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Abstract. In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal 
properties of a class of AES-based permutations with a low complexity. We apply this framework 
to SHA-3 round-2 candidates ECHO and Grøstl. The first application is for the full-round (8-round) 
ECHO permutation, which is a building block for 256-bit and 224-bit output sizes. By combining several 
observations specific to ECHO, our attack detects a non-ideal property with a time complexity of 2182 

and 237 amount of memory. The complexity, especially in terms of the product of time and memory, 
× 2512is drastically reduced from the previous best attack which required 2512 . To the best of our 

knowledge, this is the first result on the full-round ECHO permutation with both time and memory 
below 2256 or 2224. Note that this result does not impact the security of the ECHO compression function 
nor the overall hash function. We also show that our method can detect non-ideal properties of the 
8-round Grøstl-256 permutation with a practical complexity, and finally show that our approach leads 
to an improvement on a semi-free-start collision attack on the 7-round Grøstl-512 compression function. 
Our approach is based on a series of attacks on AES-based hash functions such as rebound attack and 
Super-Sbox analysis. The core idea is using a new differential path consisting of only non-full-active 
states. 
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1 Introduction 

In the SHA-3 competition [1], 14 algorithms are being considered as round 2 candidates. At the present 
time, none of them has been seriously broken in terms of the important security properties of hash functions 
such as collision resistance or preimage resistance. However, regarding some candidates, building blocks 
such as compression functions or internal permutations have been shown that they do not satisfy ideal 
properties. Although it does not damage the security of hash functions immediately, the analysis against 
building blocks are useful to know the potential weakness, security margin, validity of the security proof, 
potential improvement in the future, and so on. 

Many of the SHA-3 candidates are based on the design strategy of AES [2, 3]. Recently, an outstanding 
progress in the cryptanalysis against AES-based hash functions or permutations has been made [4–14]. Specif
ically, Rebound attack proposed by Mendel et al. at FSE 2009 [5], Start-from-the-Middle attack proposed by 
Mendel et al. at SAC 2009 [6], and Super-Sbox analysis applied to the rebound attack by Lamberger et al. 
at Asiacrypt 2009 [13] and by Gilbert and Peyrin at FSE 2010 [7] have wide range of their applications and 
are powerful analytic tools. In fact, the rebound based attack has been applied to several SHA-3-candidates 
[5–12, 15] such as Grøstl [16], ECHO [17], JH [18], Cheetah [19], LANE [20], Twister [21]. It has also been 
applied to other hash functions [5–7, 13, 14] such as Whirlpool [22] and AES hashing modes. 

ECHO [17] is one of the round 2 algorithms in the SHA-3 competition, which was designed by Benadjila et 
al. It has an AES-based structure and its building block is a 2048-bit AES-based permutation. The number of 
rounds in the permutation is 8 for ECHO-224 and ECHO-256, and 10 for ECHO-384 and ECHO-512. At FSE 
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2010, Gilbert and Peyrin showed that the full-round (8-round) ECHO permutation could be distinguished 
from an ideal permutation with time of 2768 and memory of 2512 by using the Super-Sbox analysis [7]. 
After that, Peyrin [23] reduced the complexity to 2512 in both time and memory. Hence, the 8-round ECHO 
permutation was shown to be non-ideal as a 2048-bit permutation. However, because the 8-round ECHO 
permutation is a building block to generate 256-bit or 224-bit hash values and compression part from 2048
bits to 256-bits or 224-bits is not considered, the impact of this attack seems almost negligible. In addition, 
as long as it is evaluated by the Super-Sbox analysis with the framework of [7], the time or memory cannot 
be below 2512. In fact, Gilbert and Peyrin claimed as follows [7, Section 4.4]: 

“Moreover, since the Super-Sbox cryptanalysis of the ECHO permutation presented above requires 
at least 2512 computations and memory, it is not a well suited starting point for trying to mount a 
distinguisher or a collision search attack against one of the compression functions of ECHO-256 or 
ECHO-512 (or one of their single-pipe variants).” 

Besides, Peyrin mentioned attacks on the 8-round ECHO permutation as follows [23, Appendix B]: 

“Indeed, the improved Super-Sbox attack for ECHO can not be used anymore as too many active 
cells are present in the middle rounds. One has to use the Super-Sbox method instead, which is 
inefficient in the case of ECHO since it requires at least 2512 computations and memory.” 

To sum up, there is no powerful analysis on the ECHO hash function nor compression function. Even though 
attacks on the permutation reached full-round with Super-Sbox analysis, the complexity is too high due to 
the property of the Super-Sbox analysis. 

Note that besides the ECHO internal permutation, the round-reduced ECHO compression function is 
attack by Peyrin [23, 24]. Recently, after the submission of the Second SHA-3 Candidate Conference, Schläffer 
attacked the round-reduced ECHO hash function and improved the attacks on the compression function [25]. 
These results are listed in Table 1. 

Our Contributions 

In this paper, we present non-full-active Super-Sbox analysis which can detect non-ideal properties of a class 
of AES-based permutations with a low complexity. To demonstrate its applicability, we first apply the non
full-active Super-Sbox analysis to the 8-round Grøstl-256 permutation, which is an AES-based permutation 
consisting of the 8×8 state. This attack can detect a non-ideal property of the 8-round Grøstl-256 permutation 
with time of 248 and memory of 28, while detecting the same property of an ideal permutation requires 296 . 
We then apply this framework to the full-round (8-round) ECHO permutation by optimizing the attack with 
taking several properties specific to ECHO into account. This attack can detect a non-ideal property of the 
8-round ECHO permutation with time of 2182 and memory of 237, while detecting the same property of an 
ideal permutation requires 2256. Note that the 8-round ECHO permutation is a building block for ECHO-256 
and ECHO-224. As far as we know, this is the first result on the full-round ECHO permutation which can 
work with both time and memory (or product of these factors) below 2256 (or 2224). Note, however, that 
the role of the convolution in the ECHO compression function is very important for its security and our 
distinguisher cannot be extended to the ECHO compression function, nor the hash function. Finally, we 
show that our approach also improves the amount of memory for the semi-free-start collision attack on the 
7-round Grøstl-512 compression function to 256 from 264. The attack results are summarized in Table 1. The 
technical details in this paper are as follows. 

Low complexity distinguishers on AES-based permutations We present a new strategy of the Super-
Sbox analysis which can work for a class of AES-based permutations in generic. The core idea is using a 
differential path whose inbound part, in particular inside the Super-Sbox, consists of only non-full-active 
states. Regarding non-active bytes, the difference is always 0 through the SubBytes and InverseSubBytes 
operations regardless of its value. Hence, attackers can freely choose the value without breaking the 
differential path. This freedom degrees enable attackers to control values (or differences through the 
SubBytes operation) of other bytes inside the Super-Sbox to be connected efficiently. 
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Table 1. Comparison of attack results on ECHO and on Grøstl. 

Target Rounds Time Memory Attack Type Paper 

ECHO-256/-224 
Permutation 

8 (full) 
8 (full) 
8 (full) 

2768 

2512 

2182 

2512 

2512 

237 

Distinguisher 
Distinguisher 
Distinguisher 

[7] 
[23] 

Ours Section 5.2 
Grøstl-256 

Permutation 
8 
8 

2112 

248 
264 

28 
Distinguisher 
Distinguisher 

[7] 
Ours Section 4.4 

Grøstl-512 7 2152 264 Semi-free-start collision [15] 
Comp. Function 7 2152 256 Semi-free-start collision Ours Section 5.3 

ECHO-256 
Hash Function 

4 
5 

264 

296 
264 

264 
Collision 

Distinguisher 
[25] 
[25] 

ECHO-256 
Comp. Function 

3 
6.5 
7 

264 

296 

2107 

264 

264 

264 

Semi-free-start collision 
Free-start-near collision 

Distinguisher 

[24]/[23] 
[25] 
[25] 

ECHO-512 
Comp. Function 

3 
6.5 
7 

296 

296 

2106 

264 

264 

264 

Semi-free-start collision 
Free-start-near collision 

Distinguisher 

[24]/[23] 
[25] 
[25] 

Grøstl-256 Comp. Func. 10 (full) 2192 264 Distinguisher [24]/[23] 
Grøstl-512 Comp. Func. 11 2640 264 Distinguisher [24]/[23] 

Observations on the property of ECHO permutation We explain two new observations on the ECHO 
permutation when dealing with the byte-wise truncated differential path. First, we find that the linearity 
of the jointed two linear operations (MixColumns inside the BigSB and the following BigMC) should be 
taken into account in order to correctly calculate the complexity for a certain differential path. Second, 
there are freedom of the differential paths inside BigSB available to attackers to reduce the complexity. 

This paper is organized as follows. In Section 2, we briefly describe AES-permutation, ECHO, and Grøstl. 
In Section 3, we introduce previous work. In Section 4, we present the framework of non-full-active Super-
Sbox analysis. We show its application to the 8-round Grøstl-256 permutation as an example. In Section 5, 
we apply our attack to the full-round ECHO permutation with taking several properties specific to ECHO 
into account. We also apply our attack to the semi-free-start collision attack on the 7-round Grøstl-512 
compression function. In Section 6, we conclude this paper. 

2 Specifications 

In 2000, the block cipher Rijndael designed by Daemen and Rijmen was selected as Advanced Encryption 
Standard (AES) [2, 3]. AES as a block cipher is with a 128-bit block represented by a 4 × 4 state where each 
element is a byte. Here we consider a general AES-based permutation with the internal state represented 
by an r × r matrix where each element in it is a c-bit word. The row and column position of a word/byte 
is denoted by i and j, respectively where i, j ∈ [0, r − 1]. As shown in Fig. 1, the state is updated by four 
operations in a round of the AES-based permutation. 

–	 SubBytes (SB) as the non-linear layer substitute each word/byte of the internal state according to an 
S-box table. 

–	 In ShiftRows (SR), each word/byte at row j of the state is cyclically shifted to left by j positions. 
–	 The linear operation MixColumns (MC) multiply each column of the state by a Maximum-Distance 

Separable (MDS) matrix . 
–	 The AddRoundKey (AK) operation performs the bit-wise exclusive-or operation between the current 

state with a constant. 
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SubBytes ShiftRows AddRoundKey
S-box Multiplied by an MDS matrix Known Constant1234567

0 1234567
0 MixColumns 1234567

0
r cells

r cells c bits

F C D 1

Fig. 1. The operations inside a round of AES-based permutation. 

2.1 ECHO Permutation 

The ECHO hash function [17] designed by Benadjila et al. is a candidate in the second round of the SHA-3 
competition. It has an AES-based structure and its building block is a 2048-bit AES-based permutation. 
The number of rounds in the permutation is 8 for ECHO-224 and ECHO-256, and 10 for ECHO-384 and 
ECHO-512. The 2048-bit internal state of ECHO can be represented by a 4 × 4 matrix where each element 
in it is a 128-bit AES state called a BigWord. The round operations in the ECHO permutation manipulate 
128-bit BigWords instead of 8-bit bytes. As shown in Fig. 2, one round of ECHO permutation has three 
operations as follows. 

–	 BigSB as the non-linear layer substitute each 128-bit BigWord of the ECHO state by applying 2-round 
AES permutation on it. 

–	 In BigSR, each 128-bit BigWord at row j is cyclically shifted to left by j positions. 
–	 The linear operation BigMC multiply each 4 bytes of the ECHO state by a MDS matrix. 

To simplify the dedicated analysis of the ECHO permutation, as introduced by [24], we denote 4 types 
of byte-wise truncated differences of the BigWord as shown in Fig. 3, where active bytes are in grey. 

BigSB
2-round AES per. 0 Multiplied by an MDS matrix

BigSR BigMC123 1230
AES state

Fig. 2. One round of ECHO permutation. Fig. 3. Notations for BigWords of ECHO. 

2.2 Grøstl Permutation and Compression Function 

The Grøstl hash function [16] designed by Gauravaram et al. is another candidate in the second round of the 
SHA-3 competition. The compression function of Grøstl is built upon the AES-based permutations as well. 
In the case of Grøstl-256 permutation, the internal state can be represented by an 8 × 8 matrix where each 
element is an 8-bit byte. While the internal state of Grøstl-512 permutation is an 8 × 16 matrix of bytes. 
The number of rounds in the permutation is 10 for Grøstl-224 and Grøstl-256, and 14 for Grøstl-384 and 
Grøstl-512. 

The Grøstl-256 permutation are the AES-based permutation with r = 8 and c = 8. As shown in Fig. 4, 
The Grøstl-512 permutation is different from Grøstl-256 with respect to only the ShiftRows operation, where 
the bytes at row 7 are cyclically shifted to left by 11 positions. The compression function is based on two 
AES-based permutations P and Q, where only the constant numbers for AddRoundKey are different. As 
described in Fig. 5, the Grøstl compression function takes a chaining variable CV and a message M as the 
inputs. The output of the compression function is the new chaining variable CV � which is the XOR of the 
outputs of permutations P , Q and the original chaining variable CV . 
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ShiftRows1234567
1234567

00
Fig. 4. ShiftRows operation for Grøstl-512. Fig. 5. Compression function of Grøstl. 

3 Previous Work 

Discovering non-ideal properties are valuable when evaluating the security of certain hash functions. This 
section introduces recently proposed analytic tools that are applied to explore the non-ideal properties of 
the internal permutations used in certain hash functions. 

Rebound attack. Rebound attack was first proposed by Mendel et al. at FSE 2009 [5]. It is a very useful 
technique to analyze the AES-based permutations under a known-key assumption. Rebound attack divides 
a differential path into two parts as inbound and outbound. For the inbound phase, attackers can control the 
most expensive part of the differential path with a very low average complexity. Then outbound differential 
path is satisfied probabilistically. Rebound attack needs to make sure the total number of starting points 
generated at the inbound phase is enough to fulfill the outbound complexity. For more details, we refer to 
the original publication [5]. 

Start-from-the-Middle attack. Start-from-the-Middle attack was proposed by Mendel et al. at SAC 2009 
[6]. It improves the original rebound attack by extending the number of controlled rounds from 2 to 3 so 
that the total complexity can be greatly reduced. The underlying idea is to utilize the independence and the 
freedom of each search procedure as much as possible. As a result, without increasing the time and memory, 
3 rounds of the differential path can be fulfilled. For more details, we refer to the original publication [6]. 

Super-Sbox analysis. Super-Sbox analysis for the rebound attack against AES-based permutations was 
independently proposed by Lamberger et al. at Asiacrypt 2009 and by Gilbert and Peyrin at FSE 2010 [7]. It 
combines 2 non-linear layers (SubBytes) and 1 diffusion layer to 1 non-linear layer with a larger substitution-
box named Super-Sbox. By doing so, 2-round AES-based permutation can be regarded as a non-linear layer 
with a following diffusion layer. When it is applied to the rebound attack, the inbound phase can be extended 
by one more round. As a side effect, attackers need to spend more time and memory to exploit the differential 
property of the Super-Sbox. For more details, we refer to the original publication [7]. 

Dedicated analysis on ECHO. Peyrin proposed a differential path with an increased granularity for a 
dedicated analysis on ECHO [23, 24]. Since the permutation for each BigWord inside BigSB of the ECHO 
permutation are still AES-based, the truncated difference can be detailed to byte-wise instead of 128-bit 
word-wise. By doing so, the number of active bytes for the outbound search can be reduced, so that the total 
attack complexity can be reduced. For more details, we refer to the original papers [23, 24]. 

4 Non-Full-Active Super-Sbox Analysis on AES-Based Permutations 

In this section, we use the following notations to discuss generic AES-based permutations: 

r: a number of rows and columns in a state. 
c: a number of bits of each cell (word) in a state. 
s: a number of non-active columns in the initial state of the differential path. 
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1R 2R 3R 4R 5R 6R 7R 8R

1R 2R 3R 4R 5R 6R 7R 8R

SR-1(Col(1))

F / SR-1(Col(s))

1

SR-1(Col(1)) / s

Col(1)

Col(1) / s

F

F / Col(s)

F

F / SR-1(Col(r- (s+1)))

SR-1(Col(1))

SR-1(Col(1)) / (r-(s+1))

1

Col(1) / s

Col(1)

F / Col(s)

F

F

Col(x): a state where x columns are fully active, namely, r × x bytes are active. 
SR(Col(x)), SR−1(Col(x)): a state where Col(x) is passed through the ShiftRows or InverseShiftRows. 
F : a state where all bytes are active.
 
x/y: a state where y bytes become non-active from a state x.
 

In the Super-Sbox analysis, as long as we follow the strategy of Gilbert and Peyrin [7], the attack 
complexity is lower-bounded by 2rc, which is the number of bits in one column, or the number of elements 
inside the Super-Sbox. In this section, we present a new framework called non-full-active Super-Sbox analysis 
which can detect non-ideal properties with a lower complexity. In our approach, we first make a truncated 
differential path whose inbound part, in particular inside the Super-Sbox, consists of only non-full-active 
states. For non-active bytes, the differential transition 0 to 0 is always held regardless of its value, and thus 
attackers can freely choose the value without breaking the path. This gives attackers the freedom degrees to 
adjust other bytes inside the Super-Sbox to be connected efficiently. 

Non-full-active Super-Sbox analysis can be applied to a class of AES-based permutations, where its 
general description is given by [7]. In addition, we assume that the MixColumns operation is designed to 
satisfy the property of MDS [3]. Namely, the sum of the number of active bytes in input and output of the 
MixColumns operation is greater than or equal to r + 1, otherwise 0. 

4.1 Non-Full-Active Truncated Differential Path 

We show a generic description of the non-full-active differential path. The differential path has a parameter 
s, where s is the number of non-active columns in the initial state. The parameter s will determine the 
complexity of the distinguishing attack. The differential path is depicted in Fig. 6 with instantiating the case 
r = 8 and s = 3. 

Fig. 6. (Bottom) New differential path for 8-round AES-based permutations with instantiating r = 8 and s = 3. 
(Top) Previous differential path used in the Super-Sbox analysis [7]. 

To make the differential path, we start from the state after the 2nd and 5th round, whose states are 
Col(1)/s and SR−1(Col(1))/(r − (s + 1)), respectively. The differential propagation through the 3rd round 
in forward and the 5th round in backward are deterministic, which result in F/Col(s) and F/SR−1(Col(r − 
(s + 1))), respectively. We then need to check that the differential propagation through the MixColumns 
operation in the 4th round is consistent with the MDS property. Because input and output states have r − s 
and r − (r − (s +1)) active bytes in each column respectively, the sum of active bytes in the input and output 
is r − s + r − (r − (s + 1)) = r + 1. Hence, the differential path is consistent with the MDS property. Next, 
we determine the differential propagation through the 6th round in forward. The number of active bytes 
should be reduced as much as possible after the 6th round in order to make the target non-ideal property 
hard for an ideal permutation. Hence, we maximize the number of non-active bytes with satisfying the MDS 
property, which results in the state Col(1)/s. Similarly, we determine the differential propagation through 
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the 2nd round in backward. We make the number of active bytes to be the same as the state after the 6th 
round1, which results in SR−1(Col(1))/s. The rest of the path is deterministic, and we thus omit the details. 

4.2 Low Complexity Inbound Phase 

We explain how to compute the inbound phase for the non-full-active differential path shown in Section 4.1. 

SB SR MC SB

SB SR MC

SR

AK

MC

AK AK

SB

# 0 # 1 # 2 # 3

# 4 # 5 # 6 # 7 # 8

Outbound Inbound Super-Sbox

Super-Sbox Inbound Outbound

: non-active : active (difference is fixed) : active (produce all possible differences)

# 4A # 5A # 6A

# 2A

We show the details of each state inside the inbound phase in Fig. 7. As described in Fig. 7, we denote 
each state in the inbound phase by #i, where 0 ≤ i ≤ 8. The inbound phase starts from the state after the 

Fig. 7. Inbound phase for the new differential path with non-full-active states. 

SubBytes in the 3rd round (#0) and the state input to the 6th round (#8). The goal of the inbound phase 
is finding paired values satisfying the differential path through #0 to #8. We find 2c such paired values with 
2c computations and 2c amount of memory. 

States #0 and #8 include r −s and s+1 active bytes, respectively. First, we choose and fix the differences 
of all active bytes in #0 and the differences of s active bytes out of s + 1 active bytes in #8. Then, for each 
2c possible differences of the last active bytes in #8, we aim to store a corresponding paired value. Due to 
the linearity of the operations, we can compute the corresponding differences in state #2 and corresponding 
s-byte differences in each column of #6. The Super-Sbox analysis can be applied to the computations 
between #2 and #6, namely we can compute them column by column independently. Previous Super-Sbox 
analysis spent 2rc of time and 2rc of memory for this computation, while we efficiently connect these two 
states by using the freedom degrees of the non-active states. In the following, we only show the Super-Sbox 
computations in the left most column, which is emphasized with bold squares in Fig. 7. The other columns 
can be connected with the same procedure. 

Computation procedure inside the Super-Sbox. The operations inside the Super-Sbox are shown in 
Fig. 8. Because the ShiftRows operation does not give any impact inside the Super-Sbox, we omit it in Fig. 8. 
To stress that each Super-Sbox is computed column by column, we denote the states inside the Super-Sbox 
by #2A, #4A, #5A, and #6A in Fig. 8. The goal of this procedure is efficiently producing 2c paired values 

1 With a lower probability, the number of active bytes can be smaller than the state after the 6th round. However, 
this will not lead to any advantage in the distinguishing attack because attackers for an ideal permutation has an 
access to both encryption and decryption oracles. 
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SubBytes MixColumns SubBytes

Table
Look up

Table
Look up

#2A #4A #5A #6A

solve
system of
equations

start

store 2c

results

compute(2c times)

which satisfy the fixed part of the differences of #2A and #6A. This procedure finds 2c paired values with 
a time complexity of 2c and 2c memory. The attack procedure is as follows. 

Fig. 8. Computation procedures inside each Super-Sbox. 

0. For each active byte whose difference is fixed in #2A and #6A, compute SubBytes and Inverse-SubBytes 
for all possible 2c values and a fixed difference. Store these 2c values and corresponding output differences 
as a look up table. As a result, (r − s) + s = r look-up tables are prepared. 

1. Choose a difference of one active byte in #4A. (The top byte of #4A is chosen in Fig. 8.) 
2. We have other r − s − 1 active bytes in #4A and need to make sure that the same number of bytes in 

#5A are non-active. This can be done by solving a system of equations and we will obtain one solution 
of the system. As a result, differences in #4A and #5A become consistent and are uniquely fixed. 

3. From a fixed difference of #4A and the given difference of #2A, for each active byte, we obtain a pair of 
values which connects these differences by looking up tables generated in Step 0. Do the same for fixed 
s-byte differences of #6A and #5A. Note that values for non-active bytes are not fixed yet at this stage. 

4. The remaining work is connecting the values of active bytes of #4A and #5A. We use the freedom 
degrees of non-active bytes to effectively achieve this. There are s non-active bytes in #4A and s active 
bytes in #5A whose values are fixed in Step 3. By solving a system of equations, we calculate the values 
of s non-active bytes in #4A so that the fixed s bytes of #5A can be consistent. 

5. With the fixed values in #4A, we compute the non-fixed active byte in #5A, and further compute the 
corresponding value in #6A. We store entire values and differences of states #2A and #6A in a table. 

6. We iterate Step 1 to Step 5 2c times by changing the difference of the chosen active byte in #4A. 

Complexity of inbound phase. In the above procedure, Step 0 requires 2c computations and 2c amount 
of memory. Step 1 to Step 4 can be computed with a complexity of 1 and Step 5 uses a memory of 1. Because 
Steps 1 to 5 are repeated 2c times in Step 6, the complexity of this procedure is time 2c and memory 2c . 
Note that 2c values and differences of the non-fixed active byte are stored in the table. Therefore, we obtain 
1 solution in average for any difference of the non-fixed byte. 

After we finish the computation for all Super-Sboxes, we choose a difference of the non-fixed byte in #8 
in Fig 7. For each of its possible 2c differences, we compute the corresponding difference in #6, and obtain 
the value which connects #2 to #6 by looking up each Super-Sbox. Note, we obtain one solution in average 
for any pair of differences in #2 and #6. To sum up, we can obtain 2c starting points, which are solutions 
of the inbound phase, with time 2c and memory 2c. In other words, we obtain a starting point with time 1 
in average. 
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4.3 Outbound phase and the freedom degrees 

After the inbound phase, we need to compute the outbound phase. The differential path described in Fig. 6 
has two probabilistic differential propagations: 1) the backward computation through the 2nd round and 2) 
the forward computation through the 6th round. In both rounds, the MixColumns or InverseMixColumns 
operations need to produce s non-active bytes. Therefore, for each of these rounds, the success probability 
is 2−cs. Finally, this attack requires 22cs starting points for the outbound phase, and each starting point is 
generated with time 1 in average. Therefore, with a time 22cs, we can find a pair that follows the differential 
path. 

We also need to confirm that the available freedom degree is enough. Our attack starts from the states 
#0 and #8 in Fig. 7. #0 and #8 include r − s and s + 1 active bytes respectively, and thus we have 2c(r+1) 

freedom degrees in total. Hence, as long as the parameter s satisfies 2c(r+1) ≥ 22cs, which is converted as 
shown below, we have enough freedom degrees. 

r + 1 
s ≤ (1)

2 

4.4 Target Class of AES-Based Permutations and an Example 

Let us consider the complexity for an ideal permutation. As was done in the previous analysis [7], the last 
MixColumns is not taken into account because it is fully linear. Therefore, the problem is regarded as finding 
a crs-bit collision. A crs-bit collision can be found by the birthday attack because attackers have enough 
freedom degrees due to Eq. (1). Hence, the complexity for an ideal permutation is 2 

crs 
. The comparison of 2 

the non-full-active Super-Sbox analysis and the ideal case is as follows. 

Table 2. The complexity to find a property with our attack and ideal permutation. 

s 1 2 3 4 5 6 7 8 
22c 24c 26c 28c 210c 212c 214c 216cOurs 

cr 3cr 5cr 7cr 
2cr 22cr 23cr 24cr2 2 2 2 2 2 2 2Ideal 

From Table 2, we can find a condition of r where our attack can detect a property of the analysis 
target faster than the ideal permutation. We can see as long as the permutation is a general AES-based 
permutation, our attack cannot be faster than the ideal permutation if r ≤ 4. Therefore, our attack does 
not improve the attack on AES. However, for r > 4, our attack can work in generic. Note that the ECHO 
permutation is regarded as an AES-based permutation with r = 4 at a BigWord level. However, it has other 
internal structures and thus not a pure AES-based permutation. This enables us to greatly reduce the attack 
complexity on the ECHO permutation even the parameter r is 4 at a BigWord level. See Section 5 for details. 

Let us consider an application of the low complexity distinguisher to a real primitive. Grøstl-256 uses 
an AES-based permutation with r = c = 8. In previous Super-Sbox analysis [7], the 8-round permutation is 
distinguished with time 2112 and memory 264, which is too expensive with the current computation resource 
to detect a pair of values satisfying the property. In our attack, we choose the differential path with s = 3, 
where its differential path is the same as shown in Fig. 6. Consequently, from Table 2, we can detect a pair 
of values following the differential path with time 248 and 28 memory, while finding a pair of values in an 
ideal permutation requires 296, which is infeasible. Choosing other s is also possible as long as s ≤ 4. 

5 Applications to ECHO and Grøstl 

5.1 New Observations on ECHO 

In this section, we explain several new observations on the ECHO permutation when dealing with the 
dedicated byte-wise differential path. First, we explain that the complexity analysis cannot be separated for 
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the MixColumns and the following BigMC. Second, we show that the freedom of the differential path inside 
BigSB can be used to reduce the attack complexity. 

Complexity analysis for jointed MixColumns and BigMC. In the ECHO permutation, 2-round AES 
permutation inside BigSB can be considered as a non-linear layer with Super-Sboxes and a diffusion layer 
consisting of ShiftRows, MixColumns and AddRoundKey. Notice that the second MixColumns inside BigSB 
and the following BigMC are successively performed when we neglect the in-between AddRoundKey and 
BigSR that do not affect the difference. We show that the linearity of jointed MixColumns and BigMC should 
be considered to correctly compute the complexity for certain differential paths. 

D SuperSboxD D D CC CBigMCCC1 11 1 SR,MC,AKBigSR#1 #2 #3 #4
Fig. 9. A differential path for a 1-round ECHO permutation. 

As an example, let us check the complexity for the differential path shown in Fig. 9 assuming the 
differences and real values at state #1 have full freedom. In the previous analysis [23, Appendix B], the 
complexity for this differential path is likely to be divided into three parts and analyzed independently. The 
differential path from state #1 to #2 can be fulfilled when the output of each active Super-Sbox has only 1 
active byte. Since there are totally 12 bytes required to become zero probabilistically, the probability from 
#1 to #2 is regarded as 2−96. The complexity from #2 to #3 is 1. And since there are totally 12 bytes 
required to become zero from #3 to #4 probabilistically, probability is regarded as 2−96 as well. As a result, 
the total probability for the differential path shown in Fig. 9 is regarded as 2−96×2 = 2−192. However we 
show that MC and BigMC cannot be considered separately, and thus the correct probability needs to be 
reconsidered. 

We can see that the freedom of the difference for state #2 or #3 is at most 232, since #2 has only 4 active 
bytes and the transformation from #2 to #3 is deterministic. As a contradiction for the previous analysis, 
the freedom of difference at #3 (232) seems impossible to fulfill the differential propagation to #4 (2−96). 
However, we show that the transformation from #2 to #4 is fulfilled only with a probability of 2−24, and 
thus 232 freedom degrees are enough to fulfill the differential path. 

This fact can be understood from two directions. First, for a position-fixed active byte and the fixed MDS 
matrix used in MixColumns between #2 and #3, the 4 active bytes inside each active BigWord at #3 has 
a fixed linear relationship. Then if BigMC generates the required difference at #4 for one of 4 active-byte 
positions with a probability of 2−24 (e.g. 4 top-left bytes from 4 active BigWord at #3 generate 1 active 
byte at the top-left of state #4), the other three active-byte positions become the same differential pattern 
at #4 with probability 1. In fact, the 4 active bytes in the left-top BigWord at #4 have the same linear 
relationship determined by the used MDS matrix in MixColumns. Another understanding method is that 
one can switch the sequence of the jointed linear operations by performing BigMC first and MixColumns 
later. When 4 active bytes in #2 generate only 1 active byte through BigMC with a probability of 2−24 , 
the differential path from #3 to #4 through MixColumns is fulfilled with probability 1. As a result, we can 
explain the complexity for the differential path shown in Fig. 9 is actually 296+24 = 2120 instead of 2192 . 

Freedom of the differential path inside BigSB. Another useful observation is that we can use the 
freedom of the differential path inside BigSB to reduce the attack complexity. When we distinguish the 
ECHO permutation from an ideal one, we only care about the differences at the start state and the end 
state of the permutation. We notice that when dedicated analysis is applied, in the meanwhile of keeping 
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the differential path at a BigWord level be untouched, attackers can use the freedom of the differential path 
inside the BigSB transformation to reduce the complexity. 

We can still use the differential path in Fig. 9 as an example. In order to fulfill the differential path, the 
4 active bytes in state #2 must be at the same position inside the leftmost column of each BigWord2. As 
a result, the differential path inside the BigSB has 4 choices for the positions of active bytes. By using all 
these 4 differential-path variations, the complexity for the differential path in Fig. 9 can be reduced by 4 
from 2120 to 2118 . 

5.2 Attack on Full-Round ECHO Permutation 

Truncated Differential path. In this attack, we use the differential path explained in Section 4.1 with 
parameter s = 1 at a BigWord level. As explained in Section 4.4, the path cannot be used for AES-based 
permutations with r = 4. However, by taking the properties inside BigWords into account, we can efficiently 
apply our path to the ECHO permutation. We show the differential path in Fig. 10. We use the notation 
BigSB[x, y, z], where x, y, z ∈ {F, D, C, 1} to show that x, which is the input differential pattern to BigSB, 
changes into y after the 1st AES-round and into z after the 2nd AES-round. 

Fig. 10. Differential path for the low complexity distinguishing attack on 8-round ECHO permutation. 

Inbound phase. The detailed differential path for the inbound phase is described in Fig. 11. The inbound 
phase starts from a middle of BigSB in the 3rd round (#α) and the input state to the 6th round (#β), 
where the differential form in #α is C. We first choose and fix a difference of #α and a difference of one of 
active BigWords of #β, and compute the corresponding differences of #2 and #6. In the inbound phase, for 
each of 232 possible differences of the non-fixed active BigWord in #β, we find a pair of values that satisfies 
the chosen differences of #α and #β. The attack procedure follows the one explained in Section 4.2 with 
some optimization specific to ECHO. In the followings, we describe the detailed procedure to compute 1 
Super-Sbox of ECHO with the size of 128 bits. 

0. Generate a look-up table for each of 4 active BigWord whose difference is fixed in #2A and #6A, With 
the procedure in Section 4.2, this costs 2128 time and 2128 memory. However, [6] pointed out that this 
could be performed efficiently by looking inside BigSB. The BigSB can be regarded as 4 Super-Sboxes 
(SB, SR, MC, AK, SB) with the size of 32 bits and the linear part (SR, MC, AK). Hence, look-up tables 
for 4 active BigWords can be generated by computing 16 Super-Sboxes, which requires 16 × 232 in both 
time and memory. 

2	 One can check that when the 4 active bytes in state #2 are not at the same position inside each BigWord, the 
differential path for Fig. 9 becomes impossible. This may be used as an efficient countermeasure against our attack. 
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Fig. 11. Inbound phase for 8-round ECHO permutation. 

1. Choose a difference of one active BigWord in #4A. 
2. By solving a system of equations, compute differences of 2 active BigWords in #4A so that 2 target 

BigWords in #5A can be non-active. 
3. For each active BigWord with fixed difference, obtain a pair of values which connects differences between 

#4A and #2A, and between #6A and #5A by looking up tables generated in Step 0. 
4. By solving a system of equations, calculate the value of 1 non-active BigWord in #4A so that the fixed 

value of 1 BigWord in #5A can be consistent. 
5. With the fixed paired values in #4A, compute the non-fixed active BigWord in #5A and #6A. Only if 

the computed difference of #6A has the diagonal form D, store entire values and differences of states 
#2A and #6A in a table. 

6. Iterate Steps 1 to 5 2128 times by changing the difference of the chosen BigWord in #4A. 

In Step 0, look up tables are generated with 236 time and 236 memory. Steps 1 to 5 are iterated 2128 times. In 
Step 5, the computed difference has the diagonal form D with a probability of 232/2128 = 2−96, and thus we 
store 232 data after 2128 iterations. Hence, the complexity for 1 Super-Sbox with the size of 128 bits is 2128 

computations and 236 + 232 memory. Note that we need 236 + (4 × 232) < 237 memory for 4 Super-Sboxes. 
In the end, the inbound phase generates 232 starting points with 2128 computations and 237 memory, which 
is 296 computations in average to generate 1 starting point. 

Success probability and freedom degrees. If details are considered, Step 3 succeeds only probabilis
tically. Look-up tables for each BigWord consists of 4 Super-Sboxes with the size of 32 bits. Assume that 
each Super-Sbox has the same property as the AES Sbox. Namely, for a randomly given a pair of input 
and output differences, with a probability of approximately 2−1, there exists approximately 2 paired values 
satisfying the differences. In Step 3, we look-up 16 Super-Sboxes. Hence, the success probability is 2−16 and 
we obtain 216 paired values. We compute Steps 4 and 5 for all 216 paired values, and thus they are computed 
2128 times in total by the 2128 iteration of Step 6. Consequently, the total time and memory for the inbound 
phase will not change. Note that the estimation by using average numbers is imprecise only if the cost for 
the outbound phase is cheaper than the inbound phase. Because our attack iterates the inbound phase 254 

times, the evaluation with average numbers is valid. 
We also need to check the freedom degrees. In the initial part of the inbound phase, we can choose up 

to 296 differences for #α and 232 differences for the fixed active BigWord in #β. Hence, the above inbound 
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phase can be iterated 2128 times and thus we can generate 2160 starting points in maximum, which are 
enough to satisfy the outbound phase. 

Outbound phase. The differential path shown in Fig. 10 includes two probabilistic differential propaga
tions. 

2. BigSB and BigMC in the 6th round.	 Observations explained in Section 5.1 are applied for this part. 
The probability that the differences in 2 BigWords propagate as D → 1 → C is (2−24)2 = 2−48. By taking 
the freedom of the differential path inside BigSB into account, the probability becomes 4 × 2−48 = 2−46 . 
In the BigMC operation, MC is computed for 4 positions. Due to the property of jointed MixColumns 
and BigMC operations, all of the 4 positions will make 1 non-active byte with a probability of 2−8 in 
total. As a result, the total success probability of the 6th round is 2−46 × 2−8 = 2−54 . 

1. InverseBigMC in the 2nd round.	 For each of diagonal byte-positions, Inverse MixColumns needs to 
output one non-active byte. Hence, the success probability is (2 .= 2)
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In the end, the success probability of the outbound phase is 2−32 × 2−54 = 2−86 . 

Total complexity and comparison with ideal case. In our attack, we need to generate 286 starting 
points and each starting point is generated with 296 computations in average. Hence, the total complexity 
is 286 × 296 = 2182. Note that this attack requires 237 amount of memory. On the other hand, for the ideal 
case, the property is regarded as finding a 512-bit collision. Because available freedom degrees are enough to 
mount the birthday attack, the complexity is 2256, which is much higher than our attack on ECHO. 

5.3 Improving Semi-Free-Start Collision Attack on 7-round Grøstl-512 

We improve the semi-free-start collision attack on 7-round Grøstl-512 compression function, which was 
proposed by Mendel et al. [15]. The authors of [15] used the same strategy as previous Super-Sbox analysis 
and thus required 264 amount of memory for the inbound phase. We show that the amount of memory can 
be reduced to 256 with the non-full-active Super-Sbox analysis. Because our outbound phase is the same as 
[15], we only explain the inbound phase. 

We start from an observation that in the Super-Sbox analysis for AES-based permutations with a rect
angle state such as r × 2r, several Super-Sboxes usually include non-active bytes. Hence, the framework 
explained in Section 4 can be applied and the data stored for each Super-Sbox can be smaller than 2rc. How
ever, in the previous differential path [15, Fig.7] shown in the top of Fig. 12, the 9th Super-Sbox (counted 
from 0th) from the left side in the state #P SH takes a full-active column as input and output a full-active 3 
column. Hence, attackers need 264 amount of memory for this part, and this is a bottleneck of the memory 
size in the entire attack. 

SH, MB, and AC represents the ShiftBytes, MixBytes, and AddRoundConstant operations used in Grøstl which 
correspond to the ShiftRows, MixColumns, and AddRoundKey operations of the AES permutation. 

Fig. 12. (Bottom) New differential path for Grøstl-512 compression function. (Top) Previous path. 
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In our attack, we reduce the number of active bytes where we choose their differences at the initial step 
of the inbound phase (#P4). Due to this effort, we can make a differential path where each Super-Sbox has 
at least one non-active byte. The new path is shown in the bottom of Fig. 12. Inside of each Super-Sbox can 
be computed based on the procedure explained in Section 4.2, which results in generating 256 starting points 
with 256 time and 256 memory. In the end, we can reduce the memory size to 256 with maintaining the same 
average complexity of the inbound phase. Note that the differential propagation from #P SH to #P3 must 3 
be consistent with the MDS property. We confirmed that the amount of memory could not be below 256 due 
to this limitation. 

Because we reduced the number of active bytes at the initial step of the inbound phase, the freedom 
degree was also reduced. In this attack, the success probability of the outbound phase is 2−152, and thus we 
need 2152 starting points. Because our attack can choose 22-byte differences (8-byte differences for #P SH 

2 
and 14-byte differences for #P4) at the initial step, our attack can produce 28×22 = 2176 starting points in 
maximum. Therefore, we have enough freedom degrees to find a pair of values following the path. 

6 Conclusions 

We presented the non-full-active Super-Sbox analysis which can detect non-ideal properties of a class of 
AES-based permutations with a low complexity. The core idea is using a differential path consisting of only 
non-full-active states. This gives us the freedom to efficiently control inside the Super-Sbox. We then applied 
this framework to the full-round ECHO permutation by taking properties specific to ECHO into account. 
Consequently, our attack could detect a non-ideal property with time 2182 and memory 237. However, because 
of the convolution operation that is used, our distinguisher cannot be extended to the ECHO compression 
function. We then applied our approach to Grøstl to obtain the distinguishing attack on the 8-round Grøstl
256 permutation with a practical cost, and to obtain an improvement on the semi-free-start collision attack 
on the 7-round Grøstl-512 compression function. 
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12.	 Mendel, F., Rechberger, C., Schläffer, M.: Cryptanalysis of Twister. In Abdalla, M., Pointcheval, D., Fouque, 
P.A., Vergnaud, D., eds.: Applied Cryptography and Network Security, ACNS 2009. Volume 5536 of Lecture 
Notes in Computer Science., Berlin, Heidelberg, New York, Springer-Verlag (2009) 342–353 

13.	 Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound distinguishers: Results on the 
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