
       

          

  

         
 

 

             

    

                 

               

               

              

                

               

             

                  

              

                

               

                   

               

                   

             

       

  

                 

                

               

           

            

                   

                

                

                   

                     

      

              

                

                

               

                   

                   

                

           

              

                    

                

Efficient Hardware Implementations of High Throughput SHA-3 
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Abstract. In November 2007 NIST announced that it would organize the SHA-3 competition to select a new 

cryptographic hash function family by 2012. In the selection process, hardware performances of the candidates 

will play an important role. Our analysis of previously proposed hardware implementations shows that three 

SHA-3 candidate algorithms can provide superior performance in hardware: Keccak, Luffa and Blue Midnight 

Wish (BMW). In this paper, we provide efficient and fast hardware implementations of these three algorithms. 

Considering both single- and multi-message hashing applications with an emphasis on both speed and efficiency, 

our work presents more comprehensive analysis of their hardware performances by providing different 

performance figures for different target devices. To our best knowledge, this is the first work that provides a 

comparative analysis of SHA-3 candidates in multi-message applications. We discover that BMW algorithm can 

provide much higher throughput than previously reported if used in multi-message hashing. We also show that 

better utilization of resources can increase speed via different configurations. We implement our designs using 

Verilog HDL, and map to both ASIC and FPGA devices (Spartan3, Virtex2, and Virtex 4) to give a better 

comparison with those in the literature. We report total area, maximum frequency, maximum throughput and 

throughput/area of the designs for all target devices. Given that the selection process for SHA3 is still open; our 

results will be instrumental to evaluate the hardware performance of the candidates. 

Keywords: cryptographic hash functions, hardware implementation, SHA-3 

1. Introduction 

Cryptographic hash functions reduce arbitrary length input messages to a digest of fixed length. The need for 

cryptographic hash functions was first identified by Diffie and Hellman for digital signature scheme [1]. During 

1970s, many researchers helped providing (e.g. Rabin [2] and Merkle [3]) the definitions, requirements and 

constructions for cryptographic hash functions. Easy computation, non-invertibility, strong/weak collision resistance 

and ciphertext indistinguishability are the main properties of secure cryptographic hash functions. 

The need for efficient and secure hash functions was well understood during the 1980s. In order to meet this 

demand, SHA-1 and SHA-2 hash functions were published by the National Institute of Standards and Technology 

(NIST) in 1993 and 2002, respectively. Powerful attacks on SHA-1 [13] and similarly constructed SHA-2 variants 

[14], led to the initiation of SHA-3 open competition by NIST [4]. 51 candidates of the SHA-3 competition passed 

round 1, and 14 candidates advanced to the round 2 [4]. The final round candidates are scheduled for 2010 and the 

winner will be announced in 2012. 

Hardware implementations of cryptographic algorithms are much more secure than software realizations [5]. In 

addition, they can be optimized to satisfy application‘s specific requirements, e.g. higher performance, low area, low 

power, better resource utilization. Since different aspects of hardware performances of the SHA-3 candidates play a 

significant role in the selection process, comparisons of hardware implementation of 14 remaining candidates are 

given in detail in [6] and [7]. The hardware architectures [6][7] are designed to provide the highest throughput for 

single message hashing (SMH), whereby hardware is assumed to process a single message stream at a time. It has 

also been shown in [8] that pipelined architectures increase the performance of Luffa for multi-message hashing 

(MMH), where the hardware processes more than one message concurrently. 

Paucity of hardware implementations of SHA-3 candidates that exploit MMH to achieve higher performance 

calls for a more thorough study of the issue. To reveal the true potentials of SHA-3 candidates, we developed two 

hardware architectures each for the three high throughput SHA-3 candidates (six in total), namely Keccak, Luffa, 

mailto:erkays@sabanciuniv.edu
mailto:onuracansel}@su.sabanciuniv.edu


                 

                

                

                  

   

                  

               

              

               

            

               

 

                    

               

                  

                     

       

               

             

                  

                  

                

                

                     

                  

                 

             

          

 
 

 

 

    
 

  

   
 

                                                 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

 

                

                   

                  

             

                 

                 

               

                                                           
             

and Blue Midnight Wish (BMW)1; one for SMH and the other for MMH applications. Our implementation results 

show that different configurations and design techniques result in higher performance for a given candidate. This 

study also aims to reveal as many aspects (e.g., frequency, throughput, latency, area efficiency, target device) 

pertaining to hardware performances of the three candidates as possible to enhance the insight on the algorithms for 

the selection process. 

We present synthesis results of six hardware architectures for four target devices: Spartan 3, Virtex II and Virtex 

IV FPGAs, and 90nm ASIC. 256-bit versions of each algorithm are implemented and all architectures are verified 

using the reference software/hardware submissions of the competitors. We mainly target high throughput hardware 

architectures of the three candidates, without unnecessarily increasing the area. The area/performance results of our 

SMH and MMH implementations are compared with the best-performance architectures proposed in 

[6][7][8][11][12]. The implementation results show that our architectures provide better efficiency in majority of the 

cases. 

The rest of the paper is organized as follows. Section 2 explains the reason for selecting Keccak, Luffa and BMW 

for hardware implementation and Section 3 explains MMH methodology for hardware design. Overview of Keccak, 

Luffa and BMW are presented in Section 4. The proposed hardware architectures for Keccak, Luffa and BMW will 

be described in Section 5. The implementation results will be given in Section 6. Section 7 will conclude the paper. 

2. Selection Process of Three SHA-3 Candidates 

In [7], the hardware implementation results of 14 second-round candidate SHA-3 algorithms are presented. All 

the implementations are synthesized using a uniform tool chain, standard-cell library, target technology, and 

optimization heuristics. The implementation results of [7] are summarized in the second column of Table 1. As seen 

from Table 1, Keccak gives the highest throughput of 21.23 Gbit/s while Luffa comes second with the throughput of 

13.74 Gbit/s. The design methodology in [7] targets high throughput architectures for SMH applications and does 

not inspect architectures that are tailored for MMH applications. In general, the SMH design methodology favors 

single pipelining for each round. In the case of MMH, the hardware can be fully pipelined and pipeline stages can be 

fully utilized. In order to gain an insight on true potentials of the SHA-3 candidates in hardware implementation 

with the MMH applications in mind, we normalize the throughput results according to area and frequency values 

given in [7], as shown in the last three columns of Table 1. 

Table 1. Normalized throughput values for the SHA-3 candidates 

Algorithm 
Throughput 

(Gbit/s) 

Throughput 

Normalized to 100 
MHz 

Throughput 

Normalized to 100 
GE 

Throughput Normalized to 

100 MHz and 100 GE 

BLAKE 3.97 2.33 8.70 5.10 

BMW 5.36 51.22 3.16 30.18 

CubeHash 4.67 3.20 7.92 5.44 

ECHO 2.25 1.58 1.59 1.12 

Fugue 4.09 1.60 8.85 3.46 

Grøstl 6.29 2.33 10.77 3.99 

Hamsi 5.57 3.20 9.49 5.46 

JH 4.99 1.31 8.49 2.23 

Keccak 21.23 4.35 37.70 7.73 

Luffa 13.74 2.84 30.56 6.33 

Shabal 3.28 1.02 5.98 1.87 

SHAvite 3.15 1.38 5.49 2.41 

SIMD 0.92 1.42 0.89 1.37 

Skein 2.50 5.12 2.45 5.02 

The normalization suggests some interesting results; e.g. BMW having high performance. We must note that the 

values obtained through normalization are in abstract level and not used as an objective in our design processœ and 

our implementations confirm that they are not achieved œ; but they provide a deeper understanding and intuition to 

the multi-variable (e.g. area, clock frequency, and throughput) optimization problem for throughput comparison in 

MMH. Normalization results show that Keccak and Luffa have the highest throughputs (37.7 Gbit/s and 30.6 Gbit/s) 

under area normalization as well as non-normalized results (21.23 Gbit/s and 13.74 Gbit/s) since they are relatively 

light-weight designs while BMW is quite heavy. But, surprisingly, BMW achieves the highest throughput under 

1 We explain the selection technique for these three candidates in Section 2. 



            

              

                  

              

               

            

      

             

 

                    

               

             

 

 

                      

                    

                

                  

                     

                   

                 

                   

         

                    

               

                  

  

                 

                

              

             

      

      

   

                

                  

                     

 

                   

                       

                      

                              

                

 

 

frequency (51.22 Gbit/s) and frequency/area (31.18 Gbit/s) normalizations. For the frequency/area normalization, 

Keccak and Luffa follows BMW with throughputs of 7.73 Gbit/s and 6.33 Gbit/s, respectively. 

Since hardware performance is one of the most important factors for the SHA-3 hash function; Keccak, Luffa and 

BMW are implemented in this work using the multi-message design methodology which utilizes pipelined 

architectures and re-timing techniques. While high throughput is always the primary goal, our architectures are 

designed to achieve this goal with minimum area for each design. 

3. Multi-Message Hashing Methodology for Hardware 

In literature, Eq. 1 is generally used for calculating throughput for SMH architectures. 

Blocksize 
Throughput = ì Frequency (1) 

latency 

where latency is the number of clock cycles required for processing one message block and Blocksize is the length of 

the message block which is processed by the hash function at a given time. 

The formula for calculating throughput of the MMH is given in Eq 2. 

Blocksize ì #MH 
Throughput = ìFrequency (2) 

latency 

#MH is the number of messages that can be simultaneously hashed at a given time, which is equal to the number of 

pipeline stages in a single round of a hash algorithm. If the algorithm is not round-based (e.g., BMW) then #MH is 

equal to the number of total pipeline stages. For MMH applications, many messages can be simultaneously 

processed due to pipelining. Pipelining increases both the frequency and number of messages that can be hashed in 

parallel, which has a positive effect on throughput. However, if the number of messages that will be hashed is less 

than the number of the pipeline stages, full utilization of the architecture cannot be achieved. As a result, the 

throughput of the MMH algorithm decreases due to the latency overhead. Therefore in order to show the full 

potential of the MMH architectures, number of the messages that will be hashed concurrently is assumed to be more 

than or equal to the number of pipeline stages. 

In pipelined datapath, pipeline registers are used to relay data from one stage to the next. In addition, certain input 

signals need to be forwarded to the subsequent pipelined stages through so-called synchronization registers. The 

need for pipeline and synchronization registers will, however, have an adverse effect on area, resulting in a poor 

area/frequency tradeoff. 

Hardware replication in both FPGA and ASIC designs (e.g. having two identical circuits to compute the hash 

values of two independent messages) can also increase the throughput of the hardware for MMH applications. 

However, increasing the frequency by using efficient pipelining may yield better area/throughput tradeoff than 

hardware replication for MMH. Configurations, where hardware replication and efficient pipelining are used 

together, provide further increase in throughput. 

4. Brief Description of Selected Algorithms 

4.1 Keccak Algorithm 

Keccak algorithm [4] uses KECCAK-f permutation which consists of a number of simple rounds with logical 

operations and bit permutations. Each round has 5 steps and 24 rounds form a KECCAK-f permutation. The input 

and output of a Keccak round are 5ì5 matrices whose entries are 64-bit words. The round formulae are given in Fig. 

1. 

In Fig. 1, A and RC (round constant) are inputs, § (XOR), AND, and NOT represent bitwise logical operations. 

The output of a round is formed on the 5ì5 matrix A. The variables x and y represent the matrix index and the 

operations on x and y are done modulo 5. ROT(I[x, y], j) denotes the cyclic shift operation of the 64-bit number at 

I[x, y] by the amount of j to the left. In , and , steps, the rotation is done by the amount of r[x, y]. In each round, a 

different RC is used. The round constants are given in the specifications of the candidate [4]. 



  
   
                        
                                               
                                                                
     
                                                                
   
                        
   
          

        

 

 

   
    
               
                                      
         
                  
        
   
     
     
              
      
   

      

                   

                     

                       

                        

   

                 

                      

                

   

                  

                    

                      

                    

                    

    

                  

                    

                     

     

                       

               

                  

                        

Round[b](A, RC) 

q STEP 

C[x] = A[x, 0] § A[x, 1] § A[x, 2] § A[x, 3] § A[x, 4] "x in 0…4 

D[x] = C[x-1] § ROT(C[x+1], 1) "x in 0…4 

A[x, y] = A[x, y] § D[x] "(x, y) in (0…4,0…4) 

r AND p STEPS 

B[y, 2x+3y] = ROT(A[x, y], r[x, y]) "(x, y) in (0…4,0…4) 

c STEP 

A[x, y] = B[x, y] § ((NOT B[x+1, y]) AND B[x+2, y]) "(x, y) in (0…4,0…4) 

i STEP 

A[0, 0] = A[0, 0] § RC 
Fig. 1 Round operations of a KECCAK-f permutation 

Keccak[r, c, d](M) 

Initialization and padding 

S[x, y] = 0 "(x, y) in (0…4, 0…4) 

P = M ……byte(d) ……byte(r/8) ……0x01……0x00 || ... || 0x00 

Absorbing Phase for every block Pi in P 

S[x, y] = S[x, y] § Pi[x + 5y] "(x, y) such that x+5y < r/w 

S = KECCAKœf[r + c](S) 

Squeezing Phase
�
Z = empty string
�
while output is requested
�

Z = Z ……S[x, y] "(x, y) such that x+5y < r/w 

S = KECCAKœf[r+c](S) 

return Z 

Fig. 2 Phases of Keccak algorithm 

Keccak has an absorbing and a squeezing phase. The input message is divided into blocks of 1088-bit and XORed 

onto a part of the state (which is initially zero and 1600-bit long) and the result is passed through a KECCAK-f 

permutation. The output is truncated to 256 bits. The phases are detailed in Fig 2, where Z is the output, and r = 

1088, c = 512, w = 64, and d = 32 in our implementations. They are the values used in the implementation in [7]. 

4.2 Luffa Algorithm 

Luffa algorithm [4] employs a variant of sponge function [9][10]. It utilizes s-boxes, and XOR and shift operations 

to hash a message. The input block sizes can be 224, 256, 384 or 512 bits, processed as 32-bit data words. Luffa‘s 

compression function is known as the round function, which comprises one Message Injection (MI) and one 

Permutation (P) stage. 
i-1 i-1 i-1

MI module combines the hash values of previous message blocks (i.e., H0 , H1 , H2 ), with the current message 

block (M
i
). A message block in Luffa-256 can be represented by the matrix over a ring GF(2

8
)
32

. Block diagram of 

MI for Luffa-256 can be seen in Fig. 3. The inputs are the current message block and the hash values calculated by 

the three permutation blocks for the previous message block, each of which is 256 bits and have a constant initial 

value. The symbol § in Fig 3 represents a three input XOR operation and £ represents a single multiplication in 

GF(2
8
)

32 
by constant 2. 

The permutation stage (P) for Luffa-256 is made of three permutation blocks, which work in parallel and each 

block receives one of the 256-bit outputs of the MI as input. These blocks are referred as Permute blocks. Each 

Permute block starts with a permutation of the input which is called tweak, and then iterates 8 rounds of the Step 

function shown in Fig. 4. 

Each Step function in three Permute blocks processes data in 32-bit words, denoted as ak, 0 ≤ k < 8 in Fig. 4. 

There are three submodules in Step function referred as SubCrumb, MixWord, and AddConstant. The SubCrumb 

module is a nonlinear permutation implemented by 32 identical s-boxes (4-bit input, 4-bit output). The s-box can be 

shown as a mapping defined as s[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14}. 



 

 

         

 

 
 

        

 
     

  

                    

                   

                  

  

                     

                    

                 

     

                    

                     

              

              

                   

             

                     

            

Fig. 3 Block diagram of the Message Injection module 

Fig. 4 Block diagram of the Step module Fig. 5 Block diagram of 

MixWord function 

MixWord is a Feistel ladder of 4 rounds, which is used to mix two words together. The block diagram of the 

MixWord is shown in Fig. 5. AddConstant module performs two XOR operations on the words a0 and a4 with 

predetermined constants. These constants differ for each round of the step function; which can be hardwired in the 

implementation. 
i i i

The resulting hash values of the Step modules H0 , H1 , H2 , are given as inputs to the next message block. Once 

the last block of the message is computed, a blank round using a 256-bit all-zero message is computed and the 

output hash of the message is found by XORing the final results of the three Step functions. 

4.3 Blue Midnight Wish Algorithm 

The BMW hash function [4] uses quadrupled pipe {Qa, Qb} (each of which is m-bit variable) and double pipe H 

(which is an m-bit variable) for iteratively computing new Qa, Qb, H values and the message digest, where m is the 

message block size. In generic description, BMW uses three steps: preprocessing, hash computation and 

finalization. Preprocessing step involves padding, parsing and initialization of variables as many hash algorithms 

use. The block diagram of the hash computation and finalization steps of the BMW algorithm are shown in Fig. 6. 

Hash computation and finalization steps involve three functions f0, f1 and f2. 

The function f0 is used to compute the first part of quadrupled pipe (Qa) by diffusing the message block M and 

double pipe H, where H is initialized to a constant value. 



                    

                 

                

                

   

                    

        

                

  

                  

                  
 

 

      

 

      

   

                

                  

                

               

              

     

                     

                     

         

 

 

        

                 

                   

                   

                    

                  

 

                    

                    

The function f1 is used with two sub-functions expand1 and expand2. The function f1 takes M and Qa as inputs 

and using a technique called —multi-permutation“ generates Qb as an output. Its designers propose that the security 

of BMW can be increased with increasing the expand1 rounds and decreasing the expand2 rounds. However, 

expand1 is more complex than expand2, therefore designers recommend using two rounds for expand1 and fourteen 

rounds for expand2. 

The function f2 is used in folding (compression) part of the BMW algorithm and it reduces 3m-bit of M, Qa, and 

Qb to m-bit new double pipe H. 

The basic operations of the BMW algorithm are addition and subtraction modulo 2
32

, shift, rotate, and bitwise 

XOR. 

Finalization step is similar to the hash computation; the only difference is that final step uses constant value 
final final 

instead of message block to form m-bit H . The least significant n-bit (length of resulting hash value) of H are 

given as hash of the message. 

Fig. 6 Representation of BMW algorithm 

5. Hardware Implementations 

Pipelined hardware architectures, generally, are not suitable for SMH applications since only one stage would be 

active at any instance, resulting in a very low utilization of resources. However, MMH favors pipelines, since the 

blocks of different messages can be overlapped in the pipeline. The hardware architectures exploring the most 

efficient solutions for both single- and multi-message hashing applications are explained in subsequent sections. The 

#MH parameters for Keccak, Luffa and BMW are 5, 2 and 18, respectively. 

5.1 Hardware Implementation of Keccak 

One round of KECCAK-f permutation consists of the steps, 2, ,, ,, 2 and 2. The top-level diagram of the hardware 

implementation for one round is given in Fig. 7. The architecture of the round is fully pipelined and operations in a 

pipeline stage are performed in a parallel fashion. 

Fig. 7 High-Level Pipeline Stages of Keccak Hardware 

Following the dependency graph of 2 step, three-stage pipeline is used for its implementation, where each stage 

implements one sub-step of 2 (cf. Fig. 1). Since new input arrives at each clock cycle in MMH, additional 

(synchronization) registers are required to forward the input to the later stages of 2 step in addition to pipeline 

registers (cf. Fig. 8). 2 step requires only bitwise XOR and cyclic shift operations by fixed amount. 50 bitwise XOR 

and 25 cyclic shift operations over 64-bit variables are performed in parallel in the hardware implementation of 2 

step. 

The , and , step, implemented in one stage, utilizes cyclic shift operations where the shift amount depends on the 

position of the 64-bit element in the (5ì5) state matrix. Since both operations are linear, instead of using two cyclic 



                       

                      

      

                     

                    

                       

                       

                    

                   

                

                 

                 

 

        

                   

                    

                  

          

     

                

                   

                   

shifts, the hardware uses only one cyclic shift with a shift amount of (r, + r,). Only one pipeline stage is used to 

implement this operation. At each clock cycle the result of the cyclic shift operation is written to a register. It uses a 

total of 25 cyclic shift operations. 

The final stage combines both 2 and 2 steps. The 2 operation is a combination of the NOT, AND, and XOR 

operations over 64-bit variables. Since 2 operation is only an XOR operation of 64-bit number at position of (0,0) of 

the 5ì5 matrix it is done in the same pipeline stage with the X operation. The cost of moving 2 to another pipeline 

step is 24ì64 bit pipeline registers and since the operation is not in the critical path, we prefer doing it in the same 

pipeline stage with 2. The total number of 64-bit operations are 25 NOT, AND, and 26 XOR. The total 64-bit 

operations in one KECCAK-f permutation round is 76 XOR, 25 NOT, 25 AND, and 50 cyclic shift operations. 

Increasing the pipeline stages, where it is unnecessary (i.e. partitioning non-critical paths), results in a greater 

area without increasing the operating frequency. In our design, we use an optimized pipeline partitioning as shown 

in Fig. 8 where the datapath with 5-stage pipeline is implemented for one round of KECCAK-f permutation. 

Fig. 8 Block Diagram of Keccak Hardware 

For SMH implementation, no pipelining is used; i.e. one round is completed in one clock cycle, resulting in a 

lower operating frequency. All we do is to remove all the pipeline registers except for the output register to retain 

the output of one round of KECCAK-f permutation. Implementation results and the effects of design choices for both 

SMH and MMH architectures are discussed in Section 6. 

5.2 Hardware Implementation of Luffa 

Luffa Algorithm consists of two main modules as explained earlier; message injection (MI) and permutation (P), 

where P contains Tweak and Step modules. For each message block, MI and Tweak are performed only once while 

the Step modules Q0, Q1, and Q2 are used for eight consecutive rounds as shown in Fig. 9. 



 
         

 

                     

               

                   

        

                  

                    

           

                 

                       

                   

                  

           

                 

                  

                     

                   

                    

         

      

               

                  

                       

                   

                     

                    

              

 

 

         

Fig. 9 Block Diagram of the Luffa Hardware Architecture 

The block diagrams for MI, Tweak and Step modules are not given since each of them has a very regular flow 

resulting in straightforward architectures. ROMs are used to implement S-Boxes instead of multiplexers. Since the 

constants to be used in step functions are initially known, a module for constant generation is not implemented. The 

constant values of consecutive rounds are given sequentially. 

The critical path of message injection module consists of 3 XOR gates while the critical path of permutation 

module consists of 5 XOR gates and a read operation from ROM for S-Boxes. The cost of shift operations is 

negligible in hardware implementations since they are nothing more than interconnects. 

Two different hardware designs are implemented for the Luffa algorithm. The initial design for SMH consists of 

a set of registers (FR0, FR1, FR2 in Fig. 9) to forward the results of Step modules to the following round. Note that 

the registers are placed between the Tweak module and the Step modules instead of at the end of permutation 

module (cf. Fig. 9). This approach decreases the combination delay of a single round and increases the frequency 

noticeably at the cost of one extra cycle for message injection. 

The second design is a high throughput architecture which is implemented to enhance the efficiency for MMH 

case. Since the Luffa algorithm has already a small combinational delay, we partition the Step function into two 

pipeline stages. The first stage consists of a ROM and two XOR gates while the second has 3 XOR gates. This 

division is done by inserting the pipeline stage after the second round of the Feistel ladder in MixWord functions. 

Addition of a single register stage increases the frequency of hardware for about 35% at the cost of 8% area 

overhead for ASIC implementation as shown in Table 2. 

5.3 Blue Midnight Wish Hardware Implementation 

Top level block diagram of the proposed pipelined and parallel hardware architecture for the implementation of 

BMW algorithm is shown in Fig. 10. BMW algorithm does not use multiple rounds for hashing of a single message 

block. As shown with dashed line in Fig. 10, the resulting value H
i 

is used as input in the processing of the next 

message block. Hardware architecture of f0 for MMH is shown in Fig. 11, where the computation starts with mixing 

the bits of the previous hash block (H
i-1

) and message block (M
i
). Mixing can be implemented by only wiring in 

hardware. Since the operations are not in the critical path, f0 is implemented as a single pipeline stage. In SMH 

version of the architecture, the registers at the output (cf. Fig. 11) are removed. 

Fig. 10 Block Diagram of the BMW Hardware Architecture 



 

       

 

        

 

       

                     

                

                 

                    

                 

                                                           
            

Fig. 11 Hardware Architecture of f0 function 

Fig. 12 Hardware Architecture of Pipelined f1 function 

Fig. 13 Hardware Architecture of f2 function 

Hardware architecture of the function f1 for MMH is shown in Fig. 12. f1 requires two expand1 and 14 expand2 

sub-functions, each of which uses s and r sub-functions, 16 additions, and AddElement2 operations. Since each 

expand function waits for the previous expand function to complete, they cannot work in parallel. This necessitates 
i-1 i i

registering of 512-bit H , M and Q values to forward them throughout the pipeline. For MMH version, 16 pipeline 

stages are used to implement f1 while for SMH hardware, all pipeline and synchronization registers are removed. 

2 See the original description of BMW algorithm for AddElement operation [4]. 



                   

                    

      
 

                 

        

   

                 

                  

              

                  

                 

                

                   

                

                    

       

                    

                 

                  

                

     

                 

                    

                   

                    

                     

                

                     

                   

         

                  

                    

                

                    

                   

                  

                    

                  

               

                    

           

                      

                  

                  

                    

                    

                 

                  

                   

                 

                

                                                           
              

Hardware architecture of f2 function implementation for MMH is shown in Fig. 13. f2 takes 512-bit M
i 
, Qa

i 
and 

Qb
i 
as inputs, and generates 512-bit H

i
. It basically compresses 2048-bit input to the 512 bits. In the finalization step, 

final 
the leftmost 256 bits of the H forms the hash of the message. f2 is implemented as a single pipeline stage and it is 

the same for both SMH and MMH. 

6. Implementation Results 

We implement our designs using Verilog HDL, and the hardware implementation results of the three candidate hash 

algorithms, namely Keccak, Luffa and BMW are given in Table 2, where SMH and MMH stands for architectures 

optimized for single- and multi-message hashing, respectively. The table contains the frequency, latency, area, 

throughput, and efficiency results for target FPGAs and ASIC synthesis. Efficiency3 in the last column is a metric 

defined as the throughput per unit of resources. We provide Efficiency metric mainly for comparing our hardware 

implementations of the candidate algorithms. Efficiency metric should be carefully used for realizations that use the 

same (or close) target technology and the tool chain. Xilinx XST is used for FPGA synthesis and Synopsys Design 

Compiler with Synopsys 90nm Generic Library under typical operating conditions is used for ASIC synthesis. The 

area is given in terms of gate equivalent (GE) and slice count. The hardware results are also compared with the 

implementation results of the designs in [6][7][8][11][12]. 

One natural result that can be observed from Table 2 for all designs is that total area is lower in SMH 

implementations. This is due to the fact the SMH architectures do not have pipeline and synchronization registers. 

Pipelined datapath in MMH, on the other hand, significantly increases the throughput due to the increase in the 

operating frequency at the cost of additional area. In what follows, we summarize, evaluate, and interpret 

implementation results for each algorithm. 

Keccak: SMH variant of Keccak provides high throughput, comparable to Luffa, while it has the lowest resource 

(slice or GE) usage. One of its advantages over Luffa and BMW algorithms to achieve high throughput is its large 

BlockSize, which is 1088 bits, whereas the BlockSize of Luffa and BMW is 256 and 512 bits, respectively. Its 

efficiency is again very high and almost the same as Luffa‘s. To the best of our knowledge, MMH implementation of 

Keccak is the first in the literature and we observe that the algorithm is very suitable for MMH applications. It is 

again relatively low area and high throughput architecture which provides the highest efficiency for all target 

devices but Virtex 2, where its efficiency is very close to the best (i.e., BMW). When compared with Luffa, its 

efficiency improves much better for MMH. One notable fact is that its MMH variants can achieve the highest clock 

frequency in MMH except for Virtex 2. 

Luffa: SMH variant has throughput values comparable to (in most cases higher than) Keccak. Except for ASIC, it 

has the highest throughput among the three. It is relatively low area architecture. Our SMH variant is superior to the 

architecture in [11], implemented using a comparable ASIC technology, in terms of area and efficiency. Luffa, 

however, does not gain speedup from pipelining (for MMH) as much as Keccak and BMW do. It takes, on the other 

hand, very little extra area to obtain MMH variant, which consumes the lowest area in each target technology. 

When our MMH variant of Luffa is compared against the only MMH implementation in literature [8], one can 

observe that ours provides a much better alternative thanks to its high efficiency metric (cf. 2.83 and 0.74). Note 

that the difference in efficiency values will not change much even if the technology differences are accounted for. 

Having much higher efficiency enables replication of MMH architecture to achieve even higher throughput values. 

For example, replicating our MMH variant of Luffa 10 times will result in a throughput of 350 Gbit/s. This justifies 

the area efficient design approach for high speed MMH applications. 

BMW: In every case, BMW consumes much more area than the other algorithms due to the fact that it does not 

use round function approach whereby a simple function is repeatedly executed many times. The SMH variant is the 

slowest for FPGA realizations and it cannot achieve high clock frequency values. A surprising result is that our 

implementation of SMH variant is the fastest in ASIC realization; a result, which is similar to [11]. One reason for 

its poor performance in FPGA realizations is related to the fact that it does not use round function approach. Simple, 

but many, arithmetic/logical operations employed in BMW in a long datapath, if implemented using LUTs, will tend 

to incur high area and long interconnect delay while ASIC realizations will not suffer from the same problem. 

However, BMW, due to its high area consumption, may suffer from its poor efficiency values in each case for the 

applications where both speed and area constraints are important. Due to its structure, BMW is suitable for 

pipelining since its high latency datapath can be partitioned evenly and profitably. Therefore, its MMH variant 

3 Efficiency values of FPGAs are not comparable to efficiency values of ASIC realizations. 



          

  
               
 

 
 

 
 

  
 

 
 

 
 

 
 

  
 

 

 
 

 
 

  

  

      

        

        

        

        

        

  

  

      

        

        

        

        

        

  

  

      

        

        

        

        

        

  

  

      

        

        

        

        

        

 
          

          

 
          

          

 

          

          

          

 
          

          

 
          

          

 

 

 

 

 

 

 

Table 2. The hardware implementation results of SHA-3 candidates. 

Efficiency = 
Hashing Target Frequency # of Latency Area Throughput 

Algorithm	� Throughput/ 
Method Technology (MHz) Rounds (cycles) (Slices/GE) (Gbits/s) 

(Areaì106) 

Keccak 81.4 24 25 2,024 3.46 1.71
�

MMH
�

SMH 

Keccak 338.3 24 121 4,356 14.85 3.41
�

SMH
�Luffa 157.3 8 9 2,956 4.37 1.48
�
Spartan 3
�

MMH
�Luffa 202.9 8 17 3,733 5.97 1.60
�

BMW 4.22 1 1 10,531 2.11 0.20
�SMH
�

BMW 57.4 1 18 12,477 28.7 2.30
�MMH 

o
u
r 

h
ar

d
w

ar
e 

im
p

le
m

en
ta

ti
o

n
 r

es
u

lt
s 

Keccak SMH 136.6 24 25 2,024 5.81 2.87
�

Keccak MMH 341.5 24 121 4,356 14.99 3.44
�

Luffa SMH 301.4 8 9 2,952 8.37 2.84
�
Virtex 2
�

Luffa MMH 424.7 8 17 3,721 12.49 3.36
�

BMW SMH 6.71 1 1 10,432 3.36 0.32
�

BMW MMH 86.3 1 18 12,244 43.15 3.52
�

Keccak SMH 142.9 24 25 2,024 6.07 3.00
�

Keccak MMH 508.7 24 121 4,356 22.33 5.13
�

Luffa SMH 308.2 8 9 2,989 8.56 2.86
�
Virtex 4
�

Luffa MMH 470.8 8 17 3,719 13.85 3.72
�

BMW SMH 9.01 1 1 10,486 4.51 0.43
�

BMW MMH 115.96 1 18 12,497 57.98 4.64
�

Keccak SMH 454.5 24 25 10.5k 19.32 1.84
�

Keccak MMH 1,694.9 24 121 23.2k 74.41 3.21
�

Luffa SMH 769.2 8 9 11.5k 21.37 1.86
�
90nm ASIC
�

Luffa MMH 1,204.8 8 17 12.5k 35.44 2.83
�

BMW SMH 52.63 1 1 55.9k 26.32 0.47
�

BMW MMH 265.96 1 18 160.1k 132.98 0.83
�

Keccak SMH Spartan 3A 85 24 25 3393 4.8 1.41
�
[12] 

Keccak SMH Virtex 5 122 24 25 1412 6.9 3.61
�

Luffa SMH Altera S-3 47.04 1 1 16,552 12.042 0.73
�
[6] 

BMW SMH Altera S-3 9.55 1 1 12,917 4.889 0.38
�

Keccak SMH 180nm ASIC 487.80 24 25 56.31k 21.23 0.38
�

[7]	� Luffa SMH 180nm ASIC 483.09 8 9 44.9k 13.74 0.31
�

BMW SMH 180nm ASIC 10.46 1 1 169k 5.358 0.03
�

Luffa SMH 130nm ASIC 1124 8 9 30.8k 31.9 1.07
�
[8] 

Luffa MMH 130nm ASIC 508 1 9 156.6k 115.5 0.74
�

BMW SMH 90nm ASIC 52.08 1 1 60.0k 26.66 0.54
�
[11] 

Luffa SMH 90nm ASIC 100.4 1 1 68.9k 25.70 0.70
�



                 

                  

                

                     

                    

                  

       

                  

                  

                  

                    

                 

                   

          

  

              

              

               

                 

                     

                

                   

               

 
                 

  

                 

     

             

            

 

              

  

      

 

               

              

  

                

      

                 

                  

             

  

                 

 

             

                 

                

  

provides the highest throughput (132.98 Gbits/s) among all designs due to the fact that deep pipelining improves 

clock frequency up to five times. In this respect, BMW benefits from the pipelining much more than Luffa and 

Keccak do. Another important observation is that FPGA realizations do not observe a significant area increase 

between SMH and MMH (less than 20%) as in the case of ASIC where increase is almost three fold. The relatively 

lesser increase of area in FPGAs can be attributed to the better utilization of registers in FPGA slices in MMH 

architecture, which are usually wasted in SMH case. The MMH variant has the worst efficiency compared to the 

MMH variants of Luffa and Keccak. 

Note that the numbers of pipeline stages in Keccak and Luffa implementations, which are directly related to #MH 

and throughput, are significantly lower than that of BMW. The number of pipeline stages can also be increased 

(therefore throughput, too) if their rounds are un-rolled. However, as can be deducted from Eq. 2, further increase in 

the number of pipeline stages in this manner will increase throughput and area roughly at the same rate, which in 

turn cannot increase the efficiency significantly. In other words, hardware replication and round unrolling result in a 

similar effect for MMH applications. In this respect, our choices for the numbers of pipeline stages for each design 

provide optimal configurations for efficient and high throughput hash computations. 

7.	� Conclusion 

We presented efficient, high throughput hardware implementations of SHA-3 candidates Keccak, Luffa and Blue 

Midnight Wish with an emphasis on MMH applications. We basically employed pipelining, parallelism and re-

timing techniques to improve the performances and efficiencies of our designs. Implementation results of six 

different architectures are provided for ASIC and three different FPGA devices. We compared our results with those 

in literature when possible and fair. To the best of our knowledge, this is the first work that provides a comparative 

analysis of three high performance SHA-3 candidates for MMH applications. We also evaluated and commented on 

the results and give a perspective for each candidate to increase the insight on different aspect of the hardware 

performance of each. Our architectures provide the highest efficiency values in majority of the cases. 
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