ⊕ 07b2 ⊕ 01b3 ⊕ 01b4 ⊕ 01b8 ⊕ 01b12 for Fugue and 
02b0 ⊕ 03b1 ⊕ 01b2 ⊕ 01b3 for AES. The multiplexers corresponding to the bolded values in (4) were removed 
because the values are the same for both AES and Fugue. Multiplexers are used also in the end for selecting 
whether the transformations are performed or not. The latter case is needed only for the last round of 
AES which omits MixColumns. The implementation of Super-Mix and MixColumns is analogous to the 
implementation of MixBytes and MixColumns which is discussed in Sect. 6.2 and depicted in Fig. 5. 
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Fig. 2: (a) High-level architecture of the combined AES and Fugue implementation; (b) 128-bit data path combining 
AES and Fugue’s SMIX. 

AddRoundKey is implemented with the xors in the bottom of Fig. 2b. Each byte of the round key, k, is 
xorred with the corresponding byte of the State. The key is set to k = 00 . . . 00 when the data path computes 
Fugue. 

5.3 KeyExpansion in the Data Path 

This section decribes how KeyExpansion can be embedded into the data path. The round key computation 
uses SubBytes for four bytes (see Sect. 2.1) which can be shared with the combined AES and Fugue data path. 
The remaining of the round key computation differs significantly: the combined AES and Fugue data path 
performs Super-Mix or MixColumns whereas KeyExpansion adds a round constant, performs byte shifts, 
and computes four 32-bit xors. Hence, the logic is not shared beyond SubBytes. It is, however, noteworthy 
that the majority of resources used in KeyExpansion are for SubBytes. The round key is stored in h in 
S4| . . . |S7 (the AES State is in S0| . . . |S3) and it is routed to the k input of the data path shown in Figs. 2a 
and 2b. AES encryption proceeds so that, first, one computes the round key with KeyExpansion and, then, 
the round using that round key. Hence, the latency of encryption doubles from ten to twenty clock cycles 
compared to the case where round keys are provided by an external source. 

6 Implementations: Grøstl 

Also in this case, the observations of Sect. 4 can be exploited (with minor modifications) in implementations 
with different data path widths, but in the following we shall consider the simplest case: the 512-bit data 
path. 

Fig. 3 presents the high-level architecture. The 512-bit main data path is depicted in Fig. 4 and the 
combined MixBytes and MixColumns is given in Fig. 5. 
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Fig. 4 

Fig. 3: High-level architecture of the combined AES and Grøstl implementation. 

6.1 High-level Architecture 

The high-level architecture shown in Fig. 3 includes the main data path (Fig. 4), a register for h, xors, and 
multiplexers for selecting the inputs for the data path. 

Grøstl computation starts with P (h⊕ m), i.e., the input h⊕ m is selected with the multiplexers, where 
h is the initialization vector (h0) or the hash value from the previous iteration. When all 10 rounds have 
been computed by selecting the output of the data path with the multiplexer, the result is added to the 
register (P (h⊕ m)⊕ h). The computation proceeds with Q(m) and the final result is stored to the register 
(P (h⊕ m)⊕ Q(m)⊕ h). If the last message block has been processed, Ω is computed: P (h⊕ 0)⊕ h and the 
result is in the register. 

AES computation starts by setting the register to zero and by selecting m ⊕ K as the input. The result 
is returned after the data path has been iterated ten times. 

6.2 The Data Path 

The 512-bit data path shown in Fig. 4 implements the round transformations of AES and Grøstl. Each signal 
in Fig. 4, again, represents one byte and they are ordered so that the first column of the Grøstl State is on 
the left and the last on the right. AES States fold as presented in Fig. 1a. The data path operates from top 
to bottom as follows. 

AddRoundConstant is implemented with the two xors and multiplexers on the upper-left corner of Fig. 4. 
The one on the left adds the round index i and, consequently, implements AddRoundConstant of the P 
permutation. The one on the right adds i⊕ ff and it is used for the Q permutation. Selecting the right input 
of the multiplexer skips AddRoundConstant transformation for that byte. 

SubBytes is computed with 64 S-boxes and the transformation is the same for both AES and Grøstl. We 
use S-boxes introduced in [22] also in this case. 

ShiftBytes and ShiftRows are implemented as presented in Sect. 4.3. The 12 byte swaps needed to restore 
the AES States are performed with 24 multiplexers below the shift net; the left inputs of the multiplexers 
are for Grøstl and the right inputs for AES. 

MixBytes and MixColumns are implemented as depicted in Fig. 5. Bytes are first fed into a multiplication 
layer which multiplies each byte bi with 02, 03, 04, 05, and 07 using bitwise xors and xtime-blocks. The results, 
together with 00 and bi, 0 ≤ i ≤ 7, are routed through the shift net to the xor layer. The xor layer computes 
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Fig. 4: 512-bit data path combining AES and Grøstl. 

the result of the matrix multiplication with eight eight-to-one byte xor trees. The inputs to the xor trees 
are selected with the multiplexers: the left input is for Grøstl and the right input for AES. The rightmost 
xor tree, for instance, computes 02b0 ⊕ 03b1 ⊕ 04b2 ⊕ 05b3 ⊕ 03b4 ⊕ 05b5 ⊕ 07b6 ⊕ 02b7 for Grøstl (with the 
left inputs) and 00b0 ⊕ 00b1 ⊕ 00b2 ⊕ 00b3 ⊕ 03b4 ⊕ 01b5 ⊕ 01b6 ⊕ 02b7 = 03b4 ⊕ 01b5 ⊕ 01b6 ⊕ 02b7 for 
AES (with the right inputs). The multiplexers corresponding to the bolded values in (6) were removed; this 
saves 10 multiplexers. The multiplexers in the bottom are used for selecting whether the transformations are 
performed or not. 
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Fig. 5: Combined MixBytes and (two) MixColumns transformations. 

AddRoundKey is implemented with the xors in the end of Fig. 4 where each byte is depicted separately 
(cf. Fig. 2b) in order to highlight how the same key is used for the parallel encryptions. The roundkey, k, is 
input from the left and each byte of the State is xorred with the corresponding byte of k. In Fig. 4, a single 
128-bit round key is used for all four AES encryptions. However, the data path can be changed to support 
different keys for different encryptions without increasing the critical path (one xor). The key input is set to 
k = 00 . . . 00 when the data path computes Grøstl. 

6.3 KeyExpansion in the Data Path 

This section describes how KeyExpansion is embedded into the data path by replacing one (or two) encryp
tions from the data path; hence, KeyExpansion is computed in parallel with the encryptions and it does not 
increase the latency of encryption. Also in this case, the round key computation uses SubBytes for four bytes 
(see Sect. 2.1) which can be shared with the Grøstl data path. The remaining of the round key computation 
differs significantly: Grøstl performs ShiftBytes and MixBytes transformations whereas KeyExpansion adds 
round constant, shifts bytes, and computes four 32-bit xors. Consequently, sharing resources beyond Sub-
Bytes would, again, be complicated; hence, other parts of KeyExpansion are computed with logic that is not 
shared with Grøstl. When the round key is ready, it is routed to AddRoundKey transformation of the three 
(or two) AES encryptions and stored to the register (e.g., into the upper-left (and upper-right) corner(s) of 
the State). 

7 Results 

The following eight designs were implemented based on the above described architectures. 

fugue is the reference design of Fugue. It implements Fugue with an architecture and a data path similar 
to the ones described in Sect. 5.1 and 5.2, but without the support for AES. The implementation is 
comparable with the implementations presented in [3, 6]. This design is used for measuring the overheads 
of adding AES into the Fugue data path. 

fugue aes implements Fugue and AES encryption with the same data path. The design implements the 
architecture presented in Sect. 5.1 and 5.2. exactly as depicted in Figs. 2a and 2b. 

fugue aes ke implements Fugue, AES encryption, and KeyExpansion with the same data path. The design 
implements the architecture presented in Sect. 5.1 and 5.2 with the modifications described in Sect. 5.3. 

groestl is the reference design of Grøstl. It implements Grøstl with an architecture and a data path similar 
to the ones described in Sect. 6.1 and 6.2, but without the support for AES. The implementation is 
comparable with the FPGA implementations presented in [4, 7, 8]. This design is used for measuring the 
overheads of adding AES into the Grøstl data path. 
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groestl aes implements Grøstl and one AES encryption with the same data path. The design implements 
the architecture presented in Sect. 6.1 and 6.2 so that support for AES is included only for the upper-left 
corner; all other parts support only Grøstl and are similar to groestl. 

groestl aes ke implements Grøstl and one AES encryption with KeyExpansion in the data path. The 
design implements the architecture presented in Sect. 6.1 and 6.2 with the modifications described in 
Sect. 6.3. KeyExpansion and the AES State are placed into the upper-left and upper-right corners of the 
Grøstl State, respectively. 

groestl 4aes computes Grøstl and four parallel AES encryptions with the same data path. The design 
implements the architecture presented in Sect. 6.1 and 6.2 exactly as depicted in Fig. 3–5. The design 
does not have KeyExpansion and it is assumed that round keys are fed into the design from an external 
source. 

groestl 3aes ke implements Grøstl, three parallel AES encryptions with the same key, and KeyExpansion 
computing the round keys on-the-fly. The design implements the architecture presented in Sect. 6.1 
and 6.2 with the modifications described in Sect. 6.3. The key is input as a part of data in. 

All designs were fit into the same 32-bit interface in order to make them compatible with the NIOS II 
(Altera’s soft core processor) component interface. The designs were written in VHDL, simulated with 
ModelSim-Altera 6.5b, and synthesized for an Altera Cyclone III EP3C80F780C7 FPGA with Quartus II 9.1. 
The post-place&route results are collected in Tables 1 and 2, respectively for Fugue and Grøstl, together 
with performance values for both algorithms. 

Table 1: Fugue results on Altera Cyclone III 

fugue fugue aes fugue aes ke
 

Post-place&route results 

Logic cells (LC) 3562 4520 (+26.9 %) 4875 (+36.9 %) 
Registers 1005 1105 (+10.0 %) 1113 (+10.7 %) 
fmax (MHz) 63.93 60.75 (−5.0%) 59.81 (−6.4 %) 

Fugue performance 

Latency (clock cycles) 2 2 2 
Throughput (Gbps) 1.023 0.972 0.957 

AES performance 

Latency (clock cycles) – 10 20
 
Throughput (Gbps) – 0.778 0.383
 

Throughputs represent the theoretical maximum: they are computed using fmax and assume that there 
are no additional interfacing delays and that all parallel AES computations are always active. For Fugue 
and Grøstl, the latencies and throughput values exclude the final round and the output transformation, Ω, 
which require 36 clock cycles and 11 clock cycles for Fugue and Grøstl, respectively. Hence, the maximum 
throughputs are valid for long messages only (the final round and Ω are insignificant). 

8 Discussion 

8.1 Comparison 

The implementations show that adding one AES encryption into the data path is relatively cheap for both 
Fugue and Grøstl. The decreases in maximum clock frequencies are of the same magnitude for both algo
rithms. Area increase is smaller for Grøstl where adding one AES encryption costs approximately 300 LCs 
(or 2.5%). The same value for Fugue is approximately 1000 LCs (or 26.9%). For both algorithms the ability 
to share SubBytes with AES gives the most significant advantages because SubBytes is the main contributor 
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Table 2: Grøstl results on Altera Cyclone III 

groestl groestl aes groestl aes ke groestl 4aes groestl 3aes ke
 

Post-place&route results 

Logic cells (LC) 12086 12387 (+2.5%) 12520 (+3.6 %) 13723 (+13.5 %) 13453 (+11.3 %) 
Registers 1547 1550 (+0.2%) 1558 (+0.7 %) 1550 (+0.2%) 1558 (+0.7 %) 
fmax (MHz) 57.52 54.13 (−5.9%) 55.79 (−3.0 %) 56.03 (−2.6%) 53.36 (−7.2 %) 

Grøstl performance 

Latency (clock cycles) 20 20 20 20 20 
Throughput (Gbps) 1.473 1.386 1.428 1.434 1.366 

AES performance 

Latency (clock cycles) 
Throughput (Gbps) 

– 
– 

10 
0.693 

10 
0.714 

10 
2.869 

10 
2.049 

to both area and delay. Adding support for KeyExpansion and parallel AES encryptions is considerably 
cheaper and easier for Grøstl because its wider data path can be extended to support these operations in a 
straightforward manner. This allows high throughputs (2.9Gbps) if several encryptions are performed with 
the same key. Adding KeyExpansion into the data path of Fugue halves the throughput of AES computa
tions compared to the option where round keys are provided by an external source. Supporting parallel AES 
encryptions is difficult because SMIX, the AES-inspired transformation of Fugue, has only a 128-bit data 
path. 

A straightforward iterative AES implementation with a 128-bit data path and KeyExpansion, which was 
implemented on the same FPGA, has area requirements of 2525 LCs and 527 registers (of which KeyExpan
sion takes 536 LCs and 136 registers). It runs on 65.56 MHz and receives a throughput of 839Mbps. Hence, 
it is clear that sharing resources with the data path of the hash algorithm gives significant area savings with 
only small drops in throughputs for both Fugue and Grøstl. 

As a cautionary note, we state that the Fugue and Grøstl implementations are not entirely comparable 
in the sense that they use different data path widths and, consequently, have signficantly different area 
requirements. However, the selected data path widths represent the most straightforward options for both 
algorithms. If, for example, we had implemented also Grøstl with a 128-bit data path, then one might argue 
that it gave an advantage for Fugue. Furthermore, implementations with different data path widths have 
been compared also in other works discussing hardware implementation of SHA-3 candidates; see, e.g., [6]. 

Both Fugue and Grøstl enjoy the advantage that AES can be efficiently supported in an implementation 
combining AES with the hash algorithm. This study suggests that Grøstl offers better combined implemen
tations than Fugue. This is mainly caused by the facts that Grøstl uses a wide data path and a register with 
the same width, which allow computing several AES encryptions (and KeyExpansions) in parallel, and that 
basically all transformations of Grøstl are inspired by the transformations of AES which ensures that simi
larities can be exploited throughout the architecture; cf. only SMIX is shared in Fugue. However, the results 
are for one specific implementation platform and for specific data path widths. Therefore, other researchers 
are encouraged to study resource sharing of the SHA-3 candidates and AES on different platforms (both 
hardware and software) and with different design options, because such combined implementations would 
have significance in many applications. 

8.2 Concluding Remarks 

It was concluded in [20] that Fugue and Grøstl cannot take advantage of Intel’s AES instruction set extension. 
In this respect, ECHO and SHAvite-3, which can take benefit of these instructions as such [20], have a clear 
advantage over the other candidates. However, in the light of this paper, it seems that it might be possible 
to add support for Fugue or Grøstl into various instruction set extension for AES, such as Intel’s one, with 
reasonable overheads if one of them gets selected as SHA-3. It is impossible to say exactly what kind of 
changes would be required because the technical implementation details of Intel’s AES instructions are not 
publically available. Nevertheless, this matter should be studied in the future. 
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The AES-inspired algorithms offer a unique opportunity to design custom hardware implementations 
that efficiently combine two different cryptographic functionalities into one design—something that has not 
been possible in this scale before. Even the combined implementations of MD5 and SHA-1 suffered from 
larger overheads than the implementations presented in this paper [12]. Hence, the possibility to efficiently 
combine a candidate with AES is an asset that should be taken into account when selecting SHA-3. 

This paper presented the very first steps to this direction and it is easy to see that there is a lot of room 
for further research. At least the following issues should be studied further: 

1. The applications, where the area constraints are strict, are likely to benefit the most from a combined 
implementation. Hence, it is of utmost importance to be able to reduce the footprint by using narrower 
data paths. Plenty of work has been done on reducing the footprint of AES, e.g. [23–25], and it would 
be interesting to study how those ideas could be combined with the ideas of this paper. 

2. This paper discussed only basic iterative architectures. Computation speed could be substantially in
creased with unrolling and pipelining. At the first sight, the principles presented in this paper should 
be fairly easily exploited in implementations utilizing unrolling and/or pipelining but, nevertheless, this 
should be studied more deeply. 

3. This paper discussed only certain variants of the algorithms. Adding support for other variants of AES 
encryptions is easy: only the number of rounds needs to be changed. However, KeyExpansion requires 
more significant changes; especially, more registers are needed for storing K. The ideas presented in this 
paper can be generalized for other variants of Fugue and Grøstl but the implementations may require 
significantly more area (especially, for Grøstl-384/512 because the size of the State doubles). Both Fugue
224 and Grøstl-224 can be supported with negligible changes. Adding support for AES decryption will 
be complicated because the designs of both Fugue and Grøstl are based on AES encryptions; e.g., Inv-
SubBytes cannot be efficiently shared with SubBytes used in Fugue and Grøstl. Consequently, the ideas 
and implementations presented in this paper are advantageous primarily for applications using modes of 
operations that use block cipher encryptions also for decrypting data, such as the counter mode [26]. The 
counter mode is one of the prime candidates for combined Grøstl and AES implementations also because 
it allows different message blocks to be encrypted and decrypted in parallel. Anyway, other researchers 
are encouraged to study generalizations of the ideas to other variants of the algorithms. 

4. Side-channel attacks are nowadays often regarded as the most serious threats against practical cryp
tosystems. This paper did not discuss countermeasures against side-channel attacks but it is clear that 
they deserve attention in the future. It seems likely that the vast amount of work done on side-channel 
countermeasures for AES could be utilized also in combined implementations of AES and AES-inspired 
hash algorithms. 
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