Update on Luffa

@The Second SHA3 Candidate Conference
24th August 2010

Dai Watanabe
Hisayoshi Sato
Systems Development Laboratory, Hitachi, Ltd.

Christophe De Cannière
ESAT-COSIC, Katholieke Universiteit Leuven

Luffa is a registered trademark of Hitachi in Japan.
Outline

- Introduction to Luffa
- The specification changes
- Security status
- Implementation aspects
Running through *Luffa*
Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
Chaining

- Permutation based design
- Fixed length permutations for all hash length
 - An MDS code is applied to mix the internal states and a message block
 - Similar to Knudsen-Preneel construction of a CF
- The hash value is the sum of the outputs of Qj

Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
Non-linear permutation

- Input/Output
 - 256 bits
 (8 32-bit words)

- Functions
 - tweak
 - Applied before step functions
 - Step functions
 - 8 steps
 - 4-bit Sboxes + XORs + rotations
Specification changes

- Application of a blank round
 - Ver.1: If the message length > 255
 - Ver.2: Always

- SubCrumb
 - The table
 - v1: {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14}
 - v2: {13, 14, 0, 1, 5, 10, 7, 6, 11, 3, 9, 12, 15, 8, 2, 4}
 - The order of the inputs
 - v1: SubCrumb(a[4], a[5], a[6], a[7]);
 - v2: SubCrumb(a[5], a[6], a[7], a[4]);
Updates on security status
Security of the permutation

- Not ideal from the beginning
 - Differential path with prob. 2^{-224} [in the proposal 2008]

- Later coming results
 - Zero-sum with 2^{82} comp. [Aumasson and Meier 2009]
 - Rotational property with $2^{116.3}$ comp. [Khovratovich et al. 2010]
 - Algebraic degree < 256 [Boura et al. 2010]
Attacks under relaxed settings

- Free-start setting
 - Second preimage attack (generic)
 - 1 comp. [Jia 2009]
 - Preimage attack (generic)
 - $2^{128}/2^{171}$ comp. for Luffa-256/512 [Jia 2009]

- Semi-free-start setting
 - Collision attack (generic) $2^{256^w/w-1}$ comp. [Ourselves 2009]
 - Collision attack (rebound) 2^{102} comp. for 7-steps of Luffa-256 [Khovratovich et al. 2010]
Attacks on reduced round variants

- **Collision attack**
 - Ongoing differential based analyses on Luffa-256 [Ourselves TBC]
 - 4 steps with 2^{90} comp.
 - 5 steps with $2^{216.2}$ comp.

- **Distinguisher**
 - HOD on 7 out of 8 steps of Luffa-256 v1 (no blank round) with 2^{216} comp.
 [Ourselves 2009]
Security margin?

- Differential probability of the permutation
 - If \(MDP < 2^{-170.7} \), it is hard to find an internal collision faster than the generic attacks for \(n \)-bit security.
 - \(MDP < 2^{-128} \) is sufficient for \(n/2 \)-bit security.
 - For the best known differential path, \(dp=2^{-224} \).

- Interpretation of a semi-free-start attack
 - Khovratovich’s rebound attack \((2^{102})\) borrowed 512 bits of freedom from the internal state.
Implementation aspects
Some eBASH results

Update on Luffa
C. De Cannièere, H. Sato, D. Watanabe
More on software performances

- NIST platform (64-bit mode)

<table>
<thead>
<tr>
<th></th>
<th>[Ourselves 2009]</th>
<th>[Oliveira and López TBC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td></td>
<td>C with SSE intrinsics</td>
</tr>
<tr>
<td>Luffa-256</td>
<td>13.3</td>
<td>11.75</td>
</tr>
<tr>
<td>Luffa-384</td>
<td>15.0</td>
<td>14.78</td>
</tr>
<tr>
<td>Luffa-512</td>
<td>23.8</td>
<td>19.81</td>
</tr>
</tbody>
</table>

- 8-bit microprocessor [Ourselves 2009]
 - Luffa-256 on Atmel ATmega8515
 - Speed: 732.1 cycles/byte
 - Memory: 688 bytes code, 120 bytes constants, 134 bytes RAM

Atmel, AVR, and AVR Studio are registered trademarks of Atmel Corporation in the United States and/or other countries.

Update on Luffa
C. De Cannière, H. Sato, D. Watanabe
Update on *Luffa*

C. De Cannière, H. Sato, D. Watanabe
Another High-Speed Hardware

A Hash Function Family **Luffa**
C. De Cannière, H. Sato, D. Watanabe

Satoh et al. (2010)

STM 90nm Standard CMOS library
Another High-Speed Hardware

Satoh et al. (2010)

STM 90nm Standard CMOS library

A Hash Function Family *Luffa*
C. De Cannière, H. Sato, D. Watanabe
Another High-Speed Hardware

Satoh et al. (2010)

STM 90nm Standard CMOS library

A Hash Function Family Luffa
C. De Cannière, H. Sato, D. Watanabe
Compact HW implementations

TSMC 90nm Standard CMOS library

TSMC is a registered trademark of TSMC in Taiwan and other countries.

Update on *Luffa*
C. De Cannière, H. Sato, D. Watanabe
Summary

- No security flaw
- Moderate software speeds
- Very good hardware performances
 - Fast!
 - Compact!
Summary

- No security flaw
- Moderate software speeds
- Very good hardware performances

- Fast!
- Compact!

I can be everywhere!
Thank you for attention!

See our web site for the most recent results.
http://www.sdl.hitachi.co.jp/crypto/luffa/