. Sabanc1 .

Universitesi

Efficient Hardware Implementations of
High Throughput SHA-3 Candidates

Keccak, Luffa and Blue Midnight Wish
for Single- and Multi-Message Hashing

by

A. Akin, A. Aysu, O. C. Ulusel and E. Savas

Introduction / Motivation

In November 2007 NIST announced that it would organize
the SHA-3 competition to select a new cryptographic hash
function family by 2012.

In the selection process, hardware performances of the
candidates will play an important role.

Single Message Hashing (SMH) assumes processing a single
message stream at a time. Pipelined architectures are used
to increase the performance for Multi-Message Hashing
(MMH) [1], where the hardware processes more than one
message concurrently.

Hardware implementations of SHA-3 candidates that
exploit MMH to achieve higher performance calls for a
more thorough study of the issue.

Introduction / Motivation

e SMH design methodology usually favors single
stage for each round, however in the case of
MMH, the hardware can be fully pipelined and
pipeline stages can be utilized.

* In MMH, hardware duplication and pipelining
must be thought together

* |n this paper, we present hardware evaluations of
the candidate algorithms for MMH and SMH.

Candidate Selection

e The implementation results of [2] are summarized
in the second column

e Other columns feature normalizations with
respect to clock frequency or/and GE

Throughput Throughput

. Throughput . . Throughput Normalized to
Algorithm (Gbit/s) Nnnnalﬂ to 100 Nr:-rmahéeEd to 100 100 MHz and 100 GE
BLARE 3.97 233 8.70 5.10
EMW 536 51.22 3.16 30.18
CubeHash 4.67 3.20 7.92 544
ECHO 225 1.58 1.59 1.12
Fugue 4.09 1.60 8.85 3.46
Grestl 6.29 233 10.77 3.99
Hamsi 5.57 3.20 9.49 546
JH 4.99 1531 8.49 223
Keccak 2123 435 37.70 71.73
Luffa 13.74 2.84 30.56 6.33
Shabal 3.28 1.02 598 1.87
SHAvite 3.15 1.38 549 241
SIMD 0.92 142 0.89 1.37

Skein 2.50 5.12 245 5.02

Why Keccak, Luffa and BMW?

e [2] targets high throughput architectures for SMH applications.

e To gain an insight on true potentials of the SHA-3 candidates in
hardware implementation with the MMH in mind, we normalize
the throughput results according to area or/and frequency values
given in [2].

e Figures obtained through normalization are in abstract level and
not used as an objective in our design process,

— provide a deeper understanding and intuition to the multi-
variable (e.g. area, clock frequency, and throughput)
optimization problem for throughput comparison in MMH.

e Three candidates;
— Keccak, Luffa and BMW to implement in SMH and MMH.

Keccak Algorithm

Round[b](4, RC)

& STEP

Clx]=A[x, 0] @ A[x, 1] @ A[x, 2] © 4[x, 3] D 4[x. 4] Vxin0...4

D[x] = C[x-1] ® ROI{C[x+1], 1) Vxin 0...4

Alx, v] = A[x, v] © D[x] V(x,¥)in (0...4,0...4)
0 AND 7 STEPS

Bly, 2x+3y] = ROT(A[x. ¥], r[x,]) V(x,») 0 (0...4,0...4)
¥ STEP

Alx, v] =B[x, v] ® (NOT B[x+1,v]) AND B[x+2,v]) V(x.y)in (0...4,0...4)
i STEP

AJ0,0]=A[0,0] ® RC

e Keccak algorithm [4] uses KECCAK-f permutation
— 24 simple rounds

— Each round consists of 5 steps

e The input and output of a round are 5x5 matrices of 64-bit
words.

e The input message is divided into blocks of 1088-bit and XORed
with a part of the state (which is initially zero and 1600-bit long)
and the result is passed through a KECCAK-f permutation.

Keccak Hardware

Input o-step | P29] xistep Output
1600-bits Step 1600-bits

One round consists of 0, p, m, %, and i steps
— Three stage pipeline is used to implement one round

First stage implements O step.
Second stage implements p and it steps .
The final stage combines both y and i steps.

Since new input arrives at each clock cycle in MMH, additional
(synchronization) registers are required to forward the input to
the later stages in addition to pipeline registers.

SMH implementation,

— no pipelining, one round is completed in one clock cycle, resulting in a
lower operating frequency.

Keccak Hardware

Synch 5 Synch
registers registers "
Input =t ;:\‘i 1 Shift by 1
R:i::r ' : : : - g Shift by 2 Round Constant
1 [l [a
N R . Cyclic Cyclic
A i | Cyelic \ ! D—) B-Stage Y v
Input —1> =] C-Reg _a' Shifter ‘jj' D-Reg|—>, out-Reg Shifter |..] v e Shifter
Register ! G | 0 0 e 0 S
64-bit J = A : B
i T i i
il il B | R
Input 3 = C-Reg H= C"‘fd'c H T De D-Reg : : : : i | Shifter o
Register : m | Shifter | = ! | i il 1 u
64-bit ' > 5 | 5 H T
;]- : : : t | Cyclic : 8
c-reg i Cvelic I })DJ" D-Reg S 1 Shi;ter T
i ! -1 Shifter B | ; ; : i
: | ; g Cyclic .
: i Ly i i i Shifter i
[Cyelic ' D-R ! ! i 3 i
; C-Reghd “Y) = eg i ! i !
i \‘ \ “EI shifter | 3/ ; ; i :
x : |
| o l | | ;
! R 1 | =) i
: Cyclic 5\] B-Stage Cyclic !
i G § ':'REE ¥ Shifter gj D-REE %)D% out-Reg Shifter Cyelic :
A 24 24 I 7] shifter
Input . T T Shil‘:[;y - 24
Register 1| e e pand 1t .
64-bit | | B-Step Step X-LStep

Luffa Algorithm

Luffa’s compression function is a
round function made up of one
Message Injection (M) and one
Permutation (P) stage.

MI module combines the hash
values of previous message
blocks (i.e., H,™t, H,"1, H,""t), with
the current message block (M /).

Each of the inputs and ouputs
are 256 bits.

X represents a single
multiplication in GF(28)3? by
constant 2.

Mi

HDi-‘l

L);}7 2]
H,-1 “)::},_ : » H,
H, . . H,
N

2

H,

Block diagram of the
Message Injection (MI) module

Luffa Algorithm

e The permutation stage (P) for Luffa-256

— 3 permute blocks for Hy, H,', H,'.

e Each Permute block

— starts with tweak (permutation)

— iterates 8 rounds of the Step function.
SubCrumb SubCrumb

e Each Step function

— processes data in 32-bit words

— Submodules: SubCrumb, MixWord, and
e AddConstant.

Constant

.. . The SubCrumb

a | lao ||| |o]]|os]|]|os]]e — nonlinear permutation by 32 identical
s-boxes (4-bit input, 4-bit output).
e MixWord
Block diagram of the Step module — Feistel ladder of 4 rounds, which is

used to mix two words together.

Luffa Hardware

M° —:\
P HD"'IL.-..
Vy, — M Tweak —F"“'_.ﬂ_hi p HD"'
Hlll-l_'.‘h
Vi — M » Tweak —hﬂ_'i—'l Q, * Hli
V, —» » Tweak —F#_.}FH;_ —hlﬂ_a h HE"'

e For each message block, M/ and Tweak are performed only
once while the Step modules Q,, Q,, and Q, are used for eight
consecutive rounds as shown.

 The critical path of M/ module consists of 3 XOR gates while
the critical path of permutation module consists of 5 XOR gates
and a read operation from ROM for S-Boxes.

Luffa Hardware

e Two hardware architectures:
— SMH design:

* a set of registers (FR,, FR,, FR,) to forward the results of
Step modules to the following round.

e Placed between the Tweak and the Step to decrease the
combination delay of a single round and increase the
frequency at the cost of one extra cycle for message
injection.

— MMH design
* |t has already a small combinational delay,
e we partition the Step function into two pipeline stages.
e The first stage consists of a ROM and two XOR gates
 The second stage has 3 XOR gates.

BMW algorithm

Message l l T TI, Constant
padding J_) L L L final
and M fy M |»>--=|M fq |—> fy i,
parsing f . f
initial “lal B |w H “lal flw 1 £, | uim
Initia - - -
— Q_Q!Q — ——— — Q_Q!Q Q_Q!Q —
H { a b} ~folding { a b} | folding T { a b} I_) folding HASH

J \ J \ J

| | |

Preprocessing Hash Computation for Each Message Block Finalization

Three steps: preprocessing, hash computation and finalization.

The last two steps involve three functions f,, f; and f,.

The function f, is used to compute Q,

The function f; is used with two sub-functions expand1 and expand?2.

The function f, is used in folding (compression) part reducing 3m-bit of M, Q,, and
Q, to m-bit new double pipe H.

Finalization step is similar to the hash computation; but uses a constant value
instead of message block to form m-bit H™ which is truncated to n-bit hash
value.

BMW Hardware

1
1
1
1
1
1
1 .
v 512 bit . & 512 bit
1 o
1
1
1 T
1
1
Q |
for the next 512 bit of the : . 2
input Message, H value returns : =12 b't// fq
back as an input to the f, :
function : Q,
1 L
! “1 512 bit
1
1
1
512 bit ¢ fa
;
. L
1
' “1 512 bit
1
1
1 v
1 I
L e e e e e e - o H

e BMW algorithm does not use multiple rounds for hashing of a
single message block.

e the resulting value H'is used as input in the processing of the
next message block. Therefore, datapath of the BMW is longer
than Luffa and Keccak.

BMW Hardware

. Mi
' i-1 . |REG
| —
. —_ | s0 |
Const mix | (T C
RN e U —>_|_ - —>-|- — —>-|— — | sl l REG
P L L T s | i
T ¢ . y Y —|mix| T Q
. L] (] ™ » | 53 | a
i — mix — E — } — __’L, —_— | sd |
M L JD—
—_— | — 50,51, 52, s3 and s4 sub-functions
f 80 parallel 32-bit 32 parallel 32-bit 16 parallel 32-bit 16 parallel 32-bit They require xor, shift right, shift left and
rotate left operations
— XOR operations Add/Sub hardware Add/Subhardware Add/Sub hardware peral

Block diagram of the f, module

fo function of MMH implementation starts with mixing the

e bits of the previous hash block (H1) and message block (M).

* Since the operations are not in the critical path, f, is
implemented as a single pipeline stage.

 In SMH version of the architecture, the registers at the output

of f, module are removed.

BMW Hardware

> |R > —
i
v v T - 7 o
Add Element (0) Add Element (1) Add Element (2) Add Element (15)
3 Rotate Left, 2 Addition, 1 3 Rotate Left, 2 Addition, 1 3 Rotate Left, 2 Addition, 1 3 Rotate Left, 2 Addition, 1
Subtraction, 1 Xor Subtraction, 1 Xor Subtraction, 1 Xor . . . Subtraction, 1 Xor
] _ T - I I
Expand 1 IRl Expand 1 R Expand 2 RL® @ 0. Expand 2 IR Q,
— — —> — —
s0, s1, 52, 53 subfunctions, E s0, s1, s2, s3 subfunctions, E s4,s5,r1,r2,r3,r4, r5, 16, E s4,s5,r1,r2,r3,r4, r5, 16, E
16 addition G 16 addition G r7 subfunctions, 16 addition G r7 subfunctions, 16 additior| G
Q! N N] - i
a R R R RI_| Q.
E E O @ @ ElT|—
S G| |G| S

Block diagram of the f; module

e f,requires 2 expandl and 14 expand2 sub-functions,

e Each expand function waits for the previous expand function to
complete; this necessitates registering of 512-bit H*1, M’ and Q' to
forward them in the pipeline.

* MMH version, 16 pipeline stages are used to implement f,
 for SMH hardware, all pipeline and synchronization registers are

removed.

BMW Hardware

_-‘ shift left)D -]

Q, shift right rotate
~| =D = -\ famy
i C D F r»+ ~laes| |1,

“l PR E ED* Sake j+
= Lo o D[] >

24parallel 32-bit 4 parallel 32-bit 2 parallel 32-bit 3332-bit XOR 1632-bitXoR ~ 1632bits addition 8 32-bit addition
XOR operations XOR operations XOR operations operations operations operation operation

(.

Block diagram of the f, module

e f,takes 512-bit M, Q' and Q,' as inputs, and generates 512-bit H'.
|t essentially compresses 1536-bit input to the 512 bits.

* |nthe finalization step, the leftmost 256 bits of the H"9 forms the
hash of the message.

* f,isimplemented as a single pipeline stage and the same for

both SMH and MMH.

Implementation Results

. Efficiency =
. Hashing Target Frequency Latency Area Throughput
Algorithm Method Technology ~ (MHz) ~ *OTROUNAS o iles) (Slices/GE) (Gbitsls) T(ml;iq%lé;/
Keccak SMH 142.9 24 25 2,024 6.07 3.00
Keccak MMH 508.7 24 121 4,356 22.33 5.13
Luffa SMH Virtex 4 308.2 8 9 2,989 8.56 2.86
Luffa MMH 470.8 8 17 3,719 13.85 3.72
BMW SMH 9.01 1 1 10,486 4,51 0.43
BMW MMH 115.96 1 18 12,497 57.98 4.64
Keccak SMH 454.5 24 25 10.5k 19.32 1.84
Keccak MMH 1,694.9 24 121 23.2k 74.41 3.21
Luffa SMH 90nm ASIC 769.2 8 9 11.5k 21.37 1.86
Luffa MMH 1,204.8 8 17 12.5k 35.44 2.83
BMW SMH 52.63 1 1 55.9k 26.32 0.47
BMW MMH 265.96 1 18 160.1k 132.98 0.83
For SMH,

Luffa has the highest throughput on FPGA and BMW has highest
throughput on ASIC.

However, efficiency of Keccak and Luffa are similar and better than
BMW for both FPGA and ASIC.

For MMH, BMW has the highest throughput on FPGA and ASIC,
however Keccak has the highest efficiency.

Implementation Results

. Efficiency =
. Hashing Target Frequency Latency Area Throughput
Algorithm Method Technology (MHz) # of Rounds (cycles) (Slices/GE) (Gbits/s) Throthsz
(Areax10°)
Keccak SMH 454.5 24 25 10.5k 19.32 1.84
Keccak MMH 1,694.9 24 121 23.2k 74.41 3.21
ours Luffa SMH 90nm ASIC 769.2 8 9 11.5k 21.37 1.86
Luffa MMH 1,204.8 8 17 12.5k 35.44 2.83
BMW SMH 52.63 1 1 55.9k 26.32 0.47
BMW MMH 265.96 1 18 160.1k 132.98 0.83
Keccak SMH 180nm ASIC 487.80 24 25 56.31k 21.23 0.38
[2] Luffa SMH 180nm ASIC 483.09 8 9 449k 13.74 0.31
BMW SMH 180nm ASIC 10.46 1 1 169k 5.358 0.03
1] Luffa SMH 130nm ASIC 1124 8 9 30.8k 31.9 1.07
Luffa MMH 130nm ASIC 508 1 9 156.6k 115.5 0.74
3] BMW SMH 90nm ASIC 52.08 1 1 60.0k 26.66 0.54
Luffa SMH 90nm ASIC 100.4 1 1 68.9k 25.70 0.70

Our Luffa SMH variant is superior to the architecture in [3], implemented using a
comparable ASIC technology, both in terms of area and efficiency.

Our MMH variant of Luffa provides a much better alternative to the only MMH
implementation in literature [1], thanks to its high efficiency metric (¢f. 2.83 and
0.74).

Our BMW implementation of SMH variant along with the design in [3] is the fastest
in ASIC realization;

Keccak has the highest efficiency when it is compared with previous architectures.

Conclusion

e We presented efficient and high throughput
hardware implementations of SHA-3 candidates

Keccak, Luffa and Blue Midnight Wish with an
emphasis on MMH applications.

e We employed pipelining, parallelism and re-timing
technigues to improve the performances and
efficiencies of our designs.

e To the best of our knowledge, this is the first work
that provides a comparative analysis of three high
performance SHA-3 candidates for MMH
applications.

References

e [1] M. Knezevic, |. Verbauwhede: Hardware Evaluation

of the Luffa Hash Family. 4th Workshop on Embedded
Systems Security 2009, Grenoble, France.

2] S. Tillich et al: High-Speed Hardware
Implementations of BLAKE, Blue Midnight, Wish,
CubeHash, ECHO, Fugue, Gregstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD and Skein. Cryptology
ePrint Archive. October 2009.

[3] A. H. Namin and M. A. Hasan, “Hardware
Implementation of the Compression Function for
Selected SHA-3 Candidates”.

	Efficient Hardware Implementations of High Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish �for Single- and Multi-Message Hashing�
	Introduction / Motivation
	Introduction / Motivation
	Candidate Selection
	Why Keccak, Luffa and BMW?
	Keccak Algorithm
	Keccak Hardware
	Keccak Hardware
	Luffa Algorithm
	Luffa Algorithm
	Luffa Hardware
	Luffa Hardware
	BMW algorithm
	BMW Hardware
	BMW Hardware
	BMW Hardware
	BMW Hardware
	Implementation Results
	Implementation Results
	Conclusion
	References

