
Uniform Evaluation of Hardware Implementations of the

Round-Two SHA-3 Candidates

Stefan Tillich1,2, Martin Feldhofer1, Mario Kirschbaum1, Thomas Plos1, J¨ ,orn-Marc Schmidt1

and Alexander Szekely1

1 Graz University of Technology, Institute for Applied Information Processing and Communications,
Inffeldgasse 16a, A–8010 Graz, Austria

{Stefan.Tillich,Martin.Feldhofer,Mario.Kirschbaum,
Thomas.Plos,Joern-Marc.Schmidt,Alexander.Szekely}@iaik.tugraz.at

2 University of Bristol, Computer Science Department, Merchant Venturers Building,
Woodland Road, BS8 1UB, Bristol, UK

tillich@cs.bris.ac.uk

Abstract. We describe our high-speed hardware modules for the 14 candidates of the
second evaluation round of the SHA-3 hash function competition. Emphasis has been put
on bringing as many aspects of design and implementation as possible into agreement
in order to receive consistent and comparable evaluation results. For most candidates
we have tested a range of different design and implementation options. The evaluation
involved a large number of synthesis runs in a uniform setup and under the use of a
simple optimization heuristic. In addition to identifying good hardware-design options,
this approach has yielded data on numerous possible area-performance tradeoffs for the
different hardware modules. The best configurations then underwent place & route in
order to reach the highest degree of accuracy of performance metrics short of actual
implementation in silicon.

Keywords: SHA-3, hardware, ASIC, standard-cell implementation, high speed, high through­
put, BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD, Skein.

1 Introduction

Following the weakening of the widely-used SHA-1 hash algorithm and concerns over the
similarly-structured algorithms of the SHA-2 family, the US NIST has initiated the SHA-3
contest in order to select a suitable drop-in replacement [23]. In round two of the competition,
14 candidates remain for consideration. Apart from the ongoing cryptanalytic efforts, bench­
marking of software and hardware implementations of the candidates will be an important part
of the evaluation. Software benchmarking is done for example by the NIST on their reference
platform and by the eBASH project in the context of the ECRYPT II network of excellence [4].

While a fair comparison of software performance is far from trivial, the situation for hard­
ware implementations seems even worse. Although hardware-performance figures for several
candidate algorithms have been published [12], a fair and meaningful comparison of these
results is extremely difficult. Hardware modules are designed towards different goals (e.g.
maximal throughput, low area, optimal speed-area tradeoff) and feature varying degrees of func­
tionality and system interfaces. Moreover, implementation often involves different synthesis
tools, target technologies, and optimization heuristics.

The Athena project has the goal of allowing a more meaningful comparison of hardware
performance on FPGAs [16]. This effort is aided by the relatively broad availability of corre­
sponding design and synthesis tools (e.g. Xilinx ISE, Altera Quartus II) and the ease of using
certain families of FPGAs as uniform target devices. For standard-cell hardware implementa­
tions, the availability of corresponding synthesis setups tends to be much more limited. Even if

mailto:tillich@cs.bris.ac.uk
mailto:Thomas.Plos,Joern-Marc.Schmidt,Alexander.Szekely}@iaik.tugraz.at

2 S. Tillich et al.

the same tools are employed, the standard-cell libraries and target technologies seldom agree.
Another problem is that the HDL code of implementations is not always made available, which
often precludes benchmarking of implementations from different parties.

By designing and implementing high-speed hardware modules of all 14 candidate hash al­
gorithms from scratch we were able to overcome most of these problems. Our implementations
encompass equivalent functionality and interfaces and received similar optimization effort.

We have concentrated on those hash function variants which produce a 256-bit message
digest. Some of our hardware modules can additionally be reconfigured statically or dynam­
ically to produce digests of a different size. Extra functionality like salting or keyed hashing
modes are not supported. Furthermore, we have chosen to evaluate the performance of the hash
functions themselves and not that of some arbitrary interface. To this end, we did not put any
restrictions on the throughput for data which is fed into the hardware module. Nevertheless, we
would like to stress that a candidate’s ability to reach peak performance with a narrower data
interface should be counted as an advantage.

Our hardware modules expect to receive padded messages (i.e. a number of full message
blocks) as input. Resulting benefits are a simplified design and the possibility of a uniform
interface which does not introduce communication overheads. As our primary concern is maxi­
mizing throughput for long messages, padding performed outside of the hardware hash module
will have no detrimental effect on the peak throughput. Apart from padding, the hardware
modules are fully self-contained and require no additional components (e.g. external memory).

Implementation has been done targeting the same process technology and the same standard-
cell library and has made use of a uniform optimization heuristic. Our work is the first to provide
a comparison of all 14 candidates and should serve as a starting point for a fair and transparent
evaluation of the hardware performance of the SHA-3 candidates. In this context, our work is the
first to present concrete hardware implementations of JH, SHAvite-3, and SIMD, and complete
standard-cell implementations of BLAKE, Blue Midnight Wish, CubeHash, and Shabal.

The remainder of this paper is structured as follows. Section 2 gives a brief description of
each candidate’s hardware implementation. Section 3 explains our evaluation methodology and
summarizes our results. A short conclusion is given in Section 4.

2 Description of the SHA-3 Hardware Modules

Due to space restrictions we concentrate on descriptions of our implementations. For details on
the SHA-3 candidates please consult the respective specification documents and accompanying
webpages.

2.1 BLAKE

We have implemented various design approaches of BLAKE-32 [1]. The best performance
was obtained by implementing four parallel instances of the transformation operation G, which
leads to two clock cycles for each round of BLAKE-32. Carry-save adders are used inside the
G operations to speed up the computation. We have added a pipeline register at the output of
the permutation table in order to reduce the critical path of the design. Moreover, delaying
the finalization step, which produces the next chaining value, by one clock cycle additionally
increases the performance. Figure 1 shows the datapath of this implementation.

2.2 Blue Midnight Wish

We have tested two basic implementation approaches of Blue Midnight Wish [17]: A pipelined
implementation with shared adders/subtractors and a full unrolling of the message expansion
and compression function. While the pipelined implementation is smaller, the fully unrolled
module has a considerably higher throughput. The datapath of the hardware module with full
unrolling is shown in Figure 2.

3 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

MDG

st
at

e
v

co
l.

se
l.

di
ag

.
se

l.

G
G

G

in
iti

al
iz

at
io

n

pe
rm

ut
at

io
n

ta
bl

e

pi
pe

lin
e

re
g.

ch
ai

ni
ng

 v
al

ue

fin
al

iz
at

io
n

IV

MSG

t

Fig. 1. Implementation of BLAKE-32.

MSG

MDf0
, f

1,
 f2

H
_r

eg

IV

CONST

Fig. 2. Implementation of BMW-256 (fully unrolled).

2.3 CubeHash

Our implementation has been kept flexible, in order to accommodate a wide range of Cube-
Hash [3] variants. The algorithm’s parameters can be selected individually at runtime for each
hashing operation. The full range of message-digest sizes h and message-block sizes b is sup­
ported. Furthermore, the number of rounds r can be configured up to a maximum value of 32
rounds. These parameters are read in the initialization phase of the hashing operation. The num­
ber of unrolled full CubeHash rounds is statically configurable prior to synthesis of the design.
The control finite-state machine adapts flexibly to the runtime parameters and the number of
unrolled rounds.

The core of our implementation is constituted by the 1,024-bit state and a combinatorial unit
consisting of the configured number of CubeHash rounds. The clock-cycle latency per message
block is simply the number of rounds r divided by the number of unrolled rounds. Initialization
and finalization take 10r + 1 cycles, respectively. If an extra cycle is allowed for the loading of
message blocks, the area of the implementation can be reduced at the cost of a lower throughput.
The datapath of our CubeHash implementation with two unrolled rounds is depicted in Figure 3.

We have synthesized our CubeHash module with different numbers of unrolled rounds (1,
2, 4, or 8). Implementation with 16 unrolled rounds failed due to problems of the synthesis
software with larger designs. In any case, increased degrees of unrolling turned out to be an
ineffective measure to reach higher throughputs.

4 S. Tillich et al.

2
C

ub
eH

as
h

ro
un

ds

un
ro

lle
d

st
at

e

X
O

R

CONFIG

h/
8,

 b
, r

ZERO

MD

X
O

R
 1

MSG

Fig. 3. Implementation of CubeHash.

Chaining Var Message Reg

AES1

4 8 C

1 5 9 D

2 6 A E

3 7 B F

0
1
2
3

4
5
6
7

8
9
A
B

C
D
E
F

S
ta

te
 1

6
x(

16
x8

-b
it)

AES2 AES3 AES4

Barrel Shifter

16
 M

ix
C

ol
um

n
s

M
u

lti
pl

ie
r

Input

1536

1536

512

512

512

IV

128

128

128

128

Fig. 4. Implementation of ECHO-256.

2.4 ECHO

The hardware implementation of ECHO-256 [2] is shown in Figure 4. The underlying archi­
tecture is similar to the AES implementation of Mangard et al. [21]. The central element is the
State matrix which consists of 16×128-bit words (which are internally organized as 16×8-bit).
We instantiated a whole AES round four times which makes up the largest combinational circuit
of the hardware module. This allows to compute the two AES rounds for the BIG.SubWords
operation for each 128-bit word in eight clock cycles. Additional four clock cycles are necessary
for calculating BIG.MixColumns whereby 16 instances of AES MixColumns multipliers are
used. For the total of eight rounds, this leads to a latency of 96 clock cycles. One additional
clock cycle is required for the BIG.Final operation at the end of hashing a 1,536-bit input block.

For our module we investigated the use of several different implementations of the AES
S-box, resulting in a trade-off between size and throughput. Alternatively, it would be possible
to achieve further speed-up by using 64 MixColumns multipliers instead of 16 or to instantiate
16 parallel AES rounds instead of four. This would reduce the number of clock cycles by 24
and 48 respectively, but would in turn increase the required area considerably.

5 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

MSG

MD

R
O

R
3

C
M

IX
X

O
R

 1
R

O
R

1
5

X
O

R
 2

R
O

R
14

S
M

IX

st
at

e

T
IX

X
O

R
 2

S
E

LE
C

TIV

Fig. 5. Implementation of Fugue-256.

2.5 Fugue

Our implementation of Fugue-256 [18] is depicted in Figure 5. The TIX operation has been
integrated in the loading operation of the message block in order to keep the number of clock
cycles per block small. In our case, a 32-bit block is processed in two clock cycles.

The “heaviest” operation of Fugue is its SMIX transformation. As SMIX resembles parts
of the AES round, similar optimization techniques apply. The whole transformation can be
implemented as 16 parallel look-ups of 128-bit values, with a subsequent combination of the
16 values into the final output (similar to the T-table approach in AES [11]). Alternatively,
the S-box layer can be implemented separately from the matrix multiplication. We have tested
both approaches. For the case of separated S-box look-up and matrix multiplication, we have
compared two different implementations of the AES S-box: Canright’s solution using normal
bases [10] and a synthesized hardware look-up table of the input-output mapping (HW LUT
approach) [25].

2.6 Grøstl

For our high-speed Grøstl-256 [15] implementation we have tested both the parallel calculation
of the P and Q permutation as well as the use of a single permutation unit which can switch
between both permutation types. Interestingly, the second possibility has a higher throughput,
even though it is much smaller than the first. This is due to the fact that the throughput of a
design with two parallel permutations cannot be increased further by inserting pipeline stages
within rounds due to the inherent data dependencies of the intermediate results.

Our fastest implementation features a pipelined permutation round unit with two stages.
This unit is used to calculate the P and Q permutation alternatingly. Two 512-bit registers are
used to hold intermediate results and the previous chaining value, respectively. This version is
shown in Figure 6.

2.7 Hamsi

We have investigated two versions of hardware implementations of Hamsi-256 [19] which differ
in the number of instances of the non-linear permutation function P and Pf . The state matrix is
stored in a 512-bit register and the chaining value requires a 256-bit register.

A P/Pf instance mainly consists of 128 S-boxes, which are implemented as an unstructured
mass of standard cells (HW LUT approach [25]), and four L transformation modules. Addition­
ally, round constants and the round counter are added using XOR gates. The truncation function

6 S. Tillich et al.

m
_s

ta
te

h_
st

at
e

IV
P

/Q

ro
un

d
st

ag
e

1

MSG

MD

P
/Q

ro

un
d

st
ag

e
2

X
O

R

pi
pe

 r
eg

Fig. 6. Implementation of Grøstl-256.

is simply realized as rewiring and the feed forward of the chaining value is an XOR operation
of the truncated state with the previous chaining value. The message expansion is implemented
as a table lookup which is quite efficient.

The architecture of our fastest implementation of Hamsi-256 is depicted in Figure 7. It
features three instances of the P/Pf function and requires one clock cycle to hash a 32-bit block
(except for the last block, which requires two cycles).

2.8 JH

Our implementation of JH-256 [27] works with 320 instances of a combinational implemen­
tation of the S-boxes; 256 S-boxes transform the internal state H and 64 S-boxes work on the
round constant vector Cr in every round of R8. This way, one round of R8 can be executed in
only one clock cycle. The datapath of our implementation is illustrated in Figure 8.

In our implementation of JH the registers for the 1024-bit internal state H, the 512-bit
message block Mi, and the 256-bit round constant Cr occupy approximately one quarter of
the whole area. The 320 combinational S-boxes occupy another quarter of the area. One 512-bit
message block is processed in 39 clock cycles.

2.9 Keccak

The plain structure of Keccak [5] naturally maps to the simple implementation depicted in
Figure 9. Through static configuration, our implementation supports all variants of the Keccak
hash function which have been proposed as SHA-3 candidates. For the performance evaluation
we concentrated on the 256-bit variant, namely lKeccak[r=1088, c=512, d=32]J256

3.
A single round of the Keccak-f permutation is instantiated in hardware. Thus, a total of 24

iterations is required to perform the complete permutation. The appropriate round constant is
selected by the current round index. As the round constants have a very low Hamming weight,
they can be mapped to a small synthesized look-up table.

3 In this notation, r denotes the message block size in bits, c is the state size (fixed to 1,600 bits) minus
the block size, and d is the so-called diversifier, which is used in message padding. The lJ256 notation
indicates truncation of the state to 256 bits in order to generate the message digest

7 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

P/Pf

iv

chaining val

statemessage exp
256

512
256

256

32m

const cnt

S
0

S
1

S
12

7

L0 L1 L2 L3

P/Pf

P/Pf

truncate

512

256
output

256

Fig. 7. Architecture overview of fastest Hamsi-256 implementation.

MSG

H

IV256

S L P
81024

512

C
rCr,0

256 S
0

L C
r

P
6

S
t

Group

D
e-

gr
o

up

MD
256

M

Fig. 8. Implementation of JH-256.

The loading of the message block and its combination with the state requires an additional
clock cycle. This separation allows to reduce the critical path of the hardware module, which
runs through the Keccak-f round unit. The processing of a complete message block thus requires
25 clock cycles.

2.10 Luffa

As the two smallest variants of Luffa [9] (Luffa-224 and Luffa-256) are virtually identical, we
have implemented a hardware module capable of supporting both variants. The corresponding
datapath is shown in Figure 10. The inputs for the message injection function can be switched
to accommodate the first message block (IV and MSG loaded), intermediate message blocks
(state feedback and MSG loaded), and final blank rounds (state feedback and ZERO loaded).
The tweak at the start of each permutation is already performed at the end of the message
injection. The constants are generated on-the-fly and the current constants are registered in

8 S. Tillich et al.

MSG

MD

K
ec

ca
k-

f
ro

un
d st

at
e

ZERO

X
O

R

co
ns

ts

ir tr
un

c

Fig. 9. Implementation of Keccak.

Q
0-

2
st

ep

MSG

co
ns

t.
ge

n.

cj,L/R

MD

co
ns

ts

st
at

e

M
es

sa
ge

in

je
ct

io
n

T
w

ea
k

ZERO

IV X
O

R

Fig. 10. Implementation of Luffa-224/256.

order to minimize the critical path. One step for each of the three permutations Q0, Q1, and Q2
is implemented in parallel.

Luffa consists of rather simple operations which can be mapped efficiently to hardware
(simple bit-sliced S-boxes, fixed rotations, XORs, and arithmetic operations in binary extension
fields). By separating message injection from the Q j steps, the combinatorial paths can be split
up relatively evenly. The message injection has been implemented following the approach given
in the specification [9], which uses doubling of GF(232) elements as basic building block. For
the 4-bit S-box layer, we have implemented both the bit-sliced approach as well as explicit
instantiation of the S-boxes as synthesized look-up tables (both resulting in similar speed).

2.11 Shabal

Figure 11 depicts the datapath of our implementation of Shabal [7]. It basically consists of
32-bit adders, a 384-bit shift register for A and three 512-bit shift registers for B, C and M. Each
round of the permutation P rotates A, B, C, and M by one 32-bit word. Furthermore, the results
of the combinatorial logic are put on the last position of A and B. Since there are 48 rounds of
P, each register is in the correct position after the application of P (A is fully rotated four times,
B and C are fully rotated three times). The initialization vectors are stored as constants, which
saves two initial rounds. Each inner round requires one clock cycle for adding before P and one
cycle for the subtraction after P. Each of the 48 inner loops of P requires one cycle, resulting in
a total latency of 50 cycles per message block.

9 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

MSG

MD

A B MCW

XOR

ADD

SUB

P

MD

ch
ai

ni
ng

 v
al

ue

IV

MSG

b

A
E

S
 ro

un
d

M
es

sa
ge

ex

pa
ns

io
n

kij In
te

rm
ed

. r
eg

.

ae
s

re
g.

Fig. 11. Implementation of Shabal-256.

Fig. 12. Implementation of SHAvite-3256 with one AES round.

2.12 SHAvite-3

Several versions of SHAvite-3256 [6] have been implemented in hardware and evaluated with
respect to their performance. The versions mainly differ in the number of unrolled AES rounds
for the compression function and the message expansion. Additionally, various implementations
of the AES-round function have been tested: The T-table approach [11], and separated S-box
and MixColumns layers, with S-box implementations following Canright [10], Wolkerstorfer et
al. [26], and the HW LUT approach [25].

The architecture which yielded the highest throughput in our evaluation is depicted in
Figure 12. It features one AES round for the compression function and one AES round for the
message expansion (contained in the message expansion block). The S-boxes were implemented
following the HW LUT approach.

2.13 SIMD

Our implementation of SIMD-256 [20] realizes the specification of round 1 of the SHA-3
competition. The hardware module is depicted in Figure 13. It consists of four Feistel blocks in
parallel. Implementing the number-theoretic transform (NTT) modulo 257 of the 64 input bytes
basically means performing a Fast Fourier Transform (FFT) mod 257 of 128 integer values.
As half of these 128 values are zero, this FFT can be split into two separate FFT-64. Each
FFT-64 is built from two instances of FFT-8 and sixteen 8 × 8-bit modulo multipliers. With this
configuration we need 36 clock cycles to process a 512-bit message block.

2.14 Skein

We have implemented Skein [14] with all three block sizes for Threefish (256, 512, and 1,024
bits). The core of the datapath consists of eight unrolled rounds of Threefish and a key schedule

10

MSG

S
IM

D
 s

te
p

fu
nc

tio
n

m
es

sa
ge

st
at

e
st

at
e

sa
ve

X
O

R

nt
t_

12
8

pi
pe

lin
e

re
g

m
od

_m
ul

nt
t 8

x8

in
iti

al
iz

at
io

n

tw
id

dl
e

ro
m

pe
rm

ut
at

io
n

m
ul

MD

A
dd

 s
ub

ke
y

tf_
st

at
e

sk
_s

ta
te

X
O

R

MSG

K
ey

sc

he
du

leT
w

ea
k

ge
ne

ra
to

r

type/first/final/
lastblock_size

ZEROIV

MD

A
dd

 s
ub

ke
y

4x
 m

ix
pe

rm

4x
 m

ix
pe

rm

S. Tillich et al.

Fig. 13. Implementation of SIMD-256.

Fig. 14. Implementation of Skein.

unit which can supply two consecutive subkeys at a time. The advantage of this architecture
is that the Threefish rounds have fixed rotation distances for their MIX layer, which allows a
simple hard-wiring of the rotations. Thus, the output of the Threefish unit only depends on the
input block and the two subkeys. Our implementation is shown in Figure 14.

The key schedule unit is loaded with an input key and input tweak at the beginning of
each Threefish encryption. Two subsequent subkeys are derived through a number of 64-bit
adders. Apart from the key schedule unit, the datapath contains two registers of the size of
a Threefish block for the current message block and for holding intermediate values of the
Threefish encryption.

2.15 SHA-2 Reference Implementation

To serve as a point of reference, we have implemented a SHA-256 [24] hardware module with
a straight-forward approach. No optimization techniques [22] have been employed, except for
the use of carry-save adders in the round implementation of compression function and message
schedule. The datapath of our implementation is depicted in Figure 15.

11 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

MSG

MD

state schedule

IV

compression
round

K(t)

schedule
round

chain

ADDIV

Fig. 15. Straight-forward implementation of SHA-256.

3 Practical Results

Shabal and SIMD have been implemented in Verilog; all other SHA-3 hardware modules have
been written in VHDL. The HDL sources of our implementations will be made available to
interested parties involved in the SHA-3 evaluation process upon request from one of the
authors. Any eventual second-round tweaks have been integrated in the modules. The only
exception is the SIMD module, which (due to time constraints of the authors) implements
the specification from round one4. The results of the Skein-512-512 module are reported as
an estimation for a Skein-512-256 hardware module, as the specification seems to allow both
Skein-256-256 and Skein-512-256 as SHA-3 variant with a 256-bit message digest. Correct
functionality of all modules has been verified against the official Known Answer Test (KAT)
vectors with simulation via Cadence NCSim [8].

Our throughput evaluation assumes that the message blocks are delivered to the hardware
module at a speed which allows it to operate under full utilization. Our optimization target
for synthesis was maximum peak throughput, which corresponds to the throughput for long
messages. Note that for shorter messages, the throughput might change due to more or less
costly initialization operations and output transformations.

As first phase of evaluation we performed multiple standard-cell synthesis runs for each of
the variants of the hardware modules using an adaptive optimization heuristic. For each run,
the target for the critical path delay has been adapted5. Synthesis runs have been counted as
successful only if they (1) finished within a certain amount of time6 and (2) the synthesized
design reached the set target delay under worst-case conditions7.

In the second evaluation phase, the variants with the “best” performance were subjected to
place & route. The primary selection criterion was high throughput. If throughput could only be
increased in the range of a few percent at the cost of area increase in the range of several dozen
percent, we chose the slightly slower but substantially more area-efficient implementation for

4 We don’t expect the integration of the round-two tweak to have a significant effect on the performance
figures.

5 Lowered if the run was successful, increased if it failed.
6 For the present work, the limit has been set to two hours.
7 A maximal negative slack of 50 ps has been allowed.

12 S. Tillich et al.

place & route. For example, a 4% increase in throughput at a 65% increase in area was not
considered.

Synthesis and place & route targeted the UMC 0.18 µm standard-cell library FSA0A C from
Faraday [13] and has been performed with the Cadence PKS-Shell (v05.16) and Cadence First
Encounter (v05.20), respectively [8]. Optimization effort was set high and was primarily aimed
towards maximum speed.

Note that we only make a comparison of the results of our hardware modules and that we
do not include previously published results. We do this in order to stress the coherency of our
benchmarking effort and to keep the comparison as fair as possible.

The implementations reported in Table ?? refer to the following implementation variants:

–	 BLAKE: Four G functions in parallel, two pipeline registers, additional cycle for chaining,
carry-save adders.

–	 Blue Midnight Wish: Whole compression function (f0, f1, f2) as a single combinational
block, generic adders.

–	 CubeHash: Two CubeHash rounds unrolled, generic adders.
–	 ECHO: S-boxes as HW LUT.
–	 Fugue: S-boxes and matrix multiplication separated, S-boxes as HW LUT.
–	 Grøstl: Shared P/Q permutation, S-boxes and MixBytes separated, S-boxes following Wolk­

erstorfers et al. approach [26] with one pipeline register.
–	 Hamsi: Three P/Pf instances in series, S-boxes as HW LUT.
–	 JH: 320 S-boxes (one cycle per R8 round), combinational S-boxes.
–	 Keccak: One Kekkak-f round per cycle.
–	 Luffa: S-boxes and matrix multiplication separated, S-boxes as HW LUT, output of control

FSM registered.
–	 Shabal: One round of permutation P per cycle, generic adders.
–	 SHAvite-3: One AES round for compression function and message expansion each.
–	 SIMD: Message expansion with 16 parallel FFT-8 and 16 parallel modular multipliers,

compression function with four parallel Feistel blocks.
–	 Skein: Eight Threefish rounds unrolled, generic adders.
–	 SHA-2: No unrolling or quasi-pipelining, generic adders.

The estimations of the synthesis tool after synthesis differ from the results after place &
route. Most importantly, the maximum clock frequency of most implementation is decreased,
most likely due to routing overheads not anticipated by the synthesis tool. This leads in turn to
lower throughput figures. Also, the gate count after place & route decreases slightly for most
implementations. This is due to the removal of extra buffers from the post-synthesis netlist by
the place & route tool.

Table 1 summarizes our results after place & route. It contains the block size of the hash
algorithm (block) and the number of clock cycles required for the processing of one block
(latency). The area is given in terms of gate equivalents (GEs)8. The reported clock frequency
is the maximum value under typical conditions9. The throughput column indicates the peak
throughput at the stated clock frequency. The block size and the latency determine the properties
of the interface required to reach peak throughput. A large block size and a small latency (e.g.
for the BMW-256 implementation) require either a very broad interface or an interface clocked
substantially faster than the hash module. Appendix A contains a graphical representation of
area in relation to highest throughput in Figure 16 and the results of the “best” implementation
variants after synthesis alone in Table 2. With the exception of BMW, the maximum clock
frequency (and it turn the throughput) of all implementations was lower after place & route than
estimated after synthesis. On the other hand, the total area of most implementations decreased
after place & route. Unfortunately, we did not have sufficient time to investigate the reasons for
these differences.

8 For FSA0A C, 1 GE equals 9.37 sqmils (i.e. the size of a ND2 cell).

9 Operating temperature 25 ◦C, supply voltage 1.8 V.

13 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

Table 1. Results after place & route for the “best” implementation variants using the UMC 0.18 µm
FSA0A C standard-cell library.

Implementation
Block

bit
Latency
cycles

Area
GE

Clock freq.
MHz

Throughput
Gbit/s

BLAKE-32 512 22 38,877 144.15 3.355
BMW-256 512 1 160,922 15.12 7.741
CubeHash16/32-h 256 8 56,612 111.06 3.554
ECHO-256 1,536 97 128,069 121.97 1.931
Fugue-256 32 2 48,401 161.19 2.579
Grøstl-256 512 22 53,680 202.47 4.712
Hamsi-256 32 1 59,955 119.77 3.833
JH-256 512 39 51,212 259.54 3.407
Keccak(-256) 1,088 25 56,713 267.09 11.624
Luffa-224/256 256 9 45,271 336.02 9.558
Shabal-256 512 50 55,143 216.83 2.220
SHAvite-3256 512 37 59,822 159.80 2.211
SIMD-256 512 36 95,669 58.33 0.830
Skein-256-256 256 10 47,678 64.75 1.658
Skein-512-512 512 10 76,250 43.49 2.227
SHA-256 512 66 19,515 211.37 1.640

In terms of throughput, the Keccak implementation outperforms all other modules by a
considerable margin. The Luffa module is second fastest and more compact. The next-best
implementations are those of Grøstl, Hamsi, JH, and CubeHash which all have similar area
requirements. The BMW module achieves similar throughput, but at considerably higher hard­
ware cost. The implementations of Fugue and BLAKE are a bit slower, but also smaller. The
Shabal and SHAvite-3 modules are slower and bigger. They achieve similar performance. The
Skein-512 implementation follows next with a considerable hardware cost. The ECHO module
achieves similar throughput, but requires more area. The Skein-256 module follows with a
moderate size. Our implementation of SIMD is the slowest in the field. The straight-forward
SHA-256 implementation has the smallest area and achieves a throughput which is rather at the
low end of the spectrum.

4 Conclusions

In this work we presented our high-speed hardware implementations of all 14 round-two can­
didates of the SHA-3 contest. All hash modules have been designed and implemented towards
the same optimization goal and evaluated with the same synthesis tools, target technology, and
optimization heuristic. In order to stress the coherency of our results, we have consciously ex­
cluded other prior published implementations from consideration, as we regard the differences
in interface design, standard-cell library, target technology, synthesis tools, and optimization
effort to make meaningful comparisons extremely difficult. Our results indicate that Keccak and
Luffa implementations offer the best throughput and also the best area/throughput tradeoff. Most
of the other candidate implementations have a higher throughput than our SHA-256 reference
implementation.

Acknowledgements. The work described in this paper has been supported by the European
Commission through the ICT programme under contract ICT-2007-216676 ECRYPT II. The
information in this document is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses the information as its
sole risk and liability.

14 S. Tillich et al.

References

1. J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan.	 SHA-3 proposal BLAKE, version 1.3.
Available online at http://131002.net/blake/blake.pdf, 2008.

2. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and Y. Seurin.	 SHA­
3 Proposal: ECHO. Available online at http://crypto.rd.francetelecom.com/echo/doc/
echo_description_1-5.pdf, February 2009.

3. D. J. Bernstein. CubeHash specification (2.B.1). Available online at http://cubehash.cr.yp.to/
submission/spec.pdf, October 2008.

4. D. J. Bernstein and T. Lange. eBASH: ECRYPT Benchmarking of All Submitted Hashes.	 http:
//bench.cr.yp.to/ebash.html.

5. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. KECCAK specifications, Version 2 – September
10, 2009. Available online at http://keccak.noekeon.org/Keccak-specifications-2.pdf,
September 2009.

6. E. Biham and O. Dunkelman.	 The SHAvite-3 Hash Function (version from February 1, 2009).
Available online at http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.01.02.09.
pdf, February 2009.

7. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart, J.-F. Misarsky,
M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and M. Videau. Shabal, a
Submission to NIST’s Cryptographic Hash Algorithm Competition. Available online at http://www.
shabal.com/wp-content/plugins/download-monitor/download.php?id=Shabal.pdf,
October 2008.

8. Cadence Design Systems. The Cadence Design Systems Website. http://www.cadence.com/.
9. C. D. Canniére, H. Sato, and D. Watanabe. Hash Function Luffa, Specification Ver. 2.0. Available

online at http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_
20090915.pdf, September 2009.

10. D. Canright. A Very Compact S-Box for AES. In J. R. Rao and B. Sunar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2005, 7th International Workshop, Edinburgh, UK, August
29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Science, pages
441–455. Springer, 2005.

11. J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and Cryptography. Springer,
2002. ISBN 3-540-42580-2.

12. ECRYPT II. SHA-3 Hardware Implementations. http://ehash.iaik.tugraz.at/wiki/SHA-3_
Hardware_Implementations.

13. Faraday Technology Corporation.	 Faraday FSA0A C 0.18 µm ASIC Standard Cell Library, 2004.
Details available online at http://www.faraday-tech.com.

14. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker.
The Skein Hash Function Family. Available online at http://www.skein-hash.info/sites/
default/files/skein1.1.pdf, November 2008.

15. P.	 Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, and S. S. T. Mar­
tin Schläffer. Grøstl – a SHA-3 candidate. Available online at http://www.groestl.info/
Groestl.pdf, October 2008.

16. George Mason University. The Athena Website. http://cryptography.gmu.edu/athena/.
17. D. Gligoroski and V. Klima.	 Cryptographic Hash Function BLUE MIDNIGHT WISH. Available

online at http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_
Documentation/BlueMidnightWishDocumentation.pdf, September 2009.

18. S. Halevi, W. E. Hall, and C. S. Jutla.	 The Hash Function “Fugue”. Available online at http:
//domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.index.html/
$FILE/fugue_09.pdf, September 2009.
¨19.	 O. K¨ ¸uk. The Hash Function Hamsi, version from September 14, 2009. Available online at http: uc¨
//www.cosic.esat.kuleuven.be/publications/article-1203.pdf, September 2009.

20. G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD Is a Message Digest. Updated version: 2009­
01-15, 2009.

21. S. Mangard, M. Aigner, and S. Dominikus.	 A Highly Regular and Scalable AES Hardware
Architecture. IEEE Transactions on Computers, 52(4):483–491, April 2003.

22. R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane. Optimisation of the SHA-2 Family
of Hash Functions on FPGAs. In J. Becker, A. Herkersdorf, A. Mukherjee, and A. Smailagic, editors,

www.cosic.esat.kuleuven.be/publications/article-1203.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting
http://cryptography.gmu.edu/athena
http://www.groestl.info
http://www.skein-hash.info/sites
http:http://www.faraday-tech.com
http://ehash.iaik.tugraz.at/wiki/SHA-3
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification
http:http://www.cadence.com
http://www
http:http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.01.02.09
http://keccak.noekeon.org/Keccak-specifications-2.pdf
http:http://cubehash.cr.yp.to
http://crypto.rd.francetelecom.com/echo/doc
http://131002.net/blake/blake.pdf

15 Uniform Evaluation of HW Impl. of the Round-2 SHA-3 Candidates

IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures
(ISVLSI’06), Karlsruhe, Germany, 2-3 March, 2006, Proceedings, pages 317–322. IEEE Computer
Society, March 2006.

23. National Institute of Standards and Technology (NIST). Cryptographic Hash Algorithm Competition
Website. http://csrc.nist.gov/groups/ST/hash/sha-3.

24. National Institute of Standards and Technology (NIST). FIPS-180-3: Secure Hash Standard, October
2008. Available online at http://www.itl.nist.gov/fipspubs/.

25. S. Tillich, M. Feldhofer, and J. Großschädl. Area, Delay, and Power Characteristics of Standard-Cell
Implementations of the AES S-Box. In S. Vassiliadis, S. Wong, and T. Hämäläinen, editors, 6th
International Workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation,
SAMOS 2006, Samos, Greece, July 17-20, 2006, Proceedings, volume 4017 of Lecture Notes in
Computer Science, pages 457–466. Springer, July 2006.

26. J. Wolkerstorfer, E. Oswald, and M. Lamberger.	 An ASIC implementation of the AES SBoxes.
In B. Preneel, editor, Topics in Cryptology - CT-RSA 2002, The Cryptographers’ Track at the RSA
Conference 2002, San Jose, CA, USA, February 18-22, 2002, Proceedings, volume 2271 of Lecture
Notes in Computer Science, pages 67–78. Springer, 2002.

27. H.	 Wu. SHA-3 proposal JH, version January 15, 2009. JH online at http://icsd.i2r.a­
star.edu.sg/staff/hongjun/jh/index.html, 2008.

http://icsd.i2r.a
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/sha-3

16 S. Tillich et al.

A Further Practical Results

Table 2. Results after synthesis for the “best” implementation variants using the UMC 0.18 µm FSA0A C
standard-cell library.

Block Latency Area Clock freq. Throughput
Implementation bit cycles GE MHz Gbit/s
BLAKE-32 512 22 45,640 170.64 3.971
BMW-256 512 1 169,737 10.46 5.358
CubeHash16/32-h 256 8 58,872 145.77 4.665
ECHO-256 1,536 97 141,489 141.84 2.246
Fugue-256 32 2 46,257 255.75 4.092
Grøstl-256 512 22 58,402 270.27 6.290
Hamsi-256 32 1 58,661 173.91 5.565
JH-256 512 39 58,832
Keccak(-256) 1,088 25 56,316
Luffa-224/256 256 9 44,972
Shabal-256 512 50 54,186
SHAvite-3256 512 37 57,388
SIMD-256 512 36 104,166
Skein-256-256 256 10 58,611
Skein-512-512 512 10 102,039
SHA-256 512 66 19,144

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160

Area (kGates)

Th
ro

ug
hp

ut
 (G

bi
t/s

)

BLAKE-32
BMW-256
CubeHash16/32-256
ECHO-256
Fugue-256
Grøstl-256
Hamsi-256
JH-256
Keccak-256
Luffa-224/256
Shabal-256
SHAvite-3_256
SIMD-256
Skein-256-256
Skein-512-512
SHA-256

380.22 4.992
487.80 21.229
483.09 13.741
320.51 3.282
227.79 3.152
64.93 0.924
73.52 1.882
48.87 2.502

302.11 2.344

Fig. 16. Maximum peak throughput vs. area of the high-speed hardware implementations of the SHA-3
candidates (after place & route).

