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Abstract. In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal
properties of a class of AES-based permutations with a low complexity. We apply this framework
to SHA-3 round-2 candidates ECHO and Grgstl. The first application is for the full-round (8-round)
ECHO permutation, which is a building block for 256-bit and 224-bit output sizes. By combining several
observations specific to ECHO, our attack detects a non-ideal property with a time complexity of 282
and 237 amount of memory. The complexity, especially in terms of the product of time and memory,
is drastically reduced from the previous best attack which required 2°'2 x 2512, To the best of our
knowledge, this is the first result on the full-round ECHO permutation with both time and memory
below 2%%% or 2224, Note that this result does not impact the security of the ECHO compression function
nor the overall hash function. We also show that our method can detect non-ideal properties of the
8-round Grgstl-256 permutation with a practical complexity, and finally show that our approach leads
to an improvement on a semi-free-start collision attack on the 7-round Grgstl-512 compression function.
Our approach is based on a series of attacks on AES-based hash functions such as rebound attack and
Super-Sbox analysis. The core idea is using a new differential path consisting of only non-full-active
states.
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1 Introduction

In the SHA-3 competition [1], 14 algorithms are being considered as round 2 candidates. At the present
time, none of them has been seriously broken in terms of the important security properties of hash functions
such as collision resistance or preimage resistance. However, regarding some candidates, building blocks
such as compression functions or internal permutations have been shown that they do not satisfy ideal
properties. Although it does not damage the security of hash functions immediately, the analysis against
building blocks are useful to know the potential weakness, security margin, validity of the security proof,
potential improvement in the future, and so on.

Many of the SHA-3 candidates are based on the design strategy of AES [2,3]. Recently, an outstanding
progress in the cryptanalysis against AES-based hash functions or permutations has been made [4-14]. Specif-
ically, Rebound attack proposed by Mendel et al. at FSE 2009 [5], Start-from-the-Middle attack proposed by
Mendel et al. at SAC 2009 [6], and Super-Sbox analysis applied to the rebound attack by Lamberger et al.
at Asiacrypt 2009 [13] and by Gilbert and Peyrin at FSE 2010 [7] have wide range of their applications and
are powerful analytic tools. In fact, the rebound based attack has been applied to several SHA-3-candidates
[5-12,15] such as Grogstl [16], ECHO [17], JH [18], Cheetah [19], LANE [20], Twister [21]. It has also been
applied to other hash functions [5-7,13, 14] such as Whirlpool [22] and AES hashing modes.

ECHO [17] is one of the round 2 algorithms in the SHA-3 competition, which was designed by Benadjila et
al. Tt has an AES-based structure and its building block is a 2048-bit AES-based permutation. The number of
rounds in the permutation is 8 for ECHO-224 and ECHO-256, and 10 for ECHO-384 and ECHO-512. At FSE
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2010, Gilbert and Peyrin showed that the full-round (8-round) ECHO permutation could be distinguished
from an ideal permutation with time of 27® and memory of 2°!2 by using the Super-Sbox analysis [7].
After that, Peyrin [23] reduced the complexity to 2°'2 in both time and memory. Hence, the 8-round ECHO
permutation was shown to be non-ideal as a 2048-bit permutation. However, because the 8-round ECHO
permutation is a building block to generate 256-bit or 224-bit hash values and compression part from 2048-
bits to 256-bits or 224-bits is not considered, the impact of this attack seems almost negligible. In addition,
as long as it is evaluated by the Super-Sbox analysis with the framework of [7], the time or memory cannot
be below 252, In fact, Gilbert and Peyrin claimed as follows [7, Section 4.4]:

“Moreover, since the Super-Sbox cryptanalysis of the ECHO permutation presented above requires
at least 2°12 computations and memory, it is not a well suited starting point for trying to mount a
distinguisher or a collision search attack against one of the compression functions of ECHO-256 or
ECHO-512 (or one of their single-pipe variants).”

Besides, Peyrin mentioned attacks on the 8-round ECHO permutation as follows [23, Appendix B]:

“Indeed, the improved Super-Sbox attack for ECHO can not be used anymore as too many active
cells are present in the middle rounds. One has to use the Super-Sbox method instead, which is
inefficient in the case of ECHO since it requires at least 2°'2 computations and memory.”

To sum up, there is no powerful analysis on the ECHO hash function nor compression function. Even though
attacks on the permutation reached full-round with Super-Sbox analysis, the complexity is too high due to
the property of the Super-Sbox analysis.

Note that besides the ECHO internal permutation, the round-reduced ECHO compression function is
attack by Peyrin [23, 24]. Recently, after the submission of the Second SHA-3 Candidate Conference, Schlaffer
attacked the round-reduced ECHO hash function and improved the attacks on the compression function [25].
These results are listed in Table 1.

Our Contributions

In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal properties of a class
of AES-based permutations with a low complexity. To demonstrate its applicability, we first apply the non-
full-active Super-Sbox analysis to the 8-round Grgstl-256 permutation, which is an AES-based permutation
consisting of the 8 x8 state. This attack can detect a non-ideal property of the 8-round Grgstl-256 permutation
with time of 2% and memory of 28, while detecting the same property of an ideal permutation requires 2.
We then apply this framework to the full-round (8-round) ECHO permutation by optimizing the attack with
taking several properties specific to ECHO into account. This attack can detect a non-ideal property of the
8-round ECHO permutation with time of 2!82 and memory of 237, while detecting the same property of an
ideal permutation requires 22°6. Note that the 8-round ECHO permutation is a building block for ECHO-256
and ECHO-224. As far as we know, this is the first result on the full-round ECHO permutation which can
work with both time and memory (or product of these factors) below 2256 (or 222%). Note, however, that
the role of the convolution in the ECHO compression function is very important for its security and our
distinguisher cannot be extended to the ECHO compression function, nor the hash function. Finally, we
show that our approach also improves the amount of memory for the semi-free-start collision attack on the
7-round Grgstl-512 compression function to 2°6 from 264, The attack results are summarized in Table 1. The
technical details in this paper are as follows.

Low complexity distinguishers on AES-based permutations We present a new strategy of the Super-
Sbox analysis which can work for a class of AES-based permutations in generic. The core idea is using a
differential path whose inbound part, in particular inside the Super-Sbox, consists of only non-full-active
states. Regarding non-active bytes, the difference is always 0 through the SubBytes and InverseSubBytes
operations regardless of its value. Hence, attackers can freely choose the value without breaking the
differential path. This freedom degrees enable attackers to control values (or differences through the
SubBytes operation) of other bytes inside the Super-Shox to be connected efficiently.



Table 1. Comparison of attack results on ECHO and on Grgstl.

Target ‘Rounds ‘Time Memory Attack Type ‘ Paper
ECHO-256/-224 8 (full) [ 2768 2°12 Distinguisher [7]
Permutation 8 (full) | 25'2 2512 Distinguisher [23]
8 (full) | 2'82 237 Distinguisher Ours Section 5.2
Grgstl-256 g |22 264 Distinguisher [7]
Permutation 8 218 28 Distinguisher Ours Section 4.4
Grestl-512 7 |22 264 Semi-free-start collision [15]
Comp. Function 7 2152 256 Semi-free-start collision|Ours Section 5.3
ECHO-256 4 204 204 Collision [25]
Hash Function 5 296 264 Distinguisher [25]
ECHO-256 3 264 25% Semi-free-start collision [24]/[23]
Comp. Function 6.5 296 26*  Free-start-near collision [25]
7|20 2% Distinguisher [25]
ECHO-512 3 296 2%% Semi-free-start collision [24]/]23]
Comp. Function 6.5 | 2% 254 Free-start-near collision [25]
7 2106 204 Distinguisher [25]
Grostl-256 Comp. Func. |10 (full)| 2'92 264 Distinguisher [24]/[23]
Grgstl-512 Comp. Func. 11 | 2040 264 Distinguisher [24]/[23]

Observations on the property of ECHO permutation We explain two new observations on the ECHO
permutation when dealing with the byte-wise truncated differential path. First, we find that the linearity
of the jointed two linear operations (MixColumns inside the BigSB and the following BigMC) should be
taken into account in order to correctly calculate the complexity for a certain differential path. Second,
there are freedom of the differential paths inside BigSB available to attackers to reduce the complexity.

This paper is organized as follows. In Section 2, we briefly describe AES-permutation, ECHO, and Grgstl.
In Section 3, we introduce previous work. In Section 4, we present the framework of non-full-active Super-
Sbox analysis. We show its application to the 8-round Grgstl-256 permutation as an example. In Section 5,
we apply our attack to the full-round ECHO permutation with taking several properties specific to ECHO
into account. We also apply our attack to the semi-free-start collision attack on the 7-round Grgstl-512
compression function. In Section 6, we conclude this paper.

2 Specifications

In 2000, the block cipher Rijndael designed by Daemen and Rijmen was selected as Advanced Encryption
Standard (AES) [2,3]. AES as a block cipher is with a 128-bit block represented by a 4 x 4 state where each
element is a byte. Here we consider a general AES-based permutation with the internal state represented
by an r X r matrix where each element in it is a ¢-bit word. The row and column position of a word/byte
is denoted by 4 and j, respectively where 4,j € [0,7 — 1]. As shown in Fig. 1, the state is updated by four
operations in a round of the AES-based permutation.

SubBytes (SB) as the non-linear layer substitute each word/byte of the internal state according to an
S-box table.

— In ShiftRows (SR), each word/byte at row j of the state is cyclically shifted to left by j positions.

— The linear operation MixColumns (MC) multiply each column of the state by a Maximum-Distance
Separable (MDS) matrix .

The AddRoundKey (AK) operation performs the bit-wise exclusive-or operation between the current
state with a constant.
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Fig. 1. The operations inside a round of AES-based permutation.

2.1 ECHO Permutation

The ECHO hash function [17] designed by Benadjila et al. is a candidate in the second round of the SHA-3
competition. It has an AES-based structure and its building block is a 2048-bit AES-based permutation.
The number of rounds in the permutation is 8 for ECHO-224 and ECHO-256, and 10 for ECHO-384 and
ECHO-512. The 2048-bit internal state of ECHO can be represented by a 4 x 4 matrix where each element
in it is a 128-bit AES state called a BigWord. The round operations in the ECHO permutation manipulate
128-bit BigWords instead of 8-bit bytes. As shown in Fig. 2, one round of ECHO permutation has three
operations as follows.

— BigSB as the non-linear layer substitute each 128-bit BigWord of the ECHO state by applying 2-round
AES permutation on it.

— In BigSR, each 128-bit BigWord at row j is cyclically shifted to left by j positions.

— The linear operation BigMC multiply each 4 bytes of the ECHO state by a MDS matrix.

To simplify the dedicated analysis of the ECHO permutation, as introduced by [24], we denote 4 types
of byte-wise truncated differences of the BigWord as shown in Fig. 3, where active bytes are in grey.

2- d ultiplie
AES per. an MBS mat F C D 1
0 =
1 1
BigSB |2 BigSR 2 BigMC
-~ 3 3
AES state
Fig. 2. One round of ECHO permutation. Fig. 3. Notations for BigWords of ECHO.

2.2 Grgstl Permutation and Compression Function

The Grgstl hash function [16] designed by Gauravaram et al. is another candidate in the second round of the
SHA-3 competition. The compression function of Grgstl is built upon the AES-based permutations as well.
In the case of Grgstl-256 permutation, the internal state can be represented by an 8 x 8 matrix where each
element is an 8-bit byte. While the internal state of Grgstl-512 permutation is an 8 x 16 matrix of bytes.
The number of rounds in the permutation is 10 for Grgstl-224 and Grgstl-256, and 14 for Grgstl-384 and
Grgstl-512.

The Grgstl-256 permutation are the AES-based permutation with » = 8 and ¢ = 8. As shown in Fig. 4,
The Grgstl-512 permutation is different from Grgstl-256 with respect to only the ShiftRows operation, where
the bytes at row 7 are cyclically shifted to left by 11 positions. The compression function is based on two
AES-based permutations P and ), where only the constant numbers for AddRoundKey are different. As
described in Fig. 5, the Grgstl compression function takes a chaining variable C'V and a message M as the
inputs. The output of the compression function is the new chaining variable CV’ which is the XOR of the
outputs of permutations P, @) and the original chaining variable C'V.
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Fig. 4. ShiftRows operation for Grgstl-512. Fig. 5. Compression function of Grgstl.

3 Previous Work

Discovering non-ideal properties are valuable when evaluating the security of certain hash functions. This
section introduces recently proposed analytic tools that are applied to explore the non-ideal properties of
the internal permutations used in certain hash functions.

Rebound attack. Rebound attack was first proposed by Mendel et al. at FSE 2009 [5]. It is a very useful
technique to analyze the AES-based permutations under a known-key assumption. Rebound attack divides
a differential path into two parts as inbound and outbound. For the inbound phase, attackers can control the
most expensive part of the differential path with a very low average complexity. Then outbound differential
path is satisfied probabilistically. Rebound attack needs to make sure the total number of starting points
generated at the inbound phase is enough to fulfill the outbound complexity. For more details, we refer to
the original publication [5].

Start-from-the-Middle attack. Start-from-the-Middle attack was proposed by Mendel et al. at SAC 2009
[6]. Tt improves the original rebound attack by extending the number of controlled rounds from 2 to 3 so
that the total complexity can be greatly reduced. The underlying idea is to utilize the independence and the
freedom of each search procedure as much as possible. As a result, without increasing the time and memory,
3 rounds of the differential path can be fulfilled. For more details, we refer to the original publication [6].

Super-Sbox analysis. Super-Sbox analysis for the rebound attack against AES-based permutations was
independently proposed by Lamberger et al. at Asiacrypt 2009 and by Gilbert and Peyrin at FSE 2010 [7]. It
combines 2 non-linear layers (SubBytes) and 1 diffusion layer to 1 non-linear layer with a larger substitution-
box named Super-Shox. By doing so, 2-round AES-based permutation can be regarded as a non-linear layer
with a following diffusion layer. When it is applied to the rebound attack, the inbound phase can be extended
by one more round. As a side effect, attackers need to spend more time and memory to exploit the differential
property of the Super-Sbox. For more details, we refer to the original publication [7].

Dedicated analysis on ECHO. Peyrin proposed a differential path with an increased granularity for a
dedicated analysis on ECHO [23,24]. Since the permutation for each BigWord inside BigSB of the ECHO
permutation are still AES-based, the truncated difference can be detailed to byte-wise instead of 128-bit
word-wise. By doing so, the number of active bytes for the outbound search can be reduced, so that the total
attack complexity can be reduced. For more details, we refer to the original papers [23, 24].

4 Non-Full-Active Super-Sbox Analysis on AES-Based Permutations

In this section, we use the following notations to discuss generic AES-based permutations:

r: a number of rows and columns in a state.
c: a number of bits of each cell (word) in a state.
s: a number of non-active columns in the initial state of the differential path.



Col(z): a state where = columns are fully active, namely, r x x bytes are active.

SR(Col(z)), SR~ (Col(x)): a state where Col(x) is passed through the ShiftRows or InverseShiftRows.
F': a state where all bytes are active.

x/y: a state where y bytes become non-active from a state x.

In the Super-Sbox analysis, as long as we follow the strategy of Gilbert and Peyrin [7], the attack
complexity is lower-bounded by 27¢, which is the number of bits in one column, or the number of elements
inside the Super-Sbox. In this section, we present a new framework called non-full-active Super-Sbox analysis
which can detect non-ideal properties with a lower complexity. In our approach, we first make a truncated
differential path whose inbound part, in particular inside the Super-Sbox, consists of only non-full-active
states. For non-active bytes, the differential transition 0 to 0 is always held regardless of its value, and thus
attackers can freely choose the value without breaking the path. This gives attackers the freedom degrees to
adjust other bytes inside the Super-Sbox to be connected efficiently.

Non-full-active Super-Sbox analysis can be applied to a class of AES-based permutations, where its
general description is given by [7]. In addition, we assume that the MixColumns operation is designed to
satisfy the property of MDS [3]. Namely, the sum of the number of active bytes in input and output of the
MixColumns operation is greater than or equal to r + 1, otherwise 0.

4.1 Non-Full-Active Truncated Differential Path

We show a generic description of the non-full-active differential path. The differential path has a parameter
s, where s is the number of non-active columns in the initial state. The parameter s will determine the
complexity of the distinguishing attack. The differential path is depicted in Fig. 6 with instantiating the case
r=238and s = 3.

2R [ 3R - 4R 5R [ 8R
SR(Col(1)) 1 col(1) F F SR(Col(1)) 1 col(1) F
1 H
1R H T 2R 3R 4R 5R Wt 6R 7R 8R
— O T — — — — — — —
T t s t
F / SR(Col(s)) SRA(Col(1)) /' col(1) /s F/Col(s) F/SRCol(r-(s+1))) SRCol(1))/(-(s+1) Col(1)/s F/Col(s) F

Fig. 6. (Bottom) New differential path for 8-round AES-based permutations with instantiating » = 8 and s = 3.
(Top) Previous differential path used in the Super-Sbox analysis [7].

To make the differential path, we start from the state after the 2nd and 5th round, whose states are
Col(1)/s and SR~ (Col(1))/(r — (s + 1)), respectively. The differential propagation through the 3rd round
in forward and the 5th round in backward are deterministic, which result in F/Col(s) and F/SR=(Col(r —
(s +1))), respectively. We then need to check that the differential propagation through the MixColumns
operation in the 4th round is consistent with the MDS property. Because input and output states have r — s
and r — (r — (s+1)) active bytes in each column respectively, the sum of active bytes in the input and output
isr—s+r—(r—(s+1)) =r+ 1. Hence, the differential path is consistent with the MDS property. Next,
we determine the differential propagation through the 6th round in forward. The number of active bytes
should be reduced as much as possible after the 6th round in order to make the target non-ideal property
hard for an ideal permutation. Hence, we maximize the number of non-active bytes with satisfying the MDS
property, which results in the state Col(1)/s. Similarly, we determine the differential propagation through



the 2nd round in backward. We make the number of active bytes to be the same as the state after the 6th
round!, which results in SR™1(Col(1))/s. The rest of the path is deterministic, and we thus omit the details.

4.2 Low Complexity Inbound Phase

We explain how to compute the inbound phase for the non-full-active differential path shown in Section 4.1.
We show the details of each state inside the inbound phase in Fig. 7. As described in Fig. 7, we denote
each state in the inbound phase by #i, where 0 < i < 8. The inbound phase starts from the state after the

Outbound Inbound Super-Sbox

......................... > < see
#0 #1 #3

SR
#8

SB

P  —————————————————————— ¢ ¢4 08888 0 >
Super-Sbox Inbound Outbound

[]:non-active M : active (difference is fixed) [ : active (produce all possible differences)

Fig. 7. Inbound phase for the new differential path with non-full-active states.

SubBytes in the 3rd round (#0) and the state input to the 6th round (#8). The goal of the inbound phase
is finding paired values satisfying the differential path through #0 to #8. We find 2¢ such paired values with
2¢ computations and 2¢ amount of memory.

States #0 and #8 include r—s and s+ 1 active bytes, respectively. First, we choose and fix the differences
of all active bytes in #0 and the differences of s active bytes out of s + 1 active bytes in #8. Then, for each
2¢ possible differences of the last active bytes in #8, we aim to store a corresponding paired value. Due to
the linearity of the operations, we can compute the corresponding differences in state #2 and corresponding
s-byte differences in each column of #6. The Super-Sbox analysis can be applied to the computations
between #2 and #6, namely we can compute them column by column independently. Previous Super-Shox
analysis spent 2"¢ of time and 2"¢ of memory for this computation, while we efficiently connect these two
states by using the freedom degrees of the non-active states. In the following, we only show the Super-Sbox
computations in the left most column, which is emphasized with bold squares in Fig. 7. The other columns
can be connected with the same procedure.

Computation procedure inside the Super-Sbox. The operations inside the Super-Sbox are shown in
Fig. 8. Because the ShiftRows operation does not give any impact inside the Super-Sbox, we omit it in Fig. 8.
To stress that each Super-Sbox is computed column by column, we denote the states inside the Super-Sbox
by #2A, #4A, #5A, and #6A in Fig. 8. The goal of this procedure is efficiently producing 2¢ paired values

1 With a lower probability, the number of active bytes can be smaller than the state after the 6th round. However,
this will not lead to any advantage in the distinguishing attack because attackers for an ideal permutation has an
access to both encryption and decryption oracles.



which satisfy the fixed part of the differences of #2A and #6A. This procedure finds 2¢ paired values with
a time complexity of 2¢ and 2° memory. The attack procedure is as follows.

{ SubBytes ][ MixColumns ][ SubBytes J
H2A (- ey #4A
compute
Table
Look up
Table
Look up
solve
system of
equations

Fig. 8. Computation procedures inside each Super-Sbox.

0. For each active byte whose difference is fixed in #2A and #6A, compute SubBytes and Inverse-SubBytes
for all possible 2¢ values and a fixed difference. Store these 2¢ values and corresponding output differences
as a look up table. As a result, (r — s) + s = r look-up tables are prepared.

1. Choose a difference of one active byte in #4A. (The top byte of #4A is chosen in Fig. 8.)

2. We have other r — s — 1 active bytes in #4A and need to make sure that the same number of bytes in
#5A are non-active. This can be done by solving a system of equations and we will obtain one solution
of the system. As a result, differences in #4A and #5A become consistent and are uniquely fixed.

3. From a fixed difference of #4A and the given difference of #2A, for each active byte, we obtain a pair of
values which connects these differences by looking up tables generated in Step 0. Do the same for fixed
s-byte differences of #6A and #5A. Note that values for non-active bytes are not fixed yet at this stage.

4. The remaining work is connecting the values of active bytes of #4A and #5A. We use the freedom
degrees of non-active bytes to effectively achieve this. There are s non-active bytes in #4A and s active
bytes in #5A whose values are fixed in Step 3. By solving a system of equations, we calculate the values
of s non-active bytes in #4A so that the fixed s bytes of #5A can be consistent.

5. With the fixed values in #4A, we compute the non-fixed active byte in #5A, and further compute the
corresponding value in #6A. We store entire values and differences of states #2A and #6A in a table.

6. We iterate Step 1 to Step 5 2¢ times by changing the difference of the chosen active byte in #4A.

Complexity of inbound phase. In the above procedure, Step 0 requires 2° computations and 2¢ amount
of memory. Step 1 to Step 4 can be computed with a complexity of 1 and Step 5 uses a memory of 1. Because
Steps 1 to 5 are repeated 2¢ times in Step 6, the complexity of this procedure is time 2¢ and memory 2°¢.
Note that 2¢ values and differences of the non-fixed active byte are stored in the table. Therefore, we obtain
1 solution in average for any difference of the non-fixed byte.

After we finish the computation for all Super-Sboxes, we choose a difference of the non-fixed byte in #8
in Fig 7. For each of its possible 2¢ differences, we compute the corresponding difference in #6, and obtain
the value which connects #2 to #6 by looking up each Super-Sbox. Note, we obtain one solution in average
for any pair of differences in #2 and #6. To sum up, we can obtain 2¢ starting points, which are solutions
of the inbound phase, with time 2¢ and memory 2¢. In other words, we obtain a starting point with time 1
in average.



4.3 Outbound phase and the freedom degrees

After the inbound phase, we need to compute the outbound phase. The differential path described in Fig. 6
has two probabilistic differential propagations: 1) the backward computation through the 2nd round and 2)
the forward computation through the 6th round. In both rounds, the MixColumns or InverseMixColumns
operations need to produce s non-active bytes. Therefore, for each of these rounds, the success probability
is 27°. Finally, this attack requires 22°° starting points for the outbound phase, and each starting point is
generated with time 1 in average. Therefore, with a time 22°°, we can find a pair that follows the differential
path.

We also need to confirm that the available freedom degree is enough. Our attack starts from the states
#0 and #8 in Fig. 7. #0 and #8 include 7 — s and s + 1 active bytes respectively, and thus we have 2¢("+1)
freedom degrees in total. Hence, as long as the parameter s satisfies 2¢("+1) > 225 which is converted as
shown below, we have enough freedom degrees.

1
s< 1)

4.4 Target Class of AES-Based Permutations and an Example

Let us consider the complexity for an ideal permutation. As was done in the previous analysis [7], the last
MixColumns is not taken into account because it is fully linear. Therefore, the problem is regarded as finding
a crs-bit collision. A crs-bit collision can be found by the birthday attack because attackers have enough
freedom degrees due to Eq. (1). Hence, the complexity for an ideal permutation is 2. The comparison of
the non-full-active Super-Sbox analysis and the ideal case is as follows.

Table 2. The complexity to find a property with our attack and ideal permutation.

sf1 2 3 4 5 6 7 8
Ours 220 24c 26(3 280 210(: 2120 214c 216c

3cr Scr Ter

Ideal|2T 2¢7 273" 92em 975" gdcr 975" oder

From Table 2, we can find a condition of r where our attack can detect a property of the analysis
target faster than the ideal permutation. We can see as long as the permutation is a general AES-based
permutation, our attack cannot be faster than the ideal permutation if » < 4. Therefore, our attack does
not improve the attack on AES. However, for > 4, our attack can work in generic. Note that the ECHO
permutation is regarded as an AES-based permutation with r = 4 at a BigWord level. However, it has other
internal structures and thus not a pure AES-based permutation. This enables us to greatly reduce the attack
complexity on the ECHO permutation even the parameter r is 4 at a BigWord level. See Section 5 for details.

Let us consider an application of the low complexity distinguisher to a real primitive. Grgstl-256 uses
an AES-based permutation with » = ¢ = 8. In previous Super-Sbox analysis [7], the 8-round permutation is
distinguished with time 2''? and memory 24, which is too expensive with the current computation resource
to detect a pair of values satisfying the property. In our attack, we choose the differential path with s = 3,
where its differential path is the same as shown in Fig. 6. Consequently, from Table 2, we can detect a pair
of values following the differential path with time 2*® and 2% memory, while finding a pair of values in an
ideal permutation requires 296, which is infeasible. Choosing other s is also possible as long as s < 4.

5 Applications to ECHO and Grgstl
5.1 New Observations on ECHO

In this section, we explain several new observations on the ECHO permutation when dealing with the
dedicated byte-wise differential path. First, we explain that the complexity analysis cannot be separated for



the MixColumns and the following BigMC. Second, we show that the freedom of the differential path inside
BigSB can be used to reduce the attack complexity.

Complexity analysis for jointed MixColumns and BigMC. In the ECHO permutation, 2-round AES
permutation inside BigSB can be considered as a non-linear layer with Super-Sboxes and a diffusion layer
consisting of ShiftRows, MixColumns and AddRoundKey. Notice that the second MixColumns inside BigSB
and the following BigMC are successively performed when we neglect the in-between AddRoundKey and
BigSR that do not affect the difference. We show that the linearity of jointed MixColumns and BigMC should
be considered to correctly compute the complexity for certain differential paths.

1 .
D SuperSbox 1 SR,MC AK BigMC

D 1 BigSR

0000

#1 #2 #3 #4

Fig. 9. A differential path for a 1-round ECHO permutation.

As an example, let us check the complexity for the differential path shown in Fig. 9 assuming the
differences and real values at state #1 have full freedom. In the previous analysis [23, Appendix B], the
complexity for this differential path is likely to be divided into three parts and analyzed independently. The
differential path from state #1 to #2 can be fulfilled when the output of each active Super-Sbox has only 1
active byte. Since there are totally 12 bytes required to become zero probabilistically, the probability from
#1 to #2 is regarded as 2796, The complexity from #2 to #3 is 1. And since there are totally 12 bytes
required to become zero from #3 to #4 probabilistically, probability is regarded as 279 as well. As a result,
the total probability for the differential path shown in Fig. 9 is regarded as 2796%2 = 27192 However we
show that MC' and BigMC cannot be considered separately, and thus the correct probability needs to be
reconsidered.

We can see that the freedom of the difference for state #2 or #3 is at most 232, since #2 has only 4 active
bytes and the transformation from #2 to #3 is deterministic. As a contradiction for the previous analysis,
the freedom of difference at #3 (232) seems impossible to fulfill the differential propagation to #4 (27).
However, we show that the transformation from #2 to #4 is fulfilled only with a probability of 2724, and
thus 232 freedom degrees are enough to fulfill the differential path.

This fact can be understood from two directions. First, for a position-fixed active byte and the fixed MDS
matrix used in MixColumns between #2 and #3, the 4 active bytes inside each active BigWord at #3 has
a fixed linear relationship. Then if BigMC generates the required difference at #4 for one of 4 active-byte
positions with a probability of 2724 (e.g. 4 top-left bytes from 4 active BigWord at #3 generate 1 active
byte at the top-left of state #4), the other three active-byte positions become the same differential pattern
at #4 with probability 1. In fact, the 4 active bytes in the left-top BigWord at #4 have the same linear
relationship determined by the used MDS matrix in MixColumns. Another understanding method is that
one can switch the sequence of the jointed linear operations by performing BigMC first and MixColumns
later. When 4 active bytes in #2 generate only 1 active byte through BigMC with a probability of 2724,
the differential path from #3 to #4 through MixColumns is fulfilled with probability 1. As a result, we can
explain the complexity for the differential path shown in Fig. 9 is actually 2°6+24 = 2120 instead of 2!92.

Freedom of the differential path inside BigSB. Another useful observation is that we can use the
freedom of the differential path inside BigSB to reduce the attack complexity. When we distinguish the
ECHO permutation from an ideal one, we only care about the differences at the start state and the end
state of the permutation. We notice that when dedicated analysis is applied, in the meanwhile of keeping
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the differential path at a BigWord level be untouched, attackers can use the freedom of the differential path
inside the BigSB transformation to reduce the complexity.

We can still use the differential path in Fig. 9 as an example. In order to fulfill the differential path, the
4 active bytes in state #2 must be at the same position inside the leftmost column of each BigWord?. As
a result, the differential path inside the BigSB has 4 choices for the positions of active bytes. By using all
these 4 differential-path variations, the complexity for the differential path in Fig. 9 can be reduced by 4
from 2129 to 2118,

5.2 Attack on Full-Round ECHO Permutation

Truncated Differential path. In this attack, we use the differential path explained in Section 4.1 with
parameter s = 1 at a BigWord level. As explained in Section 4.4, the path cannot be used for AES-based
permutations with r = 4. However, by taking the properties inside BigWords into account, we can efficiently
apply our path to the ECHO permutation. We show the differential path in Fig. 10. We use the notation
BigSB|x, y, 2], where x,y,2z € {F,D,C,1} to show that x, which is the input differential pattern to BigSB,
changes into y after the 1st AES-round and into z after the 2nd AES-round.

Outbound Pr.=232 #a Inbound Super-Sbox

D I Y R VYT WYY TR TR TP > <« (XX}

F[F[F] ] BigsB[E][F[F] | . F BigSB[D b BigSB[F ) FNJF]F]BigsB|E]_[F[F] . FlE

F|F[F|_FFA, [E[F[F|_|BigMCITF [FFOL [D BigMC[D (DOF, F|BigMCI\ W[F|_rr.A I [F[F[F|BISMA TF[F

FEEENEEE F[ | "D D _ E ENEN. ___[F[F[F FIF
E[E] [E|Bi9SR[E[E[E BigSR BigSR [S EMIOSRIEIE] [E [S [S
BigSB[DID AL BigSB[C . Ic BigSB[FE ) F[_[F[F]BigsB[E[_|F[F] . F[E[F[E
iFol [BID| A JBigMC[ D 0.1 [C BigMC[C [CFA, F|BigMCETF[F| (rr.A, [ [F[F[F|BIOMCIE[F[F[E
Dl ) C , E EREENNEEE HEEE
BigSR Q‘g/ \ BigSR BigSR El [E[E|BIOSR[E[E] [E EIEIE[E

»
(X X >

Super-Shox Inbound

Pr.=2-54 Jointed MC and BigMC Outbound
#3 ’ Freedom of DP inside BigSB

Fig. 10. Differential path for the low complexity distinguishing attack on 8-round ECHO permutation.

Inbound phase. The detailed differential path for the inbound phase is described in Fig. 11. The inbound
phase starts from a middle of BigSB in the 3rd round (#«) and the input state to the 6th round (#0),
where the differential form in #a is C. We first choose and fix a difference of #« and a difference of one of
active BigWords of #3, and compute the corresponding differences of #2 and #6. In the inbound phase, for
each of 232 possible differences of the non-fixed active BigWord in #0, we find a pair of values that satisfies
the chosen differences of #a and #p. The attack procedure follows the one explained in Section 4.2 with
some optimization specific to ECHO. In the followings, we describe the detailed procedure to compute 1
Super-Sbox of ECHO with the size of 128 bits.

0. Generate a look-up table for each of 4 active BigWord whose difference is fixed in #2A and #6A, With
the procedure in Section 4.2, this costs 2'%® time and 2'%® memory. However, [6] pointed out that this
could be performed efficiently by looking inside BigSB. The BigSB can be regarded as 4 Super-Sboxes
(SB, SR, MC, AK, SB) with the size of 32 bits and the linear part (SR, MC, AK). Hence, look-up tables
for 4 active BigWords can be generated by computing 16 Super-Sboxes, which requires 16 x 232 in both
time and memory.

2 One can check that when the 4 active bytes in state #2 are not at the same position inside each BigWord, the
differential path for Fig. 9 becomes impossible. This may be used as an efficient countermeasure against our attack.
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Qutbound BigSB Inbound Super-Sbox
4--.../................%

SB #a #0) #1
SR sig Il
MC SR
AK
#7
Big | Big | Big
SR MC SB
Super-Sbox Inbound Outbound

[ ]:non-active [l : active (difference is fixed) : active (produce all possible differences)

Fig. 11. Inbound phase for 8-round ECHO permutation.

1. Choose a difference of one active BigWord in #4A.

2. By solving a system of equations, compute differences of 2 active BigWords in #4A so that 2 target
BigWords in #5A can be non-active.

3. For each active BigWord with fixed difference, obtain a pair of values which connects differences between
#4A and #2A, and between #6A and #5A by looking up tables generated in Step 0.

4. By solving a system of equations, calculate the value of 1 non-active BigWord in #4A so that the fixed
value of 1 BigWord in #5A can be consistent.

5. With the fixed paired values in #4A, compute the non-fixed active BigWord in #5A and #6A. Only if
the computed difference of #6A has the diagonal form D, store entire values and differences of states
#2A and #6A in a table.

6. Iterate Steps 1 to 5 2'2® times by changing the difference of the chosen BigWord in #4A.

In Step 0, look up tables are generated with 236 time and 236 memory. Steps 1 to 5 are iterated 2'28 times. In
Step 5, the computed difference has the diagonal form D with a probability of 232 /2128 = 2796 and thus we
store 232 data after 2128 iterations. Hence, the complexity for 1 Super-Sbox with the size of 128 bits is 228
computations and 23¢ + 232 memory. Note that we need 23¢ + (4 x 232) < 237 memory for 4 Super-Sboxes.
In the end, the inbound phase generates 232 starting points with 2!2® computations and 237 memory, which
is 296 computations in average to generate 1 starting point.

Success probability and freedom degrees. If details are considered, Step 3 succeeds only probabilis-
tically. Look-up tables for each BigWord consists of 4 Super-Sboxes with the size of 32 bits. Assume that
each Super-Sbox has the same property as the AES Sbox. Namely, for a randomly given a pair of input
and output differences, with a probability of approximately 27!, there exists approximately 2 paired values
satisfying the differences. In Step 3, we look-up 16 Super-Sboxes. Hence, the success probability is 2716 and
we obtain 2'6 paired values. We compute Steps 4 and 5 for all 2'6 paired values, and thus they are computed
2128 times in total by the 2!?® iteration of Step 6. Consequently, the total time and memory for the inbound
phase will not change. Note that the estimation by using average numbers is imprecise only if the cost for
the outbound phase is cheaper than the inbound phase. Because our attack iterates the inbound phase 2°4
times, the evaluation with average numbers is valid.

We also need to check the freedom degrees. In the initial part of the inbound phase, we can choose up
to 2% differences for #a and 232 differences for the fixed active BigWord in #/3. Hence, the above inbound
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phase can be iterated 2'?® times and thus we can generate 2! starting points in maximum, which are
enough to satisfy the outbound phase.

Outbound phase. The differential path shown in Fig. 10 includes two probabilistic differential propaga-
tions.

1. InverseBigMC in the 2nd round. For each of diagonal byte-positions, Inverse MixColumns needs to
output one non-active byte. Hence, the success probability is (278)* = 2732

2. BigSB and BigMC in the 6th round. Observations explained in Section 5.1 are applied for this part.
The probability that the differences in 2 BigWords propagate as D — 1 — C'is (2724)? = 2748, By taking
the freedom of the differential path inside BigSB into account, the probability becomes 4 x 2748 = 2746,
In the BigMC operation, M C' is computed for 4 positions. Due to the property of jointed MixColumns
and BigMC operations, all of the 4 positions will make 1 non-active byte with a probability of 278 in
total. As a result, the total success probability of the 6th round is 2746 x 278 = 2754,

In the end, the success probability of the outbound phase is 2732 x 2754 = 2786,

Total complexity and comparison with ideal case. In our attack, we need to generate 2% starting
points and each starting point is generated with 2°¢ computations in average. Hence, the total complexity
is 286 x 296 = 2182 Note that this attack requires 237 amount of memory. On the other hand, for the ideal
case, the property is regarded as finding a 512-bit collision. Because available freedom degrees are enough to
mount the birthday attack, the complexity is 22°6, which is much higher than our attack on ECHO.

5.3 Improving Semi-Free-Start Collision Attack on 7-round Grgstl-512

We improve the semi-free-start collision attack on 7-round Grgstl-512 compression function, which was
proposed by Mendel et al. [15]. The authors of [15] used the same strategy as previous Super-Sbox analysis
and thus required 254 amount of memory for the inbound phase. We show that the amount of memory can
be reduced to 2°¢ with the non-full-active Super-Sbox analysis. Because our outbound phase is the same as
[15], we only explain the inbound phase.

We start from an observation that in the Super-Sbox analysis for AES-based permutations with a rect-
angle state such as r x 2r, several Super-Sboxes usually include non-active bytes. Hence, the framework
explained in Section 4 can be applied and the data stored for each Super-Sbox can be smaller than 2"¢. How-
ever, in the previous differential path [15, Fig.7] shown in the top of Fig. 12, the 9th Super-Sbox (counted
from Oth) from the left side in the state #P; takes a full-active column as input and output a full-active
column. Hence, attackers need 2%% amount of memory for this part, and this is a bottleneck of the memory
size in the entire attack.

#PZSH #P4 #PASH

TTT1T TTTTT

HHaH B :: i sB

| H— T : =
NN NN AC I ""Hj SH

9(h

I CH

s MB MB E EE SB
NN NN AC SH AC HH ""Hj SH
e —— e —— e ————————— >
Outbound Inbound Super-Shox Inbound Outbound

SH, MB, and AC represents the ShiftBytes, MixBytes, and AddRoundConstant operations used in Grgstl which
correspond to the ShiftRows, MixColumns, and AddRoundKey operations of the AES permutation.

Fig. 12. (Bottom) New differential path for Grgstl-512 compression function. (Top) Previous path.

13



In our attack, we reduce the number of active bytes where we choose their differences at the initial step
of the inbound phase (#Py). Due to this effort, we can make a differential path where each Super-Shox has
at least one non-active byte. The new path is shown in the bottom of Fig. 12. Inside of each Super-Sbox can
be computed based on the procedure explained in Section 4.2, which results in generating 256 starting points
with 256 time and 2°6 memory. In the end, we can reduce the memory size to 2°¢ with maintaining the same
average complexity of the inbound phase. Note that the differential propagation from # Py to # P3; must
be consistent with the MDS property. We confirmed that the amount of memory could not be below 2°¢ due
to this limitation.

Because we reduced the number of active bytes at the initial step of the inbound phase, the freedom
degree was also reduced. In this attack, the success probability of the outbound phase is 27°2, and thus we
need 2!°2 starting points. Because our attack can choose 22-byte differences (8-byte differences for #PyH
and 14-byte differences for #P,) at the initial step, our attack can produce 28%2?2 = 2176 starting points in
maximum. Therefore, we have enough freedom degrees to find a pair of values following the path.

6 Conclusions

We presented the non-full-active Super-Sbox analysis which can detect non-ideal properties of a class of
AES-based permutations with a low complexity. The core idea is using a differential path consisting of only
non-full-active states. This gives us the freedom to efficiently control inside the Super-Sbox. We then applied
this framework to the full-round ECHO permutation by taking properties specific to ECHO into account.
Consequently, our attack could detect a non-ideal property with time 232 and memory 237. However, because
of the convolution operation that is used, our distinguisher cannot be extended to the ECHO compression
function. We then applied our approach to Grestl to obtain the distinguishing attack on the 8-round Grgstl-
256 permutation with a practical cost, and to obtain an improvement on the semi-free-start collision attack
on the 7-round Grgstl-512 compression function.
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