
Optimizing Blue Midnight Wish for size

Daniel Otte
(daniel.otte@rub.de) ∗

May 2010

Abstract

This document shows how an implementation of Blue Midnight
Wish can be tuned towards small code size. Examples are given in
the C programming language for the AVR but the ideas can also be
implemented in other environments.

An implementation based on the examples shown in this document
achieves a code size of 4447 byte. An assembly version which imple­
ments the shown techniques achieves a code size as low as 1536 byte.

1 About this document

The intend of this document is to show how Blue Midnight Wish [2] can
be implemented for size constrained devices like microcontrollers. We use C
language examples to outline how this can be turned into concrete code. As
reference platform we use Atmels AVR CPU, which forms the base for the
popular ATmega and ATtiny microcontrollers.

It may be useful to employ environment specific optimizations as well.
One example hereby is storing constants into flash memory. Also at some
points it may be beneficial to know the underlying architecture, for example
the fact that the AVR has only three pointer registers.

This paper discusses only the implementation of the core functions since
padding and organization is similar to those of other hash functions and
optimized implementation highly depends on the API to implement.

Implementations for the AVR and their properties are available at [1].

∗ This document was developed during my stay at the Q2S Center of excellence at the
NTNU, Norway. I wouldz like to thank everyone there for their great help.

1

mailto:daniel.otte@rub.de

2 The role of size optimization

The importance of size optimization is often underestimated. Usually, the
main motivation of optimizing cryptographic algorithms is to improve the
speed of such algorithms. This is due to nature of the mostly considered
applications as well as hardware platforms. The latter offers usually enough
space (for example in the caches) for implementations. Therefore most of­
ten space constrains are of minor importance and the implementation is
optimized for speed.

Apart from this there are some applications where the size of the ex­
ecutable code is very important or even critical. These applications are
mostly based on very constrained devices like microcontrollers for smart-
cards or RFID tickets.

While the requirements of data memory can be estimated relatively eas­
ily for a given algorithm, the code memory requirements are difficult to
estimate. They depend very much on the target hardware, compiler and
optimization level.

3 Reasons for using the AVR platform

We chose the AVR for showing size optimizations due to the following rea­
sons:

•	 availability: the AVR core is available in a number of differently pa­
rameterized microcontrollers

•	 price: AVR microcontrollers are quite popular in the low cost segment

•	 development tools: there is a very good open source tool-chain avail­
able for AVRs including the GCC

4 About the AVR

The AVR is an eight bit RISC machine with 32 eight-bit general purpose
registers having a relative orthogonal instruction set. It is based on the
Harvard-Architecture, according to that it has two separate buses for code
(flash) and data (SRAM). Additionally it is a Load-and-Store architecture.
The only instructions operating on data in RAM are the load and store
instructions (except for a few instructions which use the stack). Most AVR
instructions are 16 bits wide and a few are 32-bits wide. AVR instructions
are mostly executed in one cycle but some may take up to three cycles.

2

4.1 Registers

The AVR core consists of 32 eight bit wide general purpose registers (de­
noted r0 to r31), a flag register, a stack pointer register, and the program
counter register (PC). Six of the general purpose registers (r26 to r31) can
be combined to three 16-bit pointer registers (X, Y and Z).

4.2 Memory access

Access to the memory is provided through two instructions: load and store.
Both instructions are available in two addressing modes.

Direct-addressing, where the address to load from, or to store to, is
directly coded into the instruction. This mode is suitable for accessing
global variables with static addresses.

Indirect-addressing where the destination is determinated by one of the
three pointer registers. In indirect-addressing mode it is possible to post-
increment or pre-decrement the pointer register. Also the Z or Y pointers
can be used with a displacement in the range from 0 to 63.

It is also possible to load data from the flash memory into registers.
This is done by the lpm instruction, which loads the byte addressed by the
Z pointer and optionally increments the Z pointer.

4.3 Special instructions

The instruction set of the AVR is similar to those of most other micro-
controllers. A few special capabilities and limits are described here. An
important fact when implementing Blue Midnight Wish is that rotations
in both directions can only be done by one bit at a time.

4.3.1 16-bit moves

Modern AVRs are capable of transferring the contents of a register pair into
another register pair. A register pair is formed by an even register and its
next register.

4.3.2 loading/ORing/ANDing of constants

Registers r16 and up can be used and loaded with an immediate value – a
value coded directly into the instruction.

3

4.3.3 16-bit immediate addition/subtraction

The four register pairs formed by the registers r24 and up can have a value
in the range from 0 to 63 added or subtracted. The addition of zero to such
a pair can be used to easily determine if the 16-bit value is zero.

4.3.4 Skip instructions

Some AVR instructions have the capability of skipping the next instruction.
These instructions are very useful if only a single instruction should be
executed conditionally or to skip a jump to exit a loop.

The cpse instruction compares two registers and skips the next instruc­
tion if the contents are equal (compare and skip if equal).

The sbrs/sbrc instructions allow to skip the next instruction if a bit in
a register is set or cleared.

5 Why we chose Blue Midnight Wish

We chose Blue Midnight Wish to illustrate possible size optimizations
due to different reasons:

1.	 Blue Midnight Wish has a quite complex code structure and so has
a huge potential for optimizations

2.	 Blue Midnight Wish is the fastest algorithm on the NIST reference
platform

3. The Blue Midnight Wish team offered valuable support for imple­
menting an optimized version

For this report we will limit ourselves to only analyzing Blue Midnight
Wish-256, but most ideas can also be applied to other Blue Midnight
Wish variants.

6 Helper functions

For implementing Blue Midnight Wish optimized for size some helper
functions may be usful for performing tasks appearing in different parts of
the hash function.

We are defining some functions in this section which are used in the
C-examples in the remaining paper.

4

6.1 Shifts and Rotates

BMW256 make extensive use of 32-bit shifts and rotates. Due to the fact
that we consider implementing it on an 8-bit CPU, which requires multiple
instruction to perform those operations. Here, the code size can be reduced
by implementing this shifts and rotates in dedicated functions.b

1
 u in t 32 t s h i f t 3 2 l e f t (u i n t 32 t a , i n t 8 t s h i f t){

2
 i f (s h i f t <0)

3
 return (s h i f t 3 2 r i g h t (a , s h i f t) ;

4
 return a<<s h i f t ;

5
 }
6

7
 u in t 32 t s h i f t 3 2 r i g h t (u i n t 32 t a , u i n t 8 t s h i f t){

8
 return a>>s h i f t ;

9
 }
10

11
 u in t 32 t r o t a t e 3 2 l e f t (u i n t 32 t a , u i n t 8 t r o t a t e){

12
 return (a<<r o t a t e) | (a>>(32− r o t a t e)) ;

13
 }
14

15
 #define r o t a t e 3 2 r i g h t (a , n) r o t a t e 3 2 l e f t ((a) , 32−(n)) #

Listing 1: shift and rotate examples

6.2 memxor

Blue Midnight Wish makes use of the XOR function at many places.
Often this xoring can be performed by directly xoring memory regions. To
exploit this we use a dedicated function which xors one memory region into
another.b

1
 void memxor(void∗ dest , void∗ src , s i z e t n){

2
 while (n−−){

3
 ∗ ((u i n t 8 t ∗) dest) ˆ= ∗ ((u i n t 8 t ∗) s r c) ;

4
 dest = (u i n t 8 t ∗) des t + 1 ;

5
 s r c = (u i n t 8 t ∗) s r c + 1 ;

6
 }
7
 #}

Listing 2: memxor examples

5

6.3 Using flash for constants

By default the GCC-Compiler places all data tables in RAM even constant
ones. To reduce RAM usage it is useful to place the data only in flash. Due
to lacking support for different memory regions in GCC, usage of special
functions to load data from flash is required.

The keyword PROGMEM is used to place a object only in flash. Data is
loaded from flash with the functions pgm read byte(), pgm read word()
and pgm read dword(), which load a byte, a 16-bit word and a 32-bit word
respectively. All these functions take a pointer to the object in flash as a
single parameter and return the read value.

7 Implementing the logic functions

7.1 S functions

The S functions s0 to s4 are used in f0 and f1, s5 is used only in f1. Since all
S functions share the same structure it is possible to implement them all in
a single generic function. This function takes the number of the S function
to perform as a parameter.

s0(x) = SHR1(x) ⊕ SHL3(x) ⊕ ROT L4(x) ⊕ ROT R13(x)

s1(x) = SHR1(x) ⊕ SHL2(x) ⊕ ROT L8(x) ⊕ ROT R9(x)

s2(x) = SHR2(x) ⊕ SHL1(x) ⊕ ROT L12(x) ⊕ ROT R7(x)

s3(x) = SHR2(x) ⊕ SHL2(x) ⊕ ROT L15(x) ⊕ ROT R3(x)

s4(x) = SHR1(x) ⊕ x

s5(x) = SHR2(x) ⊕ x

Table 1: Definition of the S functions b
1 const u i n t 8 t s t a b l e [6] [4] PROGMEM = {
2 { 1 , 3 , 4 , 13 } ,
3 { 1 , 2 , 8 , 9 } ,
4 { 2 , 1 , 12 , 7 } ,
5 { 2 , 2 , 15 , 3 } ,
6 { 1 , 0 , 0 , 0 } ,
7 { 2 , 0 , 0 , 0 } ,
8 } ;

6

9
10 u in t 32 t s32 (u i n t 32 t x , u i n t 8 t s){
11 u in t 32 t r ;
12 u i n t 8 t ∗p = (u i n t 8 t ∗) s t a b l e+4∗s ;
13 r = s h i f t 3 2 r i g h t (x , pgm read byte (p++))
14 ˆ s h i f t 3 2 l e f t (x , pgm read byte (p++))
15 ˆ r o t a t e 3 2 l e f t (x , pgm read byte (p++))
16 ˆ r o t a t e 3 2 r i g h t (x , pgm read byte (p)) ;
17 return r ;
18 #}

Listing 3: memxor examples

8 Optimizations on f0

The definition of f0 is given in table 2. It is obvious that each word in H is
xored together with the corresponding word in M. So instead of performing
80 xors of 32-bit values we can simply xor the complete H array with the M
array. In order to save some RAM we decided to xor M directly into H and
do the same again at the end of the computation of W to get H back.

As we can see in table 3, the five columns on the right are complete
iterations over the T-array starting at different offsets. A good optimization
for code size seems to iterate several times over the T-array. It would also
be possible to use five index variables, but due to the nature of the AVR we
only have three pointer registers to address memory. The handling of the
signs is a bit more difficult since there is no pattern to exploit. A solution
is to pack the signs in a binary structure. We decided to use a 1 for minus
and 0 for plus. The transformation is illustrated in table 4.

In the code listing 4, we load the signs packed into 16 bit words and
shift out bit by bit to get the individual signs. Also, we use our generic
implementation of the S-functions with a parameter. The parameter is reset
to 4 when going below 0, so effectively performing a ”modulo 5” operation,
but without using division.

7

5

10

15

20

25

30

35

40

b
1
 const u in t 16 t s i g n t a b l e [] =

2
 { 0x0311 , 0xDDB3, 0x2A79 , 0x07AA , 0x51C2 } ;

3
 const u i n t 8 t o f f s e t t a b l e [] =

4
 { 4 , 6 , 9 , 12 , 13 } ;

6
 void bmw32 f0 (u in t 32 t ∗ q , u in t 32 t ∗ h , u in t 32 t ∗ m){

7
 u i n t 8 t i , row , column ;

8
 i n t 8 t s s e l e c t ;

9
 u in t 16 t s i g n r e g ;

11
 /∗ xor m in to h ∗/
12
 memxor(h , m, 64) ;

13
 /∗ i n i t i a l y s e t q array to zero ∗/
14
 memset (q , 0 , 4 ∗ 16) ;

column = 4 ;

16
 do{
17
 i = 15 ;

18
 row = o f f s e t t a b l e [column] ;

19
 s i g n r e g = hack tab l e [column] ;

do{
21
 i f (s i g n r e g &1){

22
 q [i] −= h [row&15] ;

23
 } else {
24
 q [i] += h [row&15] ;

}
26
 −−row ;

27
 s i g n r e g >>= 1 ;

28
 }while (i −− != 0) ;

29
 }while (column−− != 0) ;

/∗ xor m i n t o h again , to ge t the o r i g i n a l h ∗/

31
 memxor(h , m, 64) ;

32
 i = 15 ;

33
 s s e l e c t = 0 ;

34
 do{

q [i] = s32 (q [i] , s s e l e c t −−) + h [(i +1)&15];

36
 i f (s s e l e c t == −1){

37
 s s e l e c t = 4 ;

38
 }
39
 }while (i −− != 0) ; #}

Listing 4: first part of f0 example

8

Table 2: Definition of f0

9

T (i) j = M (i)
j ⊕ H(i−1)

j

W (i) 0 = +T (i) 5 −T (i) 7 +T (i) 10 +T (i) 13 +T (i) 14

W (i) 1 = +T (i) 6 −T (i) 8 +T (i) 11 +T (i) 14 −T (i) 15

W (i) 2 = +T (i) 7 +T (i) 9 −T (i) 12 +T (i) 15 +T (i) 0

W (i) 3 = +T (i) 8 −T (i) 10 +T (i) 13 +T (i) 0 −T (i) 1

W (i) 4 = +T (i) 9 −T (i) 11 −T (i) 14 +T (i) 1 +T (i) 2

W (i) 5 = +T (i) 10 −T (i) 12 +T (i) 15 −T (i) 2 +T (i) 3

W (i) 6 = −T (i) 11 +T (i) 13 −T (i) 0 −T (i) 3 +T (i) 4

W (i) 7 = −T (i) 12 −T (i) 14 +T (i) 1 −T (i) 4 −T (i) 5

W (i) 8 = +T (i) 13 −T (i) 15 +T (i) 2 −T (i) 5 −T (i) 6

W (i) 9 = +T (i) 14 +T (i) 0 −T (i) 3 +T (i) 6 −T (i) 7

W (i) 10 = +T (i) 15 −T (i) 1 −T (i) 4 −T (i) 7 +T (i) 8

W (i) 11 = −T (i) 0 −T (i) 2 −T (i) 5 +T (i) 8 +T (i) 9

W (i) 12 = +T (i) 1 +T (i) 3 −T (i) 6 −T (i) 9 +T (i) 10

W (i) 13 = +T (i) 2 +T (i) 4 +T (i) 7 +T (i) 10 +T (i) 11

W (i) 14 = +T (i) 3 −T (i) 5 +T (i) 8 −T (i) 11 −T (i) 12

W (i) 15 = −T (i) 4 −T (i) 6 −T (i) 9 +T (i) 12 +T (i) 13

Table 3: rearrangement of first part of f0

10

0
x
0
3
1
1

0
x
D
D
B
3

0
x
2
A
7
9

0
x
0
7
A
A

0
x
5
1
C
2

0 (msb): + - + + + 0 1 0 0 0
1 : + - + + - 0 1 0 0 1
2 : + + - + + 0 0 1 0 0
3 : + - + + - 0 1 0 0 1
4 : + - - + + 0 1 1 0 0
5 : + - + - + 0 1 0 1 0
6 : - + - - + 1 0 1 1 0
7 : - - + - - 1 1 0 1 1
8 : + - + - - 0 1 0 1 1
9 : + + - + - 0 0 1 0 1
10 : + - - - + 0 1 1 1 0
11 : - - - + + 1 1 1 0 0
12 : + + - - + 0 0 1 1 0
13 : + + + + + 0 0 0 0 0
14 : + - + - - 0 1 0 1 1
15 (lsb): - - - + + 1 1 1 0 0

Table 4: sign translation

11

9 Optimizations on f1

The purpose of the f1 function is to generate the second half of the quadruple
pipe, from H, the message block and the first half of the quadruple pipe. It
does so by generating word by word, as each word depends on the 16 words
before.

There are two different methods to compute a word for the quadruple
pipe, named expand1 and expand2. They both perform the AddElement
first, and then add values based on the 16 preceding words of Q. Since the
AddElement function is the same for expand1 and expand2, it is useful to
implement it in a dedicated function.

Implementing f1 is straight forward. We implemented separate func­
tions for expand1 and expand2 which both use the expand base functions
which implement nearly completely the AddElement function. We did not
implement the xor with hj+7 as part of expand base to avoid passing an
additional parameter to the function. In expand1 the transformation of Q
is done by our generic S function implementation, while we implement the
R function as direct rotates for expand2, since it is only used in expand2. bThe constants are used from a precomputed table.

1 stat ic const
2 u in t 32 t k l u t [] PROGMEM = {

3
 0x55555550L , 0x5aaaaaa5L , 0 x 5 f f f f f f a L ,

4
 0x6555554fL , 0x6aaaaaa4L , 0 x 6 f f f f f f 9 L ,

5
 0x7555554eL , 0x7aaaaaa3L , 0 x 7 f f f f f f 8 L ,

6
 0x8555554dL , 0x8aaaaaa2L , 0 x 8 f f f f f f 7 L ,

7
 0x9555554cL , 0x9aaaaaa1L , 0 x 9 f f f f f f 6 L ,

8
 0xa555554bL } ;
9
10 u in t 32 t expand base (u i n t 8 t j , const void∗ m){
11 return (r o t a t e 3 2 l e f t (((u in t 32 t ∗)m) [j&0xf] ,
12 ((j+0)&0xf)+1)
13 + r o t a t e 3 2 l e f t (((u in t 32 t ∗)m) [(j+3)&0xf] ,
14 ((j+3)&0xf)+1)
15 − r o t a t e 3 2 l e f t (((u in t 32 t ∗)m) [(j +10)&0xf] ,
16 ((j +10)&0xf)+1)
17 + pgm read dword near (&(k l u t [j]))) ;
18 }
19
20 u in t 32 t bmw small expand1 (u i n t 8 t j , const u in t 32 t ∗ q ,
21 const void∗ m, const void∗ h){
22 u in t 32 t r ;
23 u i n t 8 t i ;

12

24 r = expand base (j , m) ˆ ((u i n t 32 t ∗)h) [(j+7)&0xf] ;

25
 for (i =0; i <16; ++i){

26
 r += s32 (q [j+i] , (i +1)%4);

27
 }
28
 return r ;

29
 }

30

31
 u in t 32 t bmw small expand2 (u i n t 8 t j , const u in t 32 t ∗ q ,

32
 const void∗ m, const void∗ h){

33
 u i n t 8 t r o t a t e s [] = { 3 , 7 , 13 , 16 , 19 , 23 , 27 } ;

34
 u in t 32 t r ;

35
 u i n t 8 t i ;

36
 r = expand base (j , m) ˆ ((u i n t 32 t ∗)h) [(j+7)&0xf] ;

37
 for (i =0; i <14; i +=2){

38
 r += q [j+i] ;

39
 r += r o t a t e 3 2 l e f t (q [j+i +1] , r o t a t e s [i / 2]) ;

40
 }
41
 r += s32 (q [j +14] , 4) ;

42
 r += s32 (q [j +15] , 5) ;

43
 return r ;

44
 }

45

46
 void bmw small f1 (u i n t 32 t ∗ q , const void∗ m, const void∗ h){

47
 u i n t 8 t i ;

48
 q [1 6] = bmw small expand1 (0 , q , m, h) ;

49
 q [1 7] = bmw small expand1 (1 , q , m, h) ;

50
 for (i =2; i <16; ++i){

51
 q[16+ i] = bmw small expand2 (i , q , m, h) ;

52
 }
53
 #}

Listing 5: f1 example

13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

10 Optimizations on f2

The f2 function compresses the previous double pipe, the quadruple pipe
and the message block into the new double pipe. There are numerous ways
to perform the computation of f2. In our case, at least the computation of
XL and XH is simple and straight forward. The rest of the computation is
rearranged as shown in table 5.

The second part is structured in such a way that at no time more than
three pointers are needed. Additionally, the reuse of the loop constructs
reduces the total amount of instructions even more.

1. The message block is copied into the double pipe

2.	 H0..H7 are updated (xor) with shifted values of XH and Q16..Q23

3.	 Q24..Q31 is xored into Q0..Q7

4. XH and Q24..Q31 are xored into H8..H15

5.	 H0..H7 are updated (add) with the xor of XL and Q0..Q7 also this
new values are rotated and add to H8..H15

6.	 Q16..Q22 is xored into Q9..Q15 and Q23 is xored into Q8

7. Finally H8..H15 are updated (add) with the xor of Q8..Q15 and shifted
values of XL b

i n t 8 t s h i f t t a b l e 1 [] PROGMEM =
5 , −5, −7, 8 , −5, 5 , −1, 5 , −3, 0 , 6 , −6, −4, 6 , −11, { 2 } ;

i n t 8 t s h i f t t a b l e 2 [] PROGMEM =
{	 8 , −6, 6 , 4 , −3, −4,

void bmw small f2 (u i n t 32
u in t 32 t x l =0, xh ;
u i n t 8 t i ;
const i n t 8 t ∗ ptr ;
for (i =16; i <24;++ i){

x l	 ˆ= q [i] ;
}
xh = x l ;
for (i =24; i <32;++ i){

xh ˆ= q [i] ;
}
// 1 copy m into h

−7, −2};

t ∗ h , u in t 32 t ∗ q , const void∗ m){

14

18 memcpy(h , m, 16 ∗ 4) ;
19
 ptr = s h i f t t a b l e 1 ;
20
 // 2

21
 for (i =0; i <8; ++i){
22
 h [i] ˆ= s h i f t 3 2 l e f t (xh , pgm read byte (ptr ++));
23
 h [i] ˆ= s h i f t 3 2 l e f t (q[16+ i] , pgm read byte (ptr ++));
24
 }
25
 // 3 Qi ← Qi ⊕ Qi+24∀i ∈ [0..7]
26
 memxor(q , q+24, 8 ∗ 4) ;
27
 for (i =0; i <8; ++i){
28
 // 4

29
 h[8+ i] ˆ= xh ˆ q[24+ i] ;
30
 // 5

31
 h[8+ i] += r o t a t e 3 2 l e f t (h [(4+ i)%8] += x l ˆq [(4+ i)%8] , i +9);
32
 }
33
 // 6 Qi ← Qi ⊕ Qi+7∀i ∈ [9..15]
34
 memxor(q+9, q+16, 7 ∗ 4) ;
35
 q [8] ˆ= q [2 3] ;
36
 ptr = s h i f t t a b l e 2 ;
37
 // 7

38
 for (i =8; i <16; ++i){
39
 h [i] += s h i f t 3 2 l e f t (xl , pgm read byte (ptr++)) ˆ q [i] ;
40
 }
41
 #}

Listing 6: f2 example

15

Table 5: f2 definition and organization

16

References

[1]	 AVR-Crypto-Lib. Das LABOR e.V., Bochum, 2010. http://www.
das-labor.org/wiki/AVR-Crypto-Lib/en.

[2] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog,
Mohamed El-Hadedy, Jorn Amundsen, and Stig Frode Mjol­
snes. Cryptographic hash function blue midnight wish.
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/
Supporting_Documentation/BlueMidnightWishDocumentation.pdf,
2009. Submission to NIST (Round 2).

17

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/ Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/ Supporting_Documentation/BlueMidnightWishDocumentation.pdf

	1 About this document
	2 The role of size optimization
	3 Reasons for using the AVR platform
	4 About the AVR
	4.1 Registers
	4.2 Memory access
	4.3 Special instructions
	4.3.1 16-bit moves
	4.3.2 loading/ORing/ANDing of constants
	4.3.3 16-bit immediate addition/subtraction
	4.3.4 Skip instructions

	5 Why we chose Blue Midnight Wish
	6 Helper functions
	6.1 Shifts and Rotates
	6.2 memxor
	6.3 Using flash for constants

	7 Implementing the logic functions
	7.1 S functions

	8 Optimizations on f0
	9 Optimizations on f1
	10 Optimizations on f2

