Deterministic Differential Properties of the BMW Compression Function

Jian Guo and Søren S. Thomsen

1 Nanyang Technological University, Singapore
2 DTU Mathematics, Technical University of Denmark

Abstract. In this paper, we give some deterministic differential properties for the compression function of SHA-3 candidate Blue Midnight Wish (tweaked version for round 2). The computational complexity is about 2^9 compression function calls. This applies to security parameters 0/16, 1/15, and 2/14. The efficient differentials can be used to find pseudo-preimages of the compression function with marginal gain over brute force. However, none of these attacks threaten the security of the BMW hash functions.

Keywords: Hash function cryptanalysis, Blue Midnight Wish, SHA-3, differential

1 Introduction

Blue Midnight Wish [3] (BMW) is one of the 14 second round candidates of NIST’s cryptographic hash algorithm competition [5]. It was tweaked after being selected for round 2, apparently in order to resist attacks by Thomsen [7], Aumasson [1] and Nikolić et al. [6], independently of our work, found some distinguishers with data complexity 2^{19}, and for a modified variant of BMW-512 with probability $2^{-278.2}$, respectively. In this paper, we give explicit constructions of message pairs, by tracing the propagation of the differences, to show some interesting behaviour on certain bits of the output with probability 1.

The paper is organised as follows. Section 2 gives a brief description of BMW. Then, we introduce some general observations in Section 3, which are further extended to differentials for BMW variants with security parameters 0/16, 1/15, 2/14, in Sections 4, 5, 6, respectively. A pseudo-preimage attack on the compression function using such efficient differentials is discussed in Section 7. Section 8 concludes the paper.

2 Description of BMW

BMW is a family of hash functions, containing four major instances, BMW-n, with $n \in \{224, 256, 384, 512\}$, where n is the size of the hash output. It follows a tweaked Merkle-Damgård structure with double-pipe design, i.e., the size of the chaining value is twice the output size. Since our differentials concentrate on the compression function only, we refer to (tweaked for round 2) submission documents [3] for the descriptions of padding, finalisation, etc.

The compression function bmw$_n$ of BMW-n takes the chaining value H and a message block M as input, and produces the updated chaining value H^*. All H, M, and H^* are of 16 words, where the size of a word is 32 bits for BMW-224/256, and 64 bits for BMW-384/512. We use X_i ($i = 0, \ldots, 15$) to denote the i-th word of X. The compression function comprises three functions, called f_0, f_1, and f_2, in sequence. We introduce them here.

The f_0 function. A temporary W_i is introduced as

$$W_i \leftarrow \pm(M_{i+5} \oplus H_{i+5}) \pm (M_{i+7} \oplus H_{i+7}) \pm (M_{i+10} \oplus H_{i+10})$$

$$\pm (M_{i+13} \oplus H_{i+13}) \pm (M_{i+14} \oplus H_{i+14})$$

for $i = 0, \ldots, 15$. By ‘\pm’ we mean ‘$+$’ or ‘$-$’; which operator is used varies and does not seem to follow any simple pattern (see [3, Table 2.2] for details). Unless specified otherwise, all additions (and subtractions) are

*Part of this work was carried out while the author was visiting Nanyang Technological University, by the support of the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03.
to be taken modulo 2^w (where w is the word size) and all indices for H and M are modulo 16 throughout this paper. The outputs of f_0 are Q_i, $i = 0, \ldots, 15$, which are computed as

$$Q_i \leftarrow s_i \mod 5 (W_i) + H_{i+1},$$

(2)

where s_i are predefined bijective functions with $i = 0, \ldots, 4$; see Appendix A for the definitions of these. Note that without the feed-forward of H_{i+1}, the output of f_0 would be a permutation of $H \oplus M$, since the computation of W corresponds to a multiplication by an invertible matrix.

The f_1 function. f_1 takes H, M, and Q_0, \ldots, Q_{15} (the output from f_0) as input, and produces 16 new words Q_j, for $j = 16, \ldots, 31$. The output words are computed one at a time through 16 rounds. There are two types of rounds, $expansion_1$ rounds and $expansion_2$ rounds. We denote the number of $expansion_1$ rounds by R, where R is a security parameter that can take any value between 0 and 16. There are $16 - R$ $expansion_2$ rounds. For the sake of clarity, we shall denote a specific choice of security parameter by $R/(16 - R)$; the value of the security parameter suggested by the designers is 2/14 (in other words: 2 $expansion_1$ rounds and 14 $expansion_2$ rounds).

The 16 output words Q_{16}, \ldots, Q_{31} are computed as follows. An $expansion_1$ round computes

$$Q_{j+16} \leftarrow AddElement(j) + \sum_{i=0}^{15} s_{i+1} \mod 4 (Q_{i+j-16}).$$

(3)

Here, $AddElement$ is defined as:

$$AddElement(j) \leftarrow (M_j \ll (j \mod 16) + 1) + M_j \ll (j+3 \mod 16) + 1
- M_j \ll (j+10 \mod 16) + 1 + K_j) \oplus H_{j+7},$$

(4)

where $X \ll n$ denotes a left-rotation of register X by n positions (by left we mean towards the most significant bit). The words K_j are round constants equal to $(j + 16) \cdot 0555555555555555h$ for BMW-384/512 and $(j + 16) \cdot 0555555555h$ for BMW-224/256. An $expansion_2$ round computes

$$Q_{j+16} \leftarrow Q_j + r_1(Q_{j+1}) + Q_{j+2} + r_2(Q_{j+3}) + Q_{j+4} + r_3(Q_{j+5}) + Q_{j+6} +
 r_4(Q_{j+7}) + Q_{j+8} + r_5(Q_{j+9}) + Q_{j+10} + r_6(Q_{j+11}) +
 Q_{j+12} + r_7(Q_{j+13}) + s_4(Q_{j+14}) + s_5(Q_{j+15}) + AddElement(j).$$

(5)

The functions r_i are rotation functions; see Appendix A for details.

The f_2 function. We list the description of H_0^*, since our result concerns this word only.

$$H_0^* \leftarrow (XH \ll 5 \oplus Q_{16} \gg 5 \oplus M_0) + (XL \oplus Q_{24} \oplus Q_0),$$

(6)

where

$$XL = Q_{16} \oplus \cdots \oplus Q_{23},$$
$$XH = Q_{16} \oplus \cdots \oplus Q_{31}.$$
3 Observations

Let $X[n]$ denote the nth bit of the word X, where the least significant bit is the 0th bit. Since an addition takes no carry into the least significant bit, we can state the following expression for the LSB $H^*_0[0]$ of H^*_0:

$$H^*_0[0] = Q_{16}[5] \oplus M_0[0] \oplus X \text{L}[0] \oplus Q_{24}[0] \oplus Q_0[0].$$

Given the definition of $X \text{L}$, this expression can be restated as

$$H^*_0[0] = M_0[0] \oplus Q_5[0] \oplus Q_{16}[5] \oplus \bigoplus_{i=16}^{24} Q_i[0].$$

Hence, $H^*_0[0]$ does not depend on Q_{25}, \ldots, Q_{31}. This means that if we can limit difference propagation through the first 9 rounds of f_1 (where Q_{16}, \ldots, Q_{24} are computed), and if we can still keep the difference on $M_0[0]$ and $Q_0[0]$ under our control, then the bit $H^*_0[0]$ may be biased.

In the function f_1, differences may propagate only very slowly towards the LSB. Consider an expand$_2$ round:

$$Q_{j+16} \leftarrow Q_j + r_1(Q_{j+1}) + Q_{j+2} + r_2(Q_{j+3}) + Q_{j+4} + r_3(Q_{j+5}) + Q_{j+6} + r_4(Q_{j+7}) + Q_{j+8} + r_5(Q_{j+9}) + Q_{j+10} + r_6(Q_{j+11}) + Q_{j+12} + r_7(Q_{j+13}) + s_4(Q_{j+14}) + s_5(Q_{j+15}) + \text{AddElement}(j).$$

The function s_5 is defined as

$$s_5(x) = x^{\gg 2} \oplus x.$$

Here $x^{\gg 2}$ means a right-shift by two bit positions. Hence, if Q_{j+15} contains a difference in an expand$_2$ round, then the function s_5 propagates this difference two positions down towards the LSB. For example, the difference

$$?????????????????x------------------------$$

would become

$$?????????????????x------------------------.$$

4 The security parameter 0/16

Consider a variant of BMW with security parameter 0/16, meaning that all 16 rounds in f_1 are of the expand$_2$ type. Consider an input pair to the compression function such that there is a difference in Q_0 but in no word among Q_1, \ldots, Q_{15}, nor in $M_0, M_3, M_{10},$ and H_7. This difference on Q_0 will propagate to Q_{16}. Due to the additions, the difference may propagate towards the most significant bit (MSB), but never towards the LSB. Hence, if the t LSBs of Q_0 contain no difference, then these bits also contain no difference in Q_{16}. As an example, the difference $[----x----x----------x----------]$ in Q_0 becomes $[?????????????????x----------]$ in Q_{16}.

In the second round, Q_{16} will go through the function s_5, and the difference will be shifted two positions towards the least significant bit. In the example above, we would get $[?????????????????x----------]$. Hence, there will be no difference in the $t-2$ least significant bits of $s_5(Q_{16})$. The word Q_0 no longer affects the function f_1, and if there is no difference in the $t-2$ least significant bits of $\text{AddElement}(1)$, then Q_{17} will contain no difference in the $t-2$ LSBs. In the following round (under some conditions on M and H), the difference again propagates two positions towards the LSB, meaning that the $t-4$ LSBs contain no difference.

The condition that the only difference in the words Q_0, \ldots, Q_{15} lies in Q_0 can be enforced by having the same difference in H_1 and in M_1, and no difference in all other words of H and M. This means that there is no difference in the permutation inside f_0, but the difference in H_1 will be fed forward to Q_0. Denote by Δ the difference on H_1 and M_1. If Δ has many trailing ‘0’ bits, i.e., there is no difference in many LSBs of H_1 and M_1, then the behaviour described above occurs.
The word M_1 is involved in rounds 1, 7, and 14 of f_1, and H_1 is involved in round 10. In rounds 1 and 7, M_1 is rotated two positions left, and therefore, in order to keep differences out of the least significant bit positions, we need Δ to have '0' bits in the two MSB positions. In rounds 9–15, we do not worry about difference propagation, since this will affect only the words Q_{25}, \ldots, Q_{31}, which are not involved in the computation of $H_0^1[0]$.

The only remaining potential source of differences in the least significant bit positions are due to the rotation functions r_i. Looking closely at the effects of these functions one sees that they make no difference in the case of BMW-224/256, but they do have a significant effect in the case of BMW-384/512. On the other hand, in BMW-384/512, the “distance” to the LSB is greater, and therefore it is still possible to obtain interesting results as described now.

The difference Δ with the maximum value of t fulfilling the mentioned requirements is $\Delta = 2^{61}$ for BMW-384/512 (and $\Delta = 2^{29}$ for BMW-224/256). Hence, we have the difference

$$[-\text{x}---------------]$$

on H_1 and M_1, which becomes

$$[??\text{x}---------------]$$

in Q_0 due to the feed forward of H_1. The 16 words computed in f_1 will have the following differences:

$$\Delta Q_{16} = [??\text{x}---------------]$$
$$\Delta Q_{17} = [??\text{x}---------------]$$
$$\Delta Q_{18} = [??\text{x}---------------]$$
$$\Delta Q_{19} = [??\text{x}---------------]$$
$$\Delta Q_{20} = [??\text{x}---------------]$$
$$\Delta Q_{21} = [??\text{x}---------------]$$
$$\Delta Q_{22} = [??\text{x}---------------]$$
$$\Delta Q_{23} = [??\text{x}---------------]$$
$$\Delta Q_{24} = [??\text{x}---------------]$$
$$\Delta Q_{25} = [??\text{x}---------------]$$
$$\Delta Q_{26} = [??\text{x}---------------]$$
$$\Delta Q_{27} = [??\text{x}---------------]$$
$$\Delta Q_{28} = [??\text{x}---------------]$$
$$\Delta Q_{29} = [??\text{x}---------------]$$
$$\Delta Q_{30} = [??\text{x}---------------]$$
$$\Delta Q_{31} = [??\text{x}---------------]$$

The end result in the output word H_0^1 is the difference (one can verify this by substituting all above differences to Eqn. (6))

$$[\text{x}---------------]$$

Hence, there is no difference in the 5 LSBs with probability 1. In fact, there is also a strong bias in H_5, which has the difference

$$[\text{x}---------------]$$

For BMW-224/256 one gets a similar behaviour; the difference on H_5^1 is

$$[\text{x}---------------]$$

and the difference on H_5^2 is $[\text{x}---------------]$.
5 The security parameter 1/15

When there is a single \(expand_1 \) round in the beginning of \(f_1 \), followed by 15 \(expand_2 \) rounds, we can get a similar behaviour as described in the previous section if we can find a difference \(\Delta \) with many LSBs equal to 0, and such that \(s_1(\Delta) \) also has many LSBs equal to 0. We shall investigate this in a moment.

Now, in order to keep the difference \(\Delta \) from being changed by the feed-forward with \(H \) in \(f_0 \), we need a few more conditions on \(H \) and \(M \) compared to the security parameter 0/16. What we need is that \(s_0(W_0) \) contains '0' bits in the positions where \(\Delta \) contains '1' bits. An easy way to ensure this is by requiring that \(M_i \) and \(H_i \) are equal to zero for \(i \in \{5, 7, 10, 13, 14\} \). Alternatively, without introducing any requirements, the condition is fulfilled with probability \(2^{-||\Delta||} \), where \(||\Delta|| \) is the Hamming weight of \(\Delta \) excluding the MSB.

5.1 Searching for good differences

In order to simplify the discussion we introduce the following function:

\[P(X) = \min\{i \mid \Delta X[i] \neq ^{i-1}\}. \]

In words, \(P(X) \) is the number of consecutive least significant bits of \(X \), which certainly contain no difference. It is clear that \(P(X + Y) \geq \min(P(X), P(Y)) \), and \(P(X^{\geq \ell}) = \max(P(X) - \ell, 0) \). In the case of rotations, we have that if \(\ell \leq P(X) \), then \(P(X^{\geq \ell}) = P(X) - \ell \). For BMW-384/512, we have the following:

\[
\begin{align*}
 P(s_5(X)) &= P(X) - 2, & \text{since } s_5(X) &= X^{\geq 2} \oplus X \\
 P(s_4(X)) &= P(X) - 1, & \text{since } s_4(X) &= X^{\geq 1} \oplus X \\
 P(s_7(X)) &= P(X) - 11, & \text{since } r_7(X) &= X^{\ll 11} = X^{\geq 21} \\
 P(r_6(X)) &= P(X) - 21, & \text{since } r_6(X) &= X^{\ll 43} = X^{\geq 21} \\
 P(r_5(X)) &= P(X) - 27, & \text{since } r_5(X) &= X^{\ll 37} = X^{\geq 27}.
\end{align*}
\]

The last three identities are on the condition that \(\ell \leq P(X) \), where \(\ell \) is the (right) rotation value.

As above, we assume that among \(\{Q_0, \ldots, Q_{15}\} \), only \(Q_0 \) contains a difference, and among \(\{H_i\} \cup \{M_i\} \), only \(H_1 \) and \(M_1 \) contain a difference. This happens if the differences in \(H_1 \) and \(M_1 \) are the same. Now we track the differences going into each of the first nine rounds of \(f_1 \). Below we have listed the (modified) input words that contain a difference in each round.

\[
\begin{align*}
 Q_{16} : & \quad s_1(Q_0) \\
 Q_{17} : & \quad s_5(Q_{16}), M_1^{\ll 2} \\
 Q_{18} : & \quad s_5(Q_{17}), s_4(Q_{16}) \\
 Q_{19} : & \quad s_5(Q_{18}), s_4(Q_{17}), r_7(Q_{16}) \\
 Q_{20} : & \quad s_5(Q_{19}), s_4(Q_{18}), r_7(Q_{17}), Q_{16} \\
 Q_{21} : & \quad s_5(Q_{20}), s_4(Q_{19}), r_7(Q_{18}), Q_{17}, r_6(Q_{16}) \\
 Q_{22} : & \quad s_5(Q_{21}), s_4(Q_{20}), r_7(Q_{19}), Q_{18}, r_6(Q_{17}), Q_{16} \\
 Q_{23} : & \quad s_5(Q_{22}), s_4(Q_{21}), r_7(Q_{20}), Q_{19}, r_6(Q_{18}), Q_{17}, r_5(Q_{16}), M_1^{\ll 2} \\
 Q_{24} : & \quad s_5(Q_{23}), s_4(Q_{22}), r_7(Q_{21}), Q_{20}, r_6(Q_{19}), Q_{18}, r_5(Q_{17}), Q_{16}
\end{align*}
\]

The goal is to find differences \(\Delta \) in \(Q_0 \) such that the LSB of \(Q_i \), for all \(i, 16 \leq i \leq 24 \), contains a strong bias. This bias is preferably in the form of a difference or no difference with probability 1. We now identify the minimum requirements on \(\Delta \) in order for this to happen. We assume the difference on \(H_1 \) and \(M_1 \) is also \(\Delta \), i.e., that there is no propagation of bit differences in the feed forward of \(H_1 \) in \(f_0 \).

We first find the bare requirements on \(Q_{16} \) in order to reach our goal. The round in which the \(P \)-value of \(Q_{16} \) drops the most is round 7 (computing \(Q_{23} \)), in which \(r_5 \) is computed on \(Q_{16} \). This yields the requirement \(P(Q_{16}) \geq 27 \).

The requirements on \(Q_{17} \) are similarly found to be \(P(Q_{17}) \geq 27 \). This “updates” the requirement on \(Q_{16} \) due to the dependence of \(Q_{17} \) on \(Q_{16} \), which means that we get \(P(Q_{16}) \geq 29 \).

If we continue like this, we find requirements on subsequent words of \(Q \), which may iteratively require updates to requirements on previous words. The end result is that the requirement on \(Q_{16} \) becomes \(P(Q_{16}) \geq 32 \) and the requirement on \(M_1 \) is \(P(M_1) \geq 25 \) combined with the requirement that there is no difference in
the two MSBs of M_1. Hence, we search for a difference Δ which has '0' bits in the two MSB positions, and such that Δ ends with 25 '0' bits and $s_1(\Delta)$ ends with 32 '0' bits.

The function s_1 can be described as a matrix multiplication over F_2. The matrix S_1 has 64 rows and columns, and the input x is viewed as a 64-bit column vector. Then we have $s_1(x) = S_1 \cdot x$. Searching for a good difference Δ corresponds to finding the kernel of a submatrix \hat{S}_1 of S_1, in which rows 0, \ldots, 31 and columns 0, 1, and 39, \ldots, 63 are removed. Hence, we keep the columns corresponding to input bits that may contain a difference, and we keep the rows corresponding to output bits which must contain no difference. See Fig. 1.

![Matrix \hat{S}_1](image)

Fig. 1. The matrix \hat{S}_1 over F_2 (a dot means '0').

The kernel of \hat{S}_1 has dimension 5 and hence contains $2^5 - 1 = 31$ non-zero vectors. Five basis vectors of the kernel correspond to the 64-bit words $02048000080000000h$, $01024000040000000h$, $10040000400000000h$, $00812000020000000h$, and $24010000900000000h$, and so any linear combination of these (except 0) can be used as a value for Δ. As an example, if we choose $\Delta = 10040000400000000h$ (and assuming Δ is not changed by the feed-forward in f_0), we have the following differences with probability 1 (the words Q_i for $1 \leq i < 16$...
contain no difference):

\[
\begin{align*}
\Delta Q_0 &= \text{[---x---------x------------------------x---]}, \\
\Delta Q_{16} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{17} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{18} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{19} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{20} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{21} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{22} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{23} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{24} &= \text{[?????x------------------------x---]},
\end{align*}
\]

Hence, \(XL\) will be

\[
\text{[??x---]},
\]

and from (7) we see that \(H_0^s[0]\) will contain no difference with probability 1.

For BMW-224/256, a similar investigation results in a solution space for \(\Delta\) of dimension 2, parametrised by the vectors \(08901000_h\) and \(20404000_h\). As an example, with \(\Delta = 20404000_h\) we have the following differences with probability 1:

\[
\begin{align*}
\Delta Q_0 &= \text{[---x---------x------------------------x---]}, \\
\Delta Q_{16} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{17} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{18} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{19} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{20} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{21} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{22} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{23} &= \text{[?????x------------------------x---]}, \\
\Delta Q_{24} &= \text{[?????x------------------------x---]},
\end{align*}
\]

Hence, \(XL\) will be \([???x--\], and \(H_0^s[0]\) will contain a difference with probability 1. If we instead take \(\Delta\) to be the xor of the two basis vectors, then \(H_0^s[0]\) will contain no difference with probability 1.

6 The security parameter 2/14

The results described above cannot be directly extended to the security parameter 2/14. The reason is that the difference in \(Q_{16}\) goes through \(s_0\) instead of \(s_5\) in round 1. \(s_0\) is much more effective in spreading differences than \(s_5\).

However, we observe that it is still possible if we are lucky (as attacker) enough to get the differences in some LSBs cancelled. Note that when the security parameter is 2/14 instead of 1/15, we have the same dependencies (see (9)) except that \(Q_{17}\) depends on \(s_0(Q_{16})\) instead of on \(s_5(Q_{16})\). Hence, we may investigate whether the requirement \(P(Q_{17}) \geq 27\) that we found above holds for some \(\Delta\) among the 31 candidates mentioned above. Unfortunately, this is not the case.

Instead, we may allow differences in the 25 LSBs of \(Q_0\) and hope that the modular addition cancels the differences in the 27 LSBs of \(s_0(s_1(Q_0))\) and \(M^e_{12}\), which are the only terms in the computation of \(Q_{17}\) that contain differences. We still need \(s_1(Q_0)\) to contain no difference in the 32 LSBs, and we also need \(M_1\) to have no difference in the two MSBs. So we search for \(\Delta\) so that \(s_0(s_1(\Delta))\) and \(\Delta^e_{12}\) agree in the 27 LSBs, and so that \(s_1(\Delta)\) has ‘0’ bits in the 32 LSBs and \(\Delta\) has ‘0’ bits in the two MSBs.
Let S_0 and S_1 denote the bit matrices corresponding to the functions s_0 and s_1, and let R_2 denote the bit matrix corresponding to the operation $x \oplus c$. Let $A = s_1(\Delta)$; this means that we are interested in A having 32 trailing ‘0’ bits, and such that $S_0 \cdot A$ and $R_2 \cdot S_1^{-1} \cdot A$ agree in the 27 LSBs (where A in this case is viewed as a 64-bit column vector). Hence, similar to the situation above for the security parameter 1/15, we are in fact interested in the kernel of a submatrix of $S_0 - R_2 \cdot S_1^{-1}$. The submatrix is the 27×32 matrix where the last 32 columns and the first 37 columns are removed. Moreover, we need A to be such that $s_1^{-1}(A)$ has ‘0’ bits in the two MSBs.

It turns out that the kernel of this submatrix has dimension 5 and is parametrised by the vectors that can be found in the table below, where also the corresponding Δs are listed.

\[
\begin{array}{|c|c|}
\hline
A & \Delta = s_1^{-1}(A) \\
\hline
80D2227300000000h & 2BD8FF05891139Ah \\
48002F6000000000h & 29A78CAE96017B01h \\
22C4DC6100000000h & 89ABBD3D9226E308h \\
10D27CB300000000h & 784296D7493E598h \\
01201CFD00000000h & 28E58FDD2900E7E8h \\
\hline
\end{array}
\]

Clearly, there are 7 (non-zero) linear combinations that contain only ‘0’ bits in the two MSB positions and therefore admit a bias of the type ‘-’ or ‘x’ in $H^*_0[0]$. One of these ($\Delta = 28E58FDD2900E7E8h$) also admits this type of bias in $H^*_0[1]$. Moreover, among the remaining 24 non-zero linear combinations, there are 16 which admit a weaker bias in the sense that $H^*_0[0]$ contains a difference with probability about 3/8 or 5/8 (i.e., a bias 1/8, estimated from many experiments). Note that a difference in the two MSBs of M_1 is no longer a problem in round 1, since we obtain the required difference in round 1 by having the differences in the 27 LSbs of $s_0(Q_{16})$ and $M_{16}^{\oplus c}$ cancel. This can be ensured through simple message modifications, as explained in the following.

First, we choose $H_1 = M_1 = 0$. Then we choose H_i and M_i at random, $i \in \{0, 2, 3, \ldots, 15\}$. We then correct M_2 such that $Q_0 = 0$. Hence, $Q_0 \oplus \Delta = \Delta$, and so all bit differences in Q_0 are of the form $0 \rightarrow 1$. We then correct Q_8 (through proper choice of H_9 and M_9, without affecting other words) such that $Q_16 = 0$. This ensures that there is no carry propagation after adding the difference Δ on $s_1(Q_0)$. Hence, the difference on Q_{16} will be Δ as required. This, in turn, means that $s_0(Q_{16})$ will result in a difference that is the same as the difference on $M_{16}^{\oplus c}$ in the 27 LSB positions. All bit differences in $s_0(Q_{16})$ will be of the form $0 \rightarrow 1$. We can make the difference on $M_{16}^{\oplus c}$ cancel the difference on $s_0(Q_{16})$ (in the 27 LSbs) by making sure that all bit differences on $M_{16}^{\oplus c}$ are of the form $1 \rightarrow 0$. This is ensured by correcting M_1, such that $AddElement(1) = 0$ and by choosing $H_8 = FFFFFFFF000000h$. Note that this can be done in the very beginning, since these values do not depend on any values of Q. There are still many degrees of freedom left in the attack.

For BMW-224/256, we get the following three solutions:

\[
\begin{array}{|c|c|}
\hline
A & \Delta = s_1^{-1}(A) \\
\hline
99108000h & 5CD58223h \\
57E868000h & 6A2F79CCh \\
245B0000h & 87208B6h \\
\hline
\end{array}
\]

Only the xor of the first two basis vectors fulfills the requirement that the two MSBs of Δ are ‘0’ bits. Using this value of Δ (and with a similar message modification as above), one gets that the LSB of $H^*[0]$ is always ‘-’. Four out of the remaining six non-zero linear combinations yield a difference in the same bit with probability 3/8 or 5/8 (again an estimate based on experiments).

C program. The differential properties described in this section are demonstrated in a C program available for download [4].

7 Potential Applications

In this section, we show how to convert the efficient differentials into pseudo-preimages of the compression function. To describe the attack, we consider a small ideal case: assume we have a set of differences D_1, D_2, D_3 such that the differentials give $[-x]$, $[x-]$, and $[xx]$ on two output bits, respectively. Given any target T, we perform the pseudo-preimage attack as follows.
1. Randomly choose \((H, M)\) from the set of inputs that fulfil the requirements for the differentials. Compute \(H^* = \text{bmw}_n(H, M)\).

2. Compare \(H^*\) with \(T\) for the two bits.

3. If it gives \([=\text{~}1]\), further compare others bits;
4. else if it gives \([=\text{~}x]\), compare \(\text{bmw}_n(H \oplus D_1, M \oplus D_1)\) with \(T\);
5. else if it gives \([x\text{~}1]\), compare \(\text{bmw}_n(H \oplus D_2, M \oplus D_2)\) with \(T\);
6. else if it gives \([x\text{~}x]\), compare \(\text{bmw}_n(H \oplus D_3, M \oplus D_3)\) with \(T\).

7. Repeat steps 1-6 until a full match is found.

Note, steps 2-5 each gives a full match with probability \(2^{2-n'}\) (with \(n'\) the size of the chaining value). Hence, the expected time complexity is \(2^{n'-2} \times (1 + 3/4) \approx 2^{n'-1.2}\), with negligible memory requirements. More generally, if there are \(2^k - 1\) differences giving all possible \(2^k - 1\) probability 1 differentials on \(k\) output bits of the compression function, then the pseudo-preimage takes time about \(2^{n'-k} \cdot (2 - 2^{-k}) \approx 2^{n'-k+1}\).

In the case of BMW-512, we only have differences giving differentials on the 2 LSBs of \(H_0^*\) with \([x\text{~}1]\), \([?x]\), and \([x\text{~}?]\). This can be converted into a pseudo-preimage of \(\text{bmw}_{512}\) in time \(2^{1023.2}\).

An interesting problem here is to find more such differentials, such that the complexity could be further reduced. Moreover, if the differentials work on the lower half of the output bits (those to be taken as the output of the hash function), then the pseudo-preimage on the compression function can be further extended to a pseudo-preimage attack on the hash function.

8 Conclusion

We have described some deterministic differential properties for the BMW compression function with security parameters 0/16, 1/15 and 2/14: by choosing a certain xor difference in two input words to the compression function (and with conditions on absolute values of a few other words), a single (or a few) output bits of the compression function contain a difference with probability 0 or 1.

The differentials work for the compression function only, and do not affect the security of the hash function because of the additional blank invocation of the compression function before returning the hash output. Moreover, \(H_0^*\) is discarded in the final hash output, and only the least significant half (or less) bits of \(H^*\) of the final compression are taken.

Combining with more sophisticated message modification techniques, the differentials might be further extended to higher security parameters, hence increasing security parameter might not be enough to resist them. Tweaking the rotation values for the \(s_i\) and \(r_i\) functions may work, under the condition that the tweak does not affect other security properties.

Another interesting problem to consider is to devise differentials on other output words than merely \(H_0^*\). In particular, a bias on one of the output words \(H_8^*, \ldots, H_{15}^*\) would be interesting.

We note that tracing the propagation of differences, as done in this paper, might help to explain the distinguisher found by Aumasson [1].

Acknowledgements. We would like to thank Jean-Philippe Aumasson for his comments and help. The work in this paper is supported in part by the Singapore Ministry of Education under Research Grant T206B2204.

References

A Sub-functions used in f_0 and f_1

The sub-functions s_i, $0 \leq i \leq 4$, and r_i, $1 \leq i \leq 7$, used in f_0 and f_1 are defined as follows.

<table>
<thead>
<tr>
<th>$s_0(x) = x^{30} + x^{<3} + x^{<4} + x^{<19}$</th>
<th>$s_0(x) = x^{30} + x^{<3} + x^{<4} + x^{<37}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1(x) = x^{30} + x^{<2} + x^{<8} + x^{<23}$</td>
<td>$s_1(x) = x^{30} + x^{<2} + x^{<13} + x^{<43}$</td>
</tr>
<tr>
<td>$s_2(x) = x^{30} + x^{<1} + x^{<12} + x^{<25}$</td>
<td>$s_2(x) = x^{30} + x^{<1} + x^{<19} + x^{<53}$</td>
</tr>
<tr>
<td>$s_3(x) = x^{30} + x^{<2} + x^{<15} + x^{<29}$</td>
<td>$s_3(x) = x^{30} + x^{<2} + x^{<28} + x^{<59}$</td>
</tr>
<tr>
<td>$s_4(x) = x^{30} + x$</td>
<td>$s_4(x) = x^{30} + x$</td>
</tr>
<tr>
<td>$s_5(x) = x^{30} + x$</td>
<td>$s_5(x) = x^{30} + x$</td>
</tr>
<tr>
<td>$r_1(x) = x^{<3}$</td>
<td>$r_1(x) = x^{<5}$</td>
</tr>
<tr>
<td>$r_2(x) = x^{<7}$</td>
<td>$r_2(x) = x^{<11}$</td>
</tr>
<tr>
<td>$r_3(x) = x^{<13}$</td>
<td>$r_3(x) = x^{<27}$</td>
</tr>
<tr>
<td>$r_4(x) = x^{<16}$</td>
<td>$r_4(x) = x^{<32}$</td>
</tr>
<tr>
<td>$r_5(x) = x^{<19}$</td>
<td>$r_5(x) = x^{<37}$</td>
</tr>
<tr>
<td>$r_6(x) = x^{<23}$</td>
<td>$r_6(x) = x^{<43}$</td>
</tr>
<tr>
<td>$r_7(x) = x^{<27}$</td>
<td>$r_7(x) = x^{<53}$</td>
</tr>
</tbody>
</table>