
1 

1001 Ways To Implement Kђѐѐюј 

Guido Bertoni1, Joan Daemen1, Michaël Peeters2,
 
Gilles Van Assche1, and Ronny Van Keer1
 

1 STMicroelectronics 
2 NXP Semiconductors 

The structure of Kђѐѐюј allows a fair amount of diversity in the way it can be implemented. How-
ever, it is oĞen not trivial to select the optimal options in given circumstances, and sometimes one 
may even not be aware of all of Kђѐѐюј’s implementation techniques. We here briefly present differ-
ent techniques, referring to external documents for the details. 

Kђѐѐюј defines a family of sponge functions with seven different permutations and most imple-
mentation techniques work on all of them. For clarity, however, we take as example Kђѐѐюј- f [1600], 
the permutation used in the proposed SHA-3 hash function candidates [5]. 

How to cut a state 

A hardware circuit can be built to compute the round function within a clock cycle, hence processing 
the state as a whole. This is what several hardware implementations do, including our high-speed 
core [6, Section 4.2]. However, this simple solution is not possible in soĞware on standard CPUs and 
is not always affordable in hardware implementations. The state of Kђѐѐюј- f [1600] is organized as a 
three-dimensional array, which suggests several ways to partition the bits. So we here describe several 
ways to serialize the round function that exploit this structure. We assume that the reader is familiar 
with the naming conventions (column, lane, plane, slice) depicted in Figure 1. 

How to cut a lane: bit interleaving The bit interleaving technique is fairly general, can be combined 
with most other ideas, applies to both soĞware and hardware, and provides an area-speed trade-off 
in some classes of implementations. 

The state of Kђѐѐюј- f [1600] can be expressed as 25 lanes of 64 bits each. In soĞware, this calls for 
an implementation using 64-bit words. While this is an optimal choice on soĞware platforms actually 
offering 64-bit operations, the bit interleaving technique allows efficient implementations on systems 
with smaller word sizes and can also be used to target compact hardware circuits. 

In its simplest form, namely factor-2 interleaving, it splits the odd and even bits of each lane. The 
state of Kђѐѐюј- f [1600] is then represented as 50 words of 32 bits. The rotations in e and χ are per-
formed as cyclic shiĞs on 32-bit words, making them efficient on a 32-bit processor. There is a cost 
associated to the conversion of the input message into this representation, but this cost remains small 
compared to the evaluation of the permutation itself. Note that the use of modular addition would 
have prevented the bit interleaving technique. 

In general an interleaving factor of s maps each lane to s words of 64 bits. For instance, factor-8s 
interleaving expresses the round function of Kђѐѐюј- f [1600] in terms of operations on bytes. Further 
details and examples can be found in [6, Section 2.1]. 

Processing planes A plane is a set of 5 lanes that can be combined in X. So doing plane-per-plane pro-
cessing nicely fits in X. The dispersion step n just before X can be implemented implicitly by fetching 
the lanes from appropriate locations, and the rotations χ can be done individually on each lane to-
gether with n. The step e can be done on the fly (see Section 3). Detailed scheduling of the operations 
can be found in [6, Section 2.4]. 



2 

Bit interleaving can also be used to process fractions of planes. For an interleaving factor of s, 5 
words of 64/s bits are processed together. Currently, the fastest soĞware implementations are or-
ganized to process each plane at a time. This includes both implementations optimized for 64-bit 
platforms (s = 1, no interleaving) and those for 32-bit ones (s = 2). 

Processing consecutive slices While the state of Kђѐѐюј- f [1600] can be seen as an array of 25 lanes 
of 64 bits, the transposed view is to see it as an array of 64 slices of 25 bits each. The function of χ 
is to disperse bits across different slices, but all the other operations work in a slice-oriented way. 
More precisely, n and X work in each slice independently, and for e the output slice z depends on the 
input slices z − 1 and z. Hence, a way to cut the state is to make groups of n slices with consecutive z 
coordinates, where n divides 64. 

The idea of processing consecutive slices in a hardware circuit comes from Jungk and Apfelbeck 
[7]. They implemented Kђѐѐюј- f [1600] using n = 8 consecutive slices, with extra registers to manage 
the fact that e makes the last slice of a group interact with the first slice of the next group. Inter-slice 
dispersion χ is implemented in part by an appropriate addressing of RAM and in part by extra regis-
ters. This resulted in a compact implementation on a Virtex-5 FPGA using 393 slices with a throughput 
of 864 MBit/sec for a rate of r = 1088 [7]. 

The number n of consecutive slices can serve as a parameter for speed-area trade-offs. We have 
explored the effects on area and throughput when n takes the values 2, 4, 8, 16 and 32. The round 
function is computed in 64 + 1 clock cycles, while the complete permutation requires 25 * 64 + 24n n 
clock cycles. The most convenient configurations, in term of area-throughput ratio, are obtained with 
n equal to 16 or 32. Implementations in VHDL are available in [4]. 

Processing interleaved slices An alternative to the idea of consecutive slices is to group slices in an 
interleaved way. For a given interleaving factor s, the slices are grouped with constant coordinate z 
modulo s. Here again n and X work in each slice independently. However, compared to the case of 
consecutive slices, χ can be partly done within a group of slices. And if some extra memory is dedicated 
to the parity (see Section 3), e can be implemented without interdependencies between groups of slices. 

This idea allows similar speed-area trade-offs in hardware implementations, as the number of 
slices to be grouped can be chosen. However, an actual implementation is needed to determine which 
one of consecutive or interleaved slices works best on which platforms. 

Minimizing the memory footprint 

In terms of memory usage, Kђѐѐюј has no feedforward loop and the state can serve as a message queue 
without the need for additional memory dedicated specifically to that purpose. Hence, the memory 
footprint of Kђѐѐюј is determined solely by that of the underlying permutation. We here describe a 
technique to minimize the memory needed by Kђѐѐюј- f [1600] without sacrificing speed. 

Efficient in-place processing A typical speed-optimized soĞware implementation reserves two mem-
ory areas, each with the size of the state (200 bytes). The computation of a round takes the state in 
one area and stores the result in the other, alternatively. In [6, Section 2.5], we propose a way to store 
processed data back into the same memory location it was taken from. Hence a single instance of the 
state must be reserved, plus some extra memory to store the parity and/or the e-effect (see Section 3). 
As n moves lanes to different coordinates, this requires to define a mapping between the lane coordi-
nates (x, y) and the memory location that depends on the round number. The mapping has a cycle of 
4 rounds, so aĞer the 24 nominal rounds the memory area returns to its original configuration. 

This technique can be combined with bit interleaving. In that case, the mapping between the lane 
coordinates and memory location must be adapted. E.g., with factor-2 interleaving the mapping still 
has a cycle of 4 rounds. For instance, the currently fastest implementation on the 32-bit processor ARM 

2 



Cortex-M3 makes use of the in-place processing with 4 rounds unrolled and requires only 272 bytes 
on the stack [6, Section 3.2.1]. 

Detailed algorithms using efficient in-place processing, with and without bit interleaving, can be 
found in [6, Section 2.5]. 

3 Additional techniques 

In this section, we give optimization techniques for the evaluation of X and of e. 

Lane complementing The mapping X of Kђѐѐюј- f [1600] consists in 5 XOR, 5 AND and 5 NOT opera-
tions. Some platforms support instructions that combine a AND and a NOT, but not all do. In the laĴer 
case, the lane complementing technique aims at removing 4 out of 5 NOT operations by representing 
some of the lanes by their complement. This makes simple use of the De Morgan laws, replacing some 
logical ANDs by ORs. We explain how this can be done in [6, Section 2.2]. 

Extending the state to compute e on the fly The e operation consists in XORing a paĴern in the entire 
state that depends only on the parity of the columns before e. The paĴern to XOR is called the e-effect 
and is constant over each column. If the implementation can afford some extra memory, one can use 
5 lanes: 

–	 to accumulate the parity of the columns as the output of X in the previous round is being com-
puted, and/or 

–	 to store the e-effect to be able to XOR it as the current round is being processed. 

Further details and examples can be found in [6, Section 2.3] and in [6, Section 2.4.1]. 

4 Protecting against side-channel aĴacks 

When the input of Kђѐѐюј contains a secret key, e.g., to compute a MAC or to do (authenticated) 
encryption, protection against side-channel aĴacks may be appropriate. Regarding timing aĴacks, 
all the implementations described here make use of a fixed sequence of operations without the need 
for look-up tables. To help protect against differential power analysis and its variants, we provide 
techniques in [6, Chapter 5] and in [2]. 

SoĞware: two-share masking To decorrelate the data being processed to the native value of the state, 
a simple technique consists in working on two randomized shares a and b chosen such that their XOR 
a E b is the native value. The linear operations of the round function e, χ and n can be performed on 
each share independently. Details on how to do implement X with liĴle overhead can be found in [6, 
Section 5.3]. 

Hardware: three-share masking In hardware, an additional source of side-channel information for 
an aĴacker is the presence of glitches. In this case, we turn ourselves to three-share implementations, 
i.e., with three randomized shares a, b and c chosen such that their XOR a E b E c is the native value 
[8]. The operations on the shares are such that any logical block never processes more than two shares 
together. Hence, glitches cannot be correlated to the native value. More details can be found in [6, 
Section 5.4]. 

3 



5 Taking best advantage of high-end platforms 

In the evaluation of hardware performances, a popular measure is the throughput-to-area ratio. The 
reason is that it says more about efficiency than speed or area alone. 

In soĞware, high-end platforms provide an ever increasing computational bandwidth, not only 
by embedding more cores, but also by widening single-instruction multiple-data (SIMD) registers 
and associated operations. For instance, the new AVX and upcoming AVX2 instruction sets from Intel 
provide 256-bit SIMD operations, in addition to the 128-bit ones from the previous architectures. A 
soĞware equivalent to the throughput-to-area ratio would be the throughput-per-core ratio or equiva-
lently the number of cycles per byte per core. Faster hash functions exploiting this parallelism can be 
built in a scalable way using tree hashing techniques and in particular with leaf interleaving [1]. 

Throughput per core on Sandy Bridge Processors based on the Sandy Bridge architecture from Intel 
provide a fast processing of 128-bit SIMD instructions. Evaluating two instances of Kђѐѐюј- f [1600] in 
parallel using these instructions takes about the same number of cycles as evaluating a single instance 
using regular 64-bit instructions. Hence, a tree hashing mode with two parallel branches on top of 
Kђѐѐюј can provide a hash function provably as secure as Kђѐѐюј itself [1], only twice as fast. We mea-
sured the two parallel evaluations at 1660 cycles, hence providing an estimated 6.5 cycles/byte/core 
with default r = 1024 and leaf interleaving (G = LI, H = 1, D = 2, B = 64, C = c = 576) [1]. 

Extending the instruction set We can imagine several ways to extend future processors with instruc-
tions enabling faster implementations of Kђѐѐюј. A very simple way seems to be the introduction of 
cyclic-shiĞ instructions. The AVX and SSE instruction sets provide shiĞs over 64-bit words but not 
cyclic shiĞs. Hence, in the exercise above we implemented the rotations of e and χ using two shiĞs 
and a bitwise OR. With a cyclic shiĞ instruction, we estimate¹ the two parallel evaluations would take 
about 1150 cycles, or 4.5 cycles/byte/core with default r = 1024. And further assuming that the future 
processors are as fast with 256-bit SIMD as with 128-bit SIMD, four parallel evaluations would yield 
about 2.25 cycles/byte/core. 

6 More information 

For more information, the central documentation on implementation techniques is [6]. For soĞware 
implementations, one can find many examples of optimized code in [4]. In addition, KђѐѐюјTќќљѠ [3] 
provides functions to generate optimized code based on most of the techniques mentioned here. 

References 

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Sufficient conditions for sound tree and sequential hashing 
modes, Cryptology ePrint Archive, Report 2009/210, 2009, http://eprint.iacr.org/. 

2.	 , Building power analysis resistant implementations of јђѐѐюј, Second SHA-3 candidate conference, August 
2010. 

3. , KђѐѐюјTќќљѠ soĞware, September 2011, http://keccak.noekeon.org/. 
4. , Reference and optimized implementations of Kђѐѐюј, 2011, http://keccak.noekeon.org/. 
5. , The Kђѐѐюј SHA-3 submission, January 2011, http://keccak.noekeon.org/. 
6. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, Kђѐѐюј implementation overview, September 

2011, http://keccak.noekeon.org/. 
7. B. Jungk and J. Apfelbeck, Area-efficient FPGA implementations of the SHA-3 finalists, International Conference 

on ReConFigurable Computing and FPGAs (ReConfig), 2011, to appear. 
8. S. Nikova, V. Rĳmen, and M. Schläffer, Secure hardware implementation of nonlinear functions in the presence of 

glitches, ICISC (P. J. Lee and J. H. Cheon, eds.), Lecture Notes in Computer Science, vol. 5461, Springer, 2008, 
pp. 218–234. 

¹ This estimation was done by replacing the rotations of e and χ by shiĞs. 

4 

http://eprint.iacr.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/


Fig. 1. Naming conventions for parts of the Kђѐѐюј- f state 

5
 


	1001 Ways To Implement Keccak

