
A SAT-based preimage analysis of reduced
 
KECCAK hash functions
 

August 6, 2010 

Pawell Morawiecki1 and Marian Srebrny2 

1 Section of Informatics, University of Commerce, Kielce, Poland, 
pawelm@wsh-kielce.edu.pl 

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; 
and Section of Informatics, University of Commerce, Kielce, Poland; 

marians@ipipan.waw.pl 

Abstract. In this paper, we present a preimage attack on reduced ver­
sions of Keccak hash functions. We use our recently developed toolkit 
CryptLogVer for generating CNF (conjunctive normal form) which is 
passed to the SAT solver PrecoSAT [2]. We found preimages for some 
reduced versions of the function and showed that full Keccak function 
is secure against the presented attack. 

Key words: preimage attack, Keccak, satisfiability, algebraic crypt-
analysis, logical cryptanalysis, SAT solvers 

1 Introduction 

Keccak is a family of cryptographic hash functions submitted as a SHA-3 can­
didate. The security of a publicly known cryptographic algorithm is accepted if 
there is no known successful attack on it. Often some partial trust is addition­
ally based on some good statistical properties and reported failure of breaking 
attempts with some known methods, like differential or linear cryptanalysis. The 
recent hash function MD-6 [19] has also been tested, among other methods, with 
logical (SAT-based) analysis. 

SAT solvers can be used to solve problems typically described in Conjunctive 
Normal Form (CNF) into which any decision problem can be translated. Modern 
SAT solvers use highly tuned algorithms and data structures to quickly find 
a solution to a given problem coded in this very simple form. To solve your 
problem: (1) translate the problem to SAT (in such a way that a satisfying 
valuation represents a solution to the problem); (2) run the currently best SAT 
solver to find a solution. The propositional encoding formula can be thought of 
as a declarative program. One can treat the propositional calculus and the SAT 
solvers as a powerful programming environment that makes it possible to create 
and to run the propositional declarative programs for solving the encoded tasks. 

mailto:marians@ipipan.waw.pl


The hope you can get a solution relatively fast is based on the fact that the SAT 
solving algorithm is one of the best optimized. 

A SAT testing algorithm decides whether a given propositional (boolean) for­
mula has a satisfying valuation. SAT was the first known NP-complete problem, 
as proved by Stephen Cook in 1971. Finding a satisfying valuation is infeasible 
in general, but many SAT instances can be solved surprisingly efficiently. There 
are many competing algorithms for it and many implementations, most of them 
have been developed over the last two decades as highly optimized versions of 
the DPLL procedure of [7] and [8]. 

In this paper, we present a preimage attack on reduced versions of Keccak 
hash functions. We use our recently developed toolkit CryptLogVer for generat­
ing CNF (conjunctive normal form) which is passed to SAT solver PrecoSAT [2]. 

The paper is organized as follows. In section 2 we present a short description 
of Keccak family functions. Then a CNF generation method is given. In section 
3 the detailed attack scenario is described followed by our experimental results. 
Comparison to related work is indicated in section 7. The last section consists 
of some conclusion and future research. 

2 KECCAK — a brief description 

In this section we bring up only a brief description of Keccak to the extent 
necessary for understanding the attack described in this paper. For a complete 
specification we refer the interested reader to [14]. 

Fig. 1. Sponge Construction [21] 

Keccak is a family of hash functions which makes use of the sponge con­
struction. Figure 1 shows the construction. It has two main parameters r and c 

2 



which are called bitrate and capacity, respectively. The sum of those two makes 
the state size which Keccak operates on. For the SHA-3 proposal, the state 
size is 1600 bits. Different values for bitrate and capacity give trade-off between 
speed and security. The higher bitrate gives the faster function but less secure. 
Keccak proceeds in two phases. In the first phase (absorbing) the r-bit input 
message blocks are xored into the first r bits of the state, interleaved with ap­
plications of the function f (called Keccak-f in the specification). This phase is 
finished when all message blocks are processed. In the second phase (squeezing) 
the first r bits of the state are returned as hash bits, interleaved with applica­
tions of the function f . The phase is finished when the desired length of hash is 
produced. 

The default values for Keccak are r = 1024, c = 576 which gives 1600-bit 
state. However, Keccak can also operate on smaller states (25, 50, 100, 200, 400 
and 800-bit state). The state size determines the number of rounds in Keccak-f 
function. For a default 1600-bit state there are 24 rounds. In the experiments 
we often used reduced versions with smaller number of rounds. 

3 CNF formula generation 

One of the key steps in attacking cryptographic primitives with SAT solvers is 
CNF formula generation. Such a formula completely describes the primitive (or 
a segment of the primitive) which is the target of the attack. Generating it is a 
non-trivial task and usually is very laborious. There are many ways to obtain 
the final CNF and the output results differ in the number of clauses, the average 
size of clauses and the number of literals. Recently we have developed a new 
toolkit called CryptLogVer which greatly simplifies the creation of CNF. Here 
we describe only the main concepts. The detailed description of CryptLogVer 
will be published in a separate paper [17]. 

Usually a cryptanalist needs to put a considerable effort into creating the final 
CNF. It involves writing a separate program dedicated only to a cryptographic 
primitive under consideration. To make it efficient, some minimizing algorithms 
(Karnaugh maps, Quine-McCluskey algorithm or Espresso algorithm) have to 
be used. These are implemented in the program, or the intermediate results 
are sent to an external tool (e.g., Espresso minimizer) and then the minimized 
form is sent back to the main program. Implementing all of these procedures 
requires a good deal of programming skills, some knowledge of logic synthesis 
algorithms and careful insight into the details of the primitive’s operation. As a 
result, obtaining CNF might become the most tedious and error-prone part of 
any attack. It could be especially discouraging for researchers who start their 
work from scratch and do not want to spend too much time on writing thousands 
lines of code. 

To avoid those disadvantages we have recently proposed a new toolkit con­
sisting basically of two applications. First of them is Quartus II - a software 
tool released by Altera for analysis and synthesis of HDL (Hardware Description 
Language) designs, which enables the developers to compile their designs and 

3 



configure the target devices (usually FPGAs). We use a free-of-charge version 
Quartus II Web Edition which provides all the features that we need. The second 
application, written by us, converts boolean equations (generated by Quartus) 
to CNF encoded in DIMACS format (standard format for today’s SAT-solvers). 
The complete process of CNF generation includes the following steps: 

1. Code the target cryptographic primitive in HDL; 
2. Compile and synthesize the code in Quartus; 
3. Generate boolean equations using Quartus inbuilt tool; 
4. Convert generated equations to CNF by a separate application. 

Steps 2, 3, 4 are done automatically. The only effort a researcher has to put 
is to write a code in HDL. Normally programming and ’thinking’ in HDL is 
a bit different from typical high-level languages like Java or C. However it is 
not the case here. For our needs, programming in HDL looks exactly the same 
as it would be done in high-level languages. There is no need to care about 
typical HDL specific issues like proper expressing of concurrency or clocking. It 
is because we are not going to implement anything in a FPGA device. All we 
need is to obtain a system of boolean equations which completely describes the 
primitive we wish to attack. 

We are aware that KeccakTools [14] supports the generation of equations, 
however not in CNF form. This could replace the use of HDL and Quartus to 
generate the boolean equations in our analysis of Keccak. However, the equations 
generated by KeccakTools consist of many ’long XOR’ equations which would 
produce an exponential number of clauses when converted to an equivalent CNF. 
To avoid that exponential blowup, one can generate an equisatisfiable CNF with 
new variables introduced and the equations ’cut’ into shorter ones. Thus, an 
additional processing is essential to make those equations useful for SAT-solvers. 
Besides, our CryptLogVer’s in-built generation of equations might turn out useful 
for a uniform comparison of the kind of analysis of various hash algorithms. 

4 Description of the attack 

We have carried out the preimage attack, i.e., for a given hash value h, we tried 
to find a message m such that h = f(m). Our attack was applied on reduced 
versions of Keccak with smaller state and smaller number of rounds comparing 
to Keccak default settings. We experimented with the message lengths between 
24 and 40 bits. The hash lengths were set to 1024, 80 or 24 bits. Our attack 
scheme can be divided into three steps: 

1. Generate CNF by CryptLogVer toolkit; 
2. Set the output bits (hash) and a part of input bits (padding bits); 
3. Run PrecoSAT on the created CNF. 

When a message searched for is supposed to be short (the number of message 
bits and required padding bits is less than or equal to bitrate r), it fits into one 
block Pi. (See Figure 1.) Consequently, there is only one invocation of Keccak-f 

4 



function and the CNF used in the attacks can encode only Keccak-f. In general 
function f is crucial for the security of the sponge construction and its strength 
in many cases comes down to CICO problem (defined by Keccak designers, 
section 5.2.4 in Keccak main document [14]). The preimage attacks presented 
in this paper can be also treated as an attempt of solving CICO problem. It 
needs to be emphasized that the claimed security for CICO problem is higher 
than for Keccak function. The point of reference for our experiments is the 
claimed security for Keccak function which is 2c/2 . 

5 The experimental results 

We attacked reduced versions of Keccak with different number of rounds, state 
sizes and message lengths. Table 1 summarizes our results. The experiments were 
carried out on a 4-core Intel Xeon 2.5 GHz which was a part of Grid’5000 sys­
tem [9]. However, only one core was used as PrecoSat is not a parallel solver. 
The function name specifies bitrate and capacity parameters. For example Kec­
cak[120,80] means the function with bitrate r = 120 and capacity c = 80. 

The exhaustive search was done with C speed-optimized implementation pro­
vided by Keccak designers [10]. The exhaustive search time is the time needed 
for checking all the combinations of the unknown message bits. If the claimed 
security is smaller than the number of those combinations, then the claimed se­
curity is considered. It was the case only for the smallest version of the function. 

Input parameters Attack times [secs] 

Function Number of 
rounds 

Message 
size [bits] 

Hash 
[bits] 

size SAT-solver 
attack 

Exhaustive 
search 

Keccak[1024,576] 
Keccak[1024,576] 
Keccak[1024,576] 
Keccak[120,80] 
Keccak[120,80] 
Keccak[120,80] 
Keccak[24,26] 
Keccak[24,26] 

3 
3 
3 
3 
3 
3 
4 
5 

24 
32 
40 
24 
32 
40 
24 
24 

1024 
1024 
1024 
80 
80 
80 
24 
24 

20 

23,3 

210,8 

22,5 

25,7 

215,7 

212,1 

212,8 

21 

29 

217 

2−2,9 

25 

213 

2−13,5 

2−13,1 

Table 1. Preimage attacks: SAT–based attacks vs. exhaustive search. 

We also experimented with 4-round versions of Keccak[120,80] and Kec­
cak[1024,576], but PrecoSAT was not able to find the solution. The time limit 
was 48 hours and it was tested for 32- and 40-bit messages. For versions with 
200- and 50-bit state, the exhaustive search turned out to be better. 

5 



6 A note on two other SHA-3 candidates 

We have managed to estimate the complexity of a boolean formula in its conjunc­
tive normal form coding the hash function Grøstl. Grøstl uses the AES S-box and 
[12] announces that the simplest version of Grøstl (with the 256-bit hash values) 
calls AES S-box 1280 times. AES S-box has been coded by our CryptLogVer 
toolkit as a formula with about 4800 clauses and 900 variables. So, a straigth­
forward calculation gives at least 1280 * 4800 = 6 mln 144 thousand clauses 
in total. Hence, no SAT-based attack can be feasible (with no extra financial 
effort), even for reduced versions. From this perspective Grøstl seems to be very 
strong. For comparison, the AES standard calls S-box ”only” 200 times. 

We also have looked closer at Bernstein’s CubeHash function [6], encouraged 
by its simplicity. We have obtained the following estimate of the CNF formula 
size. For the version originally submitted to the SHA-3 contest, its CNF would 
have about 1 mln 760 thousand clauses and 270 thousand variables. 

7 Related work 

The designers of Keccak made some experiments to solve the CICO problem. 
They used SAGE computer algebra software and were able to solve the problems 
with 12 unknown input bits, up to 8 rounds and with Keccak-f state widths 
from 40 to 200. As the number of unknown input bits grows, this method quickly 
becomes infeasible [14]. Courtois and Bard [4] showed that SAT solvers can be 
a better option for solving cryptographic problems (often comprising of large 
systems of equations) than computer algebra systems (such as SAGE, MAGMA 
or Singular) due to their much lower memory requirements. 

In [1] the triangulation algorithm was used to solve the CICO problem. They 
reached 3 rounds for Keccak-f[1600]. They fixed only a few bits which was 
enough to show non-randomness of the function but did not lead to any real 
attack. For smaller state sizes of Keccak-f they did not pass 3 rounds. 

The recent hash function MD-6 of Rivest et al. [19] was also tested with logical 
(SAT-based) analysis, among other methods. They found collisions only for much 
reduced versions of the function, with 11 rounds as the best result. They observed 
that after the first 7 rounds the attack running time grows superexponentially 
in the number of rounds. Therefore, it makes this method inefficient against the 
full MD-6 algorithm. 

We also carried out our SAT–based preimage attack on reduced versions of 
SHA-1. For full SHA-1, the CNF formula encoding the function has 181 thousand 
clauses and 31 thousand variables, while full Keccak-f[1600] has 775 thousand 
clauses and 181 thousand variables. It could be already a sign that Keccak is 
much stronger, as the CNF formula is over 4 times bigger. We found a short 
preimage for 27-round SHA-1 (out of its full 80 rounds), but only for the first 3 
rounds out of 24 for Keccak-f[1600]. 

The first connection between SAT and crypto dates back to [3], where a sug­
gestion appeared to use cryptoformulae as hard benchmarks for propositional 

6 



satisfiability checkers. The first application of SAT-solvers in cryptanalysis was 
due to Massacci et al. [15]. They ran a SAT solver on DES key search, and then 
also for faking an RSA signature for a given message by finding the e-th roots of 
a (digitalized) message m modulo n, in [11]. They called it logical cryptanalysis. 
Courtois and Pieprzyk [5] presented an approach to code in SAT their alge­
braic cryptanalysis with some gigantic systems of low degree equations designed 
as potential procedures for breaking some ciphers. [20] proposed enhancing a 
SAT-solver with some special-purpose algebraic procedures, such as Gaussian 
elimination. 

8 Conclusion 

We have carried out the SAT–based preimage attack on reduced Keccak hash 
functions. The results suggest the strength of the function against this kind of 
attack — we have found preimages only for much reduced versions of Keccak. 
We have found a preimage for the 3-round Keccak-f[1600] with 40 unknown 
message bits. For future research it might be interesting to try extrapolating 
our results for the full Keccak function. Such a technique was used in [20]. Also 
Grøstl and CubeHash seem to be very strong against SAT-based cryptanalysis. 
SAT-based analysis of the other SHA-3 candidates might be interesting. 

Acknowledgment 

The authors gratefully acknowledge Mate Soos for his cooperation in carrying 
out some of the experiments on Grid’5000 [9]. The authors also thank Gilles 
Van Assche of the Keccak team, as well as Mateusz Srebrny, Rene Peralta and 
Stanislaw Radziszowski for their valuable contributions and remarks at various 
stages of development of our SAT-based cryptanalytic technique and on earlier 
versions of this paper. 

References 

1.	 J.-P. Aumasson and D. Khovratovich First Analysis of Keccak. http://131002. 
net/data/papers/AK09.pdf. 

2.	 Biere, A. 2009 P{re,i}coSAT@SC09. SAT 2009 competitive events booklet 
http://fmv.jku.at/precosat/. 

3.	 Cook, S. and Mitchel, D. 1997. Finding hard instances of the satisfiability 
problem: A survey. In Satisfiability Problem: Theory and Applications, AMS 
DIMACS Series in Discr. Math. and TCS, 25:1-17. 

4.	 Courtois, N. T. and Bard, G. V. 2006. Algebraic cryptanalysis of the Data 
Encryption Standard. Cryptology ePrint Archive, Report 2006/402. http:// 
eprint.iacr.org/. 

5.	 Courtois, N. and Pieprzyk, J. 2002. Cryptanalysis of Block Ciphers with Overde­
fined Systems of Equations. In ASIACRYPT 2002, 267-287, . 

6.	 CubeHash. http://cubehash.cr.yp.to. 

7 

http:http://cubehash.cr.yp.to
http:eprint.iacr.org
http://fmv.jku.at/precosat
http://131002


7. Davis, M. and Putnam, H. 1960. A Computing Procedure for Quantification 
Theory. Journal of the ACM 7(1):201-215. 

8.	 Davis, M.; Logemann, G. and Loveland, D.W. 1962. A Machine Program for 
Theorem Proving. Communications of the ACM 5(7):394-397. 

9.	 Grid’5000. www.grid5000.fr. 
10.	 eBACS: ECRYPT Benchmarking of Cryptographic Systems. http://bench.cr. 

yp.to/results-hash.html. 
11.	 Fiorini, C.; Martinelli, E. and Massacci, F. 2003. How to fake an RSA sig­

nature by encoding modular root finding as a SAT problem. Discrete Applied 
Mathematics 130(2). 

12.	 Grøstl . http://www.groestl.info. 
13.	 Jovanovic, D. and Janicic, P., Logical Analysis of Hash Functions. In: B. Gram­

lich (Ed.). FroCoS 2005. LNAI 3717. Springer-Verlag, 2005, 200-215. 
14.	 Keccak hash function, main document. http://keccak.noekeon.org/ 

Keccak-main-2.1.pdf. 
15.	 Massacci, F. 1999. Using walk-SAT and rel-sat for cryptographic key search. In 

Proceedings of the 16th International Joint Conference on Artificial Intelligence 
(IJCAI99), T. Dean, Ed. Morgan Kaufmann. 

16.	 Mironov, I., and Zhang, L. 2006. Applications of SAT Solvers to Cryptanalysis 
of Hash Functions. In Theory and Applications of Satisfiability Testing - SAT 
2006. Lecture Notes in Computer Science, volume 4121. Springer-Verlag, 2006, 
102-115. 

17.	 Morawiecki, P., Srebrny, M. and Srebrny, M. 2010. Towards CryptLogVer toolkit 
for logical cryptanalysis and verification. to appear. 

18.	 Quartus II Web Edition software. https://www.altera.com/support/ 
software/download/altera_design/quartus_we/dnl-quartus_we.jsp. 

19.	 Rivest, R. L., et al. 2008. The MD6 hash function – A proposal to NIST for 
SHA-3. http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting 
Documentation/md6 report.pdf. Submission to NIST. 

20.	 Soos, M., Nohl, K. and Castelluccia, C. 2009. Extending SAT Solvers to Crypto­
graphic Problems. In: SAT 2009, Kullmann, O., ed., Lecture Notes in Computer 
Science, volume 5584, Springer-Verlag, pp. 244-257. 

21.	 Sponge construction. http://sponge.noekeon.org. 

Appendix 

For the reader’s convenience, we provide Verilog code used in the experiments 
with our toolkit CryptLogVer. In most cases such a code strongly resembles a 
pseudocode defining a given cryptographic algorithm. 

module keccak(MESSAGE, HASH); 

parameter laneSize = 64;
 
parameter numberOfRounds = 24;
 
parameter stateSize = 5*5*laneSize;
 
parameter hashSize = 1024;
 
input [stateSize-1:0] MESSAGE; // input message
 
output [hashSize-1:0] HASH; // hash value
 
reg [hashSize-1:0] HASH;
 

8 

http:http://sponge.noekeon.org
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting
https://www.altera.com/support
http:http://keccak.noekeon.org
http://www.groestl.info
http:http://bench.cr
http:www.grid5000.fr


reg [laneSize-1:0] A [0:4][0:4]; 
reg [stateSize-1:0] AVector; 
reg [63:0] RoundConstants [0:23]; 
integer i,j,k,r; 

function [stateSize-1:0] Round; 
input [63:0] RC; 
input [stateSize-1:0] AVector; 
reg [laneSize-1:0] A [0:4][0:4]; 
reg [laneSize-1:0] B [0:4][0:4]; 
reg [laneSize-1:0] C [0:4]; 
reg [laneSize-1:0] D [0:4]; 
reg [laneSize-1:0] temp [0:4]; 
reg [laneSize-1:0] tempLane; 
reg [laneSize-1:0] tempLaneRotated; 
integer i,j,k,r,offset; 
integer RotationOffsets [0:4][0:4]; 

begin 

RotationOffsets[0][0]=0; 
RotationOffsets[0][1]=36; 
RotationOffsets[0][2]=3; 
RotationOffsets[0][3]=41; 
RotationOffsets[0][4]=18; 
RotationOffsets[1][0]=1; 
RotationOffsets[1][1]=44; 
RotationOffsets[1][2]=10; 
RotationOffsets[1][3]=45; 
RotationOffsets[1][4]=2; 
RotationOffsets[2][0]=62; 
RotationOffsets[2][1]=6; 
RotationOffsets[2][2]=43; 
RotationOffsets[2][3]=15; 
RotationOffsets[2][4]=61; 
RotationOffsets[3][0]=28; 
RotationOffsets[3][1]=55; 
RotationOffsets[3][2]=25; 
RotationOffsets[3][3]=21; 
RotationOffsets[3][4]=56; 
RotationOffsets[4][0]=27; 
RotationOffsets[4][1]=20; 
RotationOffsets[4][2]=39; 
RotationOffsets[4][3]=8; 
RotationOffsets[4][4]=14; 

//change AVector to two-dimensional array 
for (i=0; i<=4; i=i+1) 

9 



begin 
for	 (j=0; j<=4; j=j+1)
 

begin
 
for (k=0; k<laneSize; k=k+1)
 

begin
 
A[i][j][k] = AVector[5*i*laneSize+j*laneSize+k];
 
end
 

end
 
end
 

// main part of Round function 
for	 (i=0; i<=4; i=i+1) 

begin 
C[i] = A[i][0] ^ A[i][1] ^ A[i][2] ^ A[i][3] ^ A[i][4]; 
end 

for	 (i=0; i<=4; i=i+1) 
begin 
temp[i] = {C[(i+1)%5][laneSize-2:0], C[(i+1)%5][laneSize-1]}; // C cyclic leftrotate 1 
D[i] = C[(i-1+5)%5] ^ temp[i]; 
end 

for	 (i=0; i<=4; i=i+1) 
begin 
for (j=0; j<=4; j=j+1) 

begin
 
A[i][j] = A[i][j] ^ D[i];
 
end
 

end 

for	 (i=0; i<=4; i=i+1) 
begin 
for (j=0; j<=4; j=j+1) 

begin
 
offset = RotationOffsets[i][j]%laneSize;
 
tempLane = A[i][j];
 
for (k=0; k<laneSize; k=k+1)
 

begin 
tempLaneRotated[k]=tempLane[(k-offset+laneSize)%laneSize]; // cyclic left shift 
end 

B[j][(2*i+3*j)%5] = tempLaneRotated;
 
end
 

end
 

for	 (i=0; i<=4; i=i+1) 
begin 
for (j=0; j<=4; j=j+1) 

begin
 
A[i][j] = B[i][j] ^ (~(B[(i+1)%5][j]) & B[(i+2)%5][j]);
 

10 



end
 
end
 

A[0][0] = A[0][0] ^ RC; 

// make A array back to vector format (because function can not return arrrays) 
for (i=0; i<=4; i=i+1) 

begin 
for (j=0; j<=4; j=j+1) 

begin 
for (k=0; k<laneSize; k=k+1) 

begin 
Round[5*i*laneSize+j*laneSize+k] = A[i][j][k]; 
end 

end 
end 

end 
endfunction 

always @ (MESSAGE, HASH, A) 
begin 

RoundConstants[0]=64’h0000000000000001; 
RoundConstants[1]=64’h0000000000008082; 
RoundConstants[2]=64’h800000000000808A; 
RoundConstants[3]=64’h8000000080008000; 
RoundConstants[4]=64’h000000000000808B; 
RoundConstants[5]=64’h0000000080000001; 
RoundConstants[6]=64’h8000000080008081; 
RoundConstants[7]=64’h8000000000008009; 
RoundConstants[8]=64’h000000000000008A; 
RoundConstants[9]=64’h0000000000000088; 
RoundConstants[10]=64’h0000000080008009; 
RoundConstants[11]=64’h000000008000000A; 
RoundConstants[12]=64’h000000008000808B; 
RoundConstants[13]=64’h800000000000008B; 
RoundConstants[14]=64’h8000000000008089; 
RoundConstants[15]=64’h8000000000008003; 
RoundConstants[16]=64’h8000000000008002; 
RoundConstants[17]=64’h8000000000000080; 
RoundConstants[18]=64’h000000000000800A; 
RoundConstants[19]=64’h800000008000000A; 
RoundConstants[20]=64’h8000000080008081; 
RoundConstants[21]=64’h8000000000008080; 
RoundConstants[22]=64’h0000000080000001; 
RoundConstants[23]=64’h8000000080008008; 

11 



// main function Keccak-F 

AVector = MESSAGE; 

for (r=0; r<numberOfRounds; r=r+1) 
begin 
AVector = Round(RoundConstants[r],AVector); 
end 

// change AVector format to array 

for (i=0; i<=4; i=i+1) 
begin 
for (j=0; j<=4; j=j+1) 

begin 
for (k=0; k<laneSize; k=k+1)
 

begin
 
A[i][j][k] = AVector[5*i*laneSize+j*laneSize+k] ;
 
end
 

end
 
end
 

// now produce bits of HASH 

for (j=0; j<=4; j=j+1) 
begin 
for (i=0; i<=4; i=i+1) 

begin 
for (k=0; k<laneSize; k=k+1) 

begin 
if (i*laneSize+k+j*laneSize*5 < hashSize) HASH[i*laneSize+k+j*laneSize*5]=A[i][j][k]; 
end 

end
 
end
 

end 
endmodule 

12 


