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Abstract 

The present paper describes a practical-time distinguishing attack against up to 27 rounds of Threefish­
256, the core cryptographic primitive of the Skein-256-256 hash function. Our main attack is a round-
reduced variant of theoretical-time related-key boomerang attacks first studied in [1]. The attack distin­
guishes 27 rounds of Threefish-256 from an ideal cipher with a predicted workload of ≈ 242 related-key 
decryption or encryption queries to round-reduced Threefish. We validate our complexity estimate by 
fully implementing the first 26 and the last 23 rounds of the attack, obtaining empirically verified distin­
guishers with workloads of ≈ 229 and ≈ 2000 evaluations of the related-key rectangle test used on these 
rounds respectively. 
We also present a similar attack in the single key, related tweak setting which distinguishes 19 rounds of 
Threefish-256 with a very practical effort of ≈ 226.3 evaluations of a related-tweak rectangle attack. 

1 Introduction 

1.1 Background, motivation and focus of the present work 

This paper is concerned with cryptanalytic properties of Threefish, the block cipher which forms the cryp­
tographic core of the Skein hash function. Skein is one of the five candidates remaining in the final round of 
the SHA-3-competition. The development of a new advanced hash standard through public competition has 
become important due to advances in the cryptanalysis of hash functions related to the current standard, the 
SHA-2 family of hash functions. Most notable here are the practical breaking of collision resistance of MD5 
[23] and the existence of collision attacks against SHA-1 which are believed to be executable with very large 
but still in principle practical computing effort [7]. While no attacks on the full SHA-2 are currently known, 
cryptanalysis of SHA-2 is progressing [6, 13, 14, 20], and having an efficient, standardized hash function 
not closely related to the SHA family with thoroughly reviewed security properties certainly still seems very 
desirable. 
As the Skein construction is supported by security proofs if Threefish is replaced by an ideal cipher [3], the 
Threefish block cipher is a natural target in the evaluation of the Skein hash function. While security weak­
nesses in full Threefish would not necessarily immediately translate into attacks on classical hash function 
security properties, any discovery of such weaknesses would cast doubt upon the applicability of the security 
proofs. Also, an evaluation of cryptanalytic properties of Threefish is interesting in itself insofar as Threefish 
would, if Skein were chosen as SHA-3, certainly become a block cipher with relatively wide deployment. 
Finally, Threefish is a conceptually relatively simple ARX construction, so in advancing attacks against 
Threefish, one may hope to gain knowledge with general relevance to the cryptanalysis of ARX ciphers. 
This paper focuses, in particular, on attacks which can be executed in practical time. We choose, somewhat 
arbitrarily, a workload equivalent to 245 evaluations of the underlying primitive as the threshold of what 
we will consider a feasible attack. As all attacks we will study in this paper are based on related-key or 
related-tweak boomerang techniques and therefore require the querying of encryption and decryption oracles 
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besides computations which the adversary can perform by himself, this bound appears not unreasonably low 
to us. Our focus on practical attacks has three motivations. Firstly, for practical attacks, it is possible to 
compare precisely the attack complexities as given by theoretical models and actual measurements. Sec­
ondly, in quantifying resistance against practical attacks against Threefish, one gains some understanding of 
which security parameters for Skein will be needed at a minimum to provide protection against potentially 
implementable attacks. Thirdly, attack optimizations found for low-complexity attacks may prove useful 
also for improving high-complexity attacks. 

1.2 Structure of this paper 

In this section, we will provide an overview of the present work, a short review of related literature, point out 
our main contributions, and fix notations and conventions for the rest of the article. In the next section, we 
briefly recall the structure of Threefish. Section three of this article then presents an unknown-related-key 
distinguisher against 27 rounds of Threefish-256 with an estimated workload of 242 encryption or decryption 
operations under four related-key/related-tweak pairs. This distinguisher is a reduced-round variant of a 
line of boomerang distinguishers against Threefish which was first introduced in [1] and further studied in 
[8, 17]. Also rebound-type attacks on the compression function of Skein in [21, 24] should be mentioned in 
this context. 
Our main improvement over the literature on Threefish to obtain an unknown-key distinguisher with practical 
time requirements is a truncated differential from round four to the input on the decryption direction of 
the boomerang distinguisher which to the best of our knowledge has not been described before and which 
allows us to pass the backwards direction of the boomerang with very low cost. In section four we apply the 
same attack concept to the fixed-key setting, deriving a distinguisher against 19 rounds of Threefish-256 with 
workload 226.3 boomerang evaluations which uses related-tweak differentials. To the best of our knowledge, 
this represents the first cryptanalysis of Threefish in a fixed-key (but still related-tweak) setting. 

1.3 Short overview of related work 

Pre-existing results on Threefish Related-key Boomerang attacks against Threefish were first studied 
in [10]. Similar attacks based on modular differentials (which are also used in the present paper) were first 
introduced in [8]. An attack based on similar principles, using bitwise differential paths and techniques from 
[15] for calculation of optimal differential transitions and their transition probabilities, was proposed in [17] 
against 31 rounds of Threefish-256 at an estimated cost of 2234 encryptions and decryptions. An attack of 
this kind against 33 rounds of Threefish-256 (with the old set of rotation constants) was also briefly men­
tioned in [1]. 
To the best of our knowledge, the best practical-time attack on any version of Threefish which has so far 
appeared in the literature was a related-key attack from [1] based on using a short differential followed by 
a local collision to cross 12 initial rounds which induces a practically detectable bias still after 21 rounds of 
the cipher. As far as we are aware, no low-complexity variants of the boomerang attacks from [1, 8, 17] have 
yet appeared. 
The possibility to use truncated differentials to speed up boomerang attacks on Threefish was briefly men­
tioned in section 6.3 of [1]. However, no details were provided. 
Bitwise biases induced by differentials were studied for Threefish in [1, 10]. We remark that the findings 
reported there make it seem plausible that truncated differentials such as those which we use should exist. 
Other notable attacks on Skein and Threefish have included rotational attacks [11, 12] which use the observa­
tion that rotational identities are destroyed relatively slowly by ARX constructions without large asymmetric 
constants. A tweak of the key schedule constant in Threefish has largely rendered these attacks obsolete 
[10]. 

Summary of main contributions of the present paper The present paper presents practical-time 
distinguishing attacks against 27 rounds of Threefish-256 in the related-key setting and 19 rounds in the 
related-tweak setting. To the best of our knowledge, these are the best practical-time attacks on Threefish 
published so far. We achieve the low complexity of our attacks by using very high probability truncated 
differentials on the first four rounds of Threefish-256 in the decryption step of the boomerang which do not 
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seem to have been described before. Also, we take advantage of a very efficient matching phase in the four 
middle rounds of the boomerang which allows us to cross four rounds in the middle of the cipher at no 
detectable cost. We used well-known techniques for calculating differential properties of bitwise addition 
[16] and of rotation [9] with respect to modular differences to model the modular differential behaviour 
of the Mix transform, the basic building block of Threefish, and present in this paper comparisons of the 
theoretical predictions of path complexity with actual attack cost measurements both on single rounds and 
short differential paths. In general, we find both to be in very good agreement, but there are a few exceptions. 

1.4 Conventions and notations 

Notations for tweakable block ciphers A tweakable block cipher is a family EK,T of bijective maps 
P → C where P denotes the set of plaintext blocks, C denotes the set of ciphertext blocks, K denotes a set 
of secret keys and T the set of public tweak values. 

Round-reduced versions of Threefish The Threefish block cipher contains a subkey addition only once 
in every four rounds of the cipher. Therefore, if we talk about an n-round reduced version of Threefish, we 
always assume that a final subkey addition has been added in order to prevent potential attackers from 
simply inverting the last rounds of the cipher up to the last normally scheduled subkey addition. The final 
subkey addition that we add is always the next subkey addition that would take place in the full version of 
the cipher as described in the specification [10]. 
We denote the round transformations by R0, R1, . . . , Rn. In other words, a ten-round reduced version of 
Threefish will consist in the application of the transformations R0, . . . , R9 followed by a final subkey addition 
which is the one regularly occuring in R12. 

Basic operations and data representation conventions We will denote modular addition of 64-bit 
numbers by E and bitwise addition by ⊕. A block will uniformly mean a vector of four 64-bit words and 
all bitwise operations on words will transfer component-wise to the block level. Concrete word values will 
always be represented in big endian notation as unsigned hexadecimal numbers. As usual, «n denotes left 
rotation of a 64-bit word by n bits and analogously »n the corresponding right rotation. 

Differential path conventions For related-key and related-Tweak differences, we allow bitwise differences 
only. In messages and state values, we will mostly consider E-differential paths, as these cross subkey 
additions in Threefish at zero cost. 
We will sometimes need to specify truncated differential states. These will always be bitwise differentials 
where only the states of some bits of the state are defined. As the defined bits will in the cases considered 
here always be the least significant bits of a 64 bit word, we fix the following notation: for a truncated 
differential state the hexadecimal number x is identified with the set of 64 bit numbers which are equal to 
x modulo 2Llog2 (x)J. In other words, x describes the set of words which are identical to x except for the 
positions corresponding to the leading zeroes of x. We will always give x in hexadecimal notation in this 
situation and drop leading zeroes. 
A differential path for a tweakable block cipher E with transition probability p, message differences ΔM , 
key differences ΔK, tweak differences ΔT and output differences ΔC will be denoted by 

p
E : (ΔM, ΔK, ΔT ) → ΔC. 

If the differential does not depend upon differences in the key, tweak or message, we will suppress these 
inputs. A typical case where this occurs is a modular differential through a few keyless rounds of Threefish 
with possibly a subkey addition at the end. 
In this article, a differential will usually be a differential with respect to wordwise modular differences, i.e. 
with respect to differences modulo 264 . However, for differences in the key and tweak, we will allow only 
bitwise differences as we consider this a more realistic attack model. We remind the reader briefly of the fact 
that in the context of related key attacks, it is important to choose carefully which related-key operations 
should be allowed, as it is easy to create related-key attackers who are too powerful, i.e. who can obtain 
fast key recovery even against ideal ciphers [2]. However, our attacker, who can ask for encryptions and 
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decryptions of chosen plaintexts and ciphertexts under keys related to some secret key by arbitrary bitwise 
key and tweak differences, is to the best of our knowledge unable to distinguish an ideal block cipher with 
unknown key from a random permutation of the same block size with expected effort less than exhaustive 
key search. 
For truncated differentials, we will use the same notations. In this case, ΔC and/or ΔM will be truncated 
states as defined above. 

A short overview of Threefish-256 

Threefish is a tweakable block cipher with supported block sizes of 256, 512, and 1024 bits. Key sizes and 
block sizes of all Threefish versions are equal to the block size. As an additional parameter, a 128-bit public 
tweak value is input to the key schedule along with the key. 
In this article, we will focus entirely on the 256-bit version. Therefore, we will in the sequel only describe 
Threefish-256. Analogous attacks, however, are expected to be feasible at comparable costs also against the 
other block sizes. 
We only recall the structure of Threefish very briefly. For a more detailed exposition, we refer to the Skein 
submission paper [10]. 

Basic structure Threefish-256 processes a 256-bit message by evolving an internal state of 256 words over 
72 iterations of a simple round transformation. The round transformation consists of two layers, namely 
a non-linear Mix-layer applying a transform Mixr : {0, 1}128 → {0, 1}128 to pairs of 64-bit words in the 
four-word state and a linear layer consisting of a word level permutation which exchanges words S1 and S3 

of the state, where the state is (S0, S1, S2, S3) and the Si are 64-bit integers. 
At the beginning of every fourth round and after the final round of the cipher, a subkey addition is performed. 
This updates the state by component-wise modular addition of a subkey for current keying s to the state. 

The Mix transform Mixr is a bijective transform with input and output two 64-bit words. Its definition 
is 

Mixr(x, y) := (x E y, (x E y) ⊕ (y « r)). 

The Mix-layer of a Threefish round consists of the parallel application of Mix transformations to the two 128­
bit halves of the state. The rotation constant r is chosen differently for each of the two Mix transformations 
involved in a round and depends on the round number. Precise specifications can be found in [10]. 

The key schedule The Threefish key schedule takes as input a 256-bit key K = (K0,K1,K2,K3) and a 
128-bit Tweak T = (T0, T1). The subkeys ks,i for keying s are then determined as follows: first, both K and 
T are expanded by one 64-bit word by setting T2 := T0 ⊕ T1 and K4 := C ⊕ (⊕iKi), where C is a constant 
defined in [10]. One furthermore sets recursively Ki+5 := Ki, Ti+3 := Ti. The subkey ks for keying s is then 
given by the following expression: 

ks := (Ks,Ks+1 E Ts,Ks+2 E Ts+1,Ks+3 E s). 

We remark that for related-key differentials with key difference ΔK and tweak difference ΔT with differences 
only appearing in the most significant bit of key and tweak words, this implies subkey differences 

Δks = (ΔKs, ΔKs+1 ⊕ ΔTs, ΔKs+2 ⊕ ΔTs+1, ΔKs+3) 

where ΔK4 := ⊕3 
i=0ΔKi. 

For compact notation of key, tweak and subkey differences, we will write δ to denote the 64 bit word 
corresponding to 263 . 

4 



3 Practical-time distinguishers against round-reduced Threefish 

3.1 Basic attack structure 

Qualitative overview Basically, the distinguishers we will study are reduced-round variants of boomerang 
attacks against Threefish first introduced in [1] and further studied in [8, 17]. In the forward direction of 
the boomerang, we use a related-key differential path very similar to the ones used already in [1, 8, 17] 
to induce a local collision in round four. This local collision then survives until round 12 due to a subkey 
collision in round eight. Between rounds 12 and 16, matching between the forward and backwards phases of 
the boomerang happens. For cost computations regarding this attack phase, summation over various very 
short high-probability bitwise differential paths can be used. Empirically, this matching phase succeeds with 
probability one. Due to the use of multiple differential paths in the boomerang matching phase and near 
the decryption output (through the use of a truncated differential) our attacks are best characterised as 
rectangle attacks as introduced in [5]. 
In the decryption direction, the same method of using a local collision is used to produce a high-probability 
modular differential path from round 27 to round 16. As in the forward direction, a short bitwise differential 
path can be used to obtain upper bounds for the cost of successfully passing the matching phase of the 
boomerang. A truncated differential on rounds four to zero helps us avoid having to pay the cost of the 
initial four-round differential again in the return path of the boomerang. 
The related tweak attacks we will study share the same structure but span a lower number of rounds. 

Generic cost calculation Denote by EK,T the encryption function of round-reduced Threefish under key 
K and tweak T . Denote by D the corresponding decryption function. For a generic cost model, assume that 
we have a decomposition 

E = Eγ ◦ Eβ ◦ Eα 

and assume that we have related-key differential paths πα 

p
Eα : (ΔM, ΔK, ΔT ) → ΔC 

and πγ 
q

Dγ : (ΔC ', ΔK ', ΔT ') → ΔM ' 

as well as a truncated differential πt 
pt

Dα : ΔC → ΔMt 

where ΔMt is a truncated differential state defined in r bits. In addition, we assume that the probability of 
obtaining a right quartet for a boomerang attack on Eβ with plaintext difference ΔC and ciphertext difference 
ΔM ' is pb. Finally, we assume availability of an initial path boosting transform F which given a right pair 
P1, P2 for πα will produce a list of some number n of pairs Fi(P1, P2) ∈ P × P such that the probability 
(averaged over all lists generated for all eligible P1, P2) of any such Fi(P1, P2) being a satisfying instance of 

'πα is p > p. A natural candidate for an initial path boosting transform may be a differential covering a 
few initial rounds of Eα with some high probability ph, as such a differential can be used to create from a 
conforming pair P1, P2 for πα another pair P1

', P2
' such that in the first few rounds the differences generated 

2by P1
', P ' will satisfy πα with probability approximately p which may be higher than the probability of 2 h 

satisfying these rounds of πα randomly. 
Assuming all these elements, the basic attack pattern runs like this: we randomly generate a plaintext 
P1 and compute from it a second plaintext P2 := P1 E ΔM . One then obtains C1 := EK,T (P1) and 
C2 := EK⊕ΔK,T ⊕ΔT (P2). From these values one obtains C3 := C1 E ΔC ', C4 := C2 E ΔC ' and asks for 
decryptions 

P3 := DK,T (C3), P4 := DK⊕ΔK⊕ΔKI,T ⊕ΔT ⊕ΔT I (C4). 

We are interested in the case that P4 E P3 satisfies ΔMt and call P1, P2, P3, P4 a right quartet candidate in 
this case. For a random function, this would happen with probability 2−r . For E, however, one notes that, 
due to reasoning exactly as in [22, 5], one gets additional right quartet candidates in all those cases where 
the following conditions were met: 
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1. P1, P2 was a right pair for πα. 

2. C1, C3 and C2, C4 were right pairs for πγ . 

3. The boomerang test on Eβ induced by the partial encryptions of P1, P2 and the partial decryptions of 
C3, C4 in the input and output of Eβ respectively succeeded. 

4. The partial decryptions of C3, C4 at the input of Dα yielded a conforming pair for πt. 

Under an assumption of independence of these events, the probability that all of them will occur in any given 
2trial is expected to be pq pbpt. If this is much larger than 2−r, most candidate right quartets will indeed 

be right quartets for the related-key rectangle test and we obtain a distinguisher against E immediately. 
Otherwise, we may have to use the initial path boosting transform to see if it gives us another example of 
a candidate right quartet. If P1, P2, P3, P4 was not a true right quartet, this is expected to happen with 

2 2probability 2−r, whereas if it was, a new right quartet is expected to be found with probability phq pbpt per 
trial. In the attacks considered in this article, this latter probability is much larger than 2−r, which means 
that a relatively small number of verification tests using initial path boosting will distinguish true right 
quartets for our test from false right quartets with high reliability by finding at least one other right quartet 
candidate where for a random permutation none would be expected to be found. For a random function, the 
work factor of finding a P1 that survives the tests just described is expected to be close to k/22r, where k is 
assumed small compared to 2r and is the number of verification trials. For E the corresponding probability is 

2 2 2 2 1≈ (1 − (1 − phq pbpt)
k)pq pbpt or ≈ (1 − 1/e)pq pbpt when k ≈ 2 . As long as this k is small compared 

p q2 pbpth
2to 2r and as long as (1 − 1/e)pq pbpt » k/2−2r, a distinguisher against E with workload approximately 

1 boomerang test executions is obtained. In this situation, the workload of the distinguisher 2(1−1/e)pq pbpt 
1can be improved towards approximately wlim := by increasing the number of verification trials while pq2 pbpt 

staying below a small fraction of 2r verifications. How close to wlim one can actually get depends on the 
1difference in magnitude between 2r and . pq2pb pt 

In the case of our related-key distinguisher against 27 rounds of Threefish-256, we will have empirically 
determined values of p ≈ 2−29, q ≈ 2−5,6, pb ≈ 1, pt ≈ 0.98, ph = 1 and r = 25. Hence, we will obtain a 
distinguisher at a cost of approximately 240.2 boomerang evaluations. 
For our related-tweak distinguisher against 19 rounds of Threefish-256, we get r = 49 and p ≈ 2−15.1, q ≈ 
2−5.6, pb ≈ 1, pt ≈ 0.999. Hence, a distinguisher with total complexity of about 226.3 boomerang evaluations 
is obtained. 

Calculations of path complexities In the following sections, we will give full details on the two attacks 
which are the subject of this paper. Together with the differential paths, we will give both theoretical 
predictions of round-by-round transition probabilities for the paths we consider and empirical measurements 
of path probabilities. The theoretical predictions were obtained by using the methods from [16] to obtain 
precise calculations of the correct passage of the modular differences appearing in our paths through the 
bitwise additions in the Mix layers of Threefish and the methods from [9] to do the same for the rotations. 
Correct transition of differences through rotations and bitwise additions within a Mix transformation were 
viewed as independent events. While this assumption is certainly not precisely correct and can significantly 
differ from observation in some cases (see e.g. [19] and for a more general discussion of exact computation of 
such probabilities also [18]), comparisons of round-by-round predictions and round-by-round measurements 
show it to be accurate within the margin of error of practical experimentation in the cases we are dealing 
with, with few exceptions. 

3.2 A related-key boomerang distinguisher against 27 rounds of Threefish-256 

We will now explain the details of the 27-round distinguisher. 

Details for Eα Eα corresponds here to the first 12 rounds of Threefish-256. We use here a related-key 
differential very similar to that used in [17], except that we use E-differences for differential trails as [8] do, 
which helps us pass all subkey additions at zero cost. In the encryption direction of the boomerang, we use 
the same subkey differential as [17]: we set ΔK = (0, 0, 0, δ) and ΔT = (δ, 0). For the message and state, we 
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Round ΔM log2(P) 
0 faff6ff5afdef7c0: 100100210210800: ffbffbff79fbbdfc: 40000084004204 -20.63 
1 fbff7ff7bfffffc0: 800040000040: fffffbfffdfc0000: 40002000000 -7.95 
2 fbfffff800000000: 800000000: fffffffffffc0000: 40000 -3,21 
3 fc00000000000000: 400000000000000: 0: 0 -1 
4 0: 0: 0: 8000000000000000 -

Table 1: Differential path from R0 to R4 (E-differences) for Threefish-256. The differential does not take 
subkey additions into account and needs to be corrected according to the subkey differential induced by 
subkey differences (0, 0, 0, δ) and tweak difference (δ, 0). Exactly as in [1], a state collision at round 4 is then 
obtained. 

use a four round E-differential path given in table 1. Theoretically, our model predicts a path probability of 
about 2−32.79, whereas empirically we have measured a transition probability of approximately 2−29.0 over 
2 · 1011 trials. This is however not due to a failure of the model used to predict the transition probabilities 
round by round, as table 2 shows. We therefore ascribe the failure of the model to accurately predict the 

Round r Number of trials Right pairs log2(Pr) empirically log2(Pr ) predicted 
Rotations 106 467913 -1.098 -1.098 
0 108 61 -20.65 -20.63 
1 106 3999 -7.97 -7.95 
2 106 110954 -3.17 -3,21 
3 106 499713 -1.00 -1 

Table 2: Empirically determined round-by-round transition probabilities, number of trials used in their 
measurement, and absolute number of right pairs detected for the differential path from table 1. The first 
line reports theoretically predicted and empirically observed probability of the entire path where everything 
except the rotations and the key schedule has been linearized over Z/(264). 

likelihood of fulfilling the entire initial four round path to dependencies between passing different rounds 
which are not modelled. 
After round 4, a state collision is induced if the initial four-round path was followed. This state collision 
survives until the input to round 12. Therefore, a related-key differential path is obtained for the first twelve 
rounds of Threefish which has exactly the same transition probability as the initial four round path. 

Details for Eγ Dγ covers, in this attack, the decryption direction of the boomerang from rounds 16 to 
27. The key and tweak differences chosen for this direction are (0, δ, δ, 0) and (δ, 0). In the subkey addition 
of round 24, this induces a subkey difference of (δ, 0, 0, 0). Rounds 27 to 24 are covered by a three-round 
differential path reproduced in table 3. Our theoretical model predicts a transition probability of 2−9.9 for 

Input : 8000000000000000: 0: 0: 0 
Round 24: 8000000000000000: 0: 0:8000000000000000 
Round 25: 8000000000000000:8100000000000000:8000000000000000:8000000000000000 
Round 26: 100000000000000: 8000000000: 0: 100000000408000 

Table 3: E-differential path starting with an input difference in round 24 and ending with an output difference 
at round 26. 

this path, which means that standard modelling of boomerang attacks would predict a contribution of 219.8 

to right quartet finding cost from this path for the 27-round boomerang. Empirically, however, we find 
that a boomerang attack covering rounds R4 to R26 of Threefish-256 based on this path has a transition 
probability of ≈ 2−11.3, based on finding 406 right quartets in 106 trials. The corresponding attack on R4 to 
R25 has an empirically determined probability of success of ≈ 1 per trial, based on one million trials finding 4 
249549 right pairs in one test of ours. In this case, we suspect a failure of an independence assumption 
for differential transitions occuring in the rotation and bitwise addition of one of the Mix transformations 
involved. 
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Details for Eβ Eβ covers four keyless rounds of Threefish-256 from the output of the subkey addition 
in round 12 to the input of the subkey addition in round 16 by a small rectangle attack. The input and 
output differences to this miniature rectangle are easily derived from the subkey differences used on Eα and 
Eγ and turn out to be (δ, 0, 0, 0) and (0, 0, 0, δ). Empirically, the rectangle on Eβ is found to have success 
probability one. It seems likely that it is possible to prove this success probability analytically but we have 
not tried to do so. 

The truncated differential on Dα The truncated differential on Dα is derived from a truncated differ­
ential on the four initial rounds starting from a difference at the input of R−1 of (0, 0, 0, δ) and ending with 3 
the truncated state 

St1 := (40, 800, 4, 4) 

in the decryption output. Empirically, we find this truncated differential to have a success probability of 
around 98 percent. 

The initial path boosting transform Basically, what our distinguisher is meant to detect is successful 
passing of the initial four round differential path. This is an event with probability 2−29 which we detect by 
seeing the truncated state St1 with probability 0.98 · 2−11.3 if it occurs. On the other hand, the truncated 
state St1 is defined in 25 bits, so we expect to encounter it with a per-trial probability of 2−25 also if the 
initial path was not passed successfully. Therefore, an initial path boosting transform is needed to distinguish 
cases where the truncated state is seen randomly from cases where it was caused by having chosen a right 
pair for the initial path. 
We suggest two ways to construct an initial path boosting transform in the situation at hand. The first 
is based on the observation in [1] that tweak values are publicly known and that therefore a related tweak 
attacker can compensate changes in the tweak by changes in the message and thereby obtain for any given 
plaintext P , key K and tweak T 2128 new triples (P ' , K, T ' ) such that encryption under key K with tweak 

' ' T of message P will give exactly the same states in the first four keyless rounds of Threefish-256 encryption 
as does encryption under key K with tweak T of message P . As was already pointed out in [1], this effect 
immediately yields a way to construct from one conforming pair for the initial differential path 2128 other 
conforming pairs under related keys. In other words, we get a very efficient initial path boosting transform, 
albeit at the cost of a drastic increase of the number of related-tweak queries necessary. In our context, 
≈ 4000 new related tweaks will have to be queried in order to make the 27-round distinguisher work at the 
complexity claimed in this paper. 
The second strategy we suggest is to use neutral bits [4]. The following gives a simple method and underlying 
reasoning to obtain a strong enough boosting of the initial path for our purposes. We note that in the path 
given in table 1, the first two rounds are by far the most costly. It seems reasonable to assume that one can 
find many high-probability differential paths for these first two rounds. Addition of the input difference of 

' ' any such path with success probability p to a conforming pair P1, P2 for the path is expected to yield P1, P 2 
2which will produce correct differences in the first two rounds of the initial path with probability around p

or likely higher if there are additional contributions from other high-probability end-states of the path. A 
simple reasonable idea for creating many suitable paths is to consider paths which have differences only in 
a few high-order bits of the state words. 
We have empirically tested this path boosting strategy and found that trying all 216 differences which are 
restricted to the top four bits of each word regularly yields thousands of new conforming pairs, easily enough 
to reliably detect true right quartets in the rectangle attack. Therefore, this approach provides a way to 
make our distinguisher work without requiring queries under a large number of related tweaks. 

Empirical attack verification We have practically implemented the first 26 rounds of our attack as well 
as the last 23 rounds. Measurements of attack complexity from these implementations have been in good 
agreement with predictions. In practical tests of the 26-round attack, we have seen three distinguishing 
events in 5 · 109 trials. This is well in line with the predicted workload of 231 rectangle tests for a detection 
of non-random behaviour on average. 
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3.3	 A related-tweak boomerang distinguisher against 19 rounds of Threefish­
256 

We now give a detailed account of our 19-round related-tweak distinguisher against Threefish-256. The 
basic attack pattern is the same as before, but due to the restriction of being able to query encryptions and 
decryptions under one key only, the attacker loses some freedom in creating collisions: he can still create state 
collisions, but not subkey collisions, as every subkey depends injectively on the tweak. As a consequence, 
state collisions can at most survive four rounds now. On the other hand, the need to choose message, key 
and tweak in such a way as to create a subkey collision and have it survive another keying did greatly limit 
the attacker’s choice of initial four round differential in the preceding attack. We can therefore choose more 
efficient prepended and appended differentials. 

Details for Eα In this attack, Eα covers the first eight rounds of the cipher. We use a tweak difference 
ΔT = (0, δ). This induces a subkey difference of (0, δ, δ, 0) in the round four subkey addition. Accordingly, 
we report in table 4 on a E-differential covering the first four rounds of Threefish-256 without key additions 
which leads to a state difference of (0, δ, δ, 0) at the input of round four with high probability. To correct for 
the effect of the subkey addition in round zero, a factor of (0, 0, δ, 0) needs to be added to the given input 
difference. 
The given theoretical estimates of round transition probabilities have been derived in the same way as 

Runde ΔM log2(P) 
0 fefffff7ffdf0000: 100000000210000: 7fbf7fffbf77bf40: 40800000084080 -12.09 
1 fffffff800000000: 800000000: 7fffffffbf7fffc0: 40000040 -4.17 
2 0: 0: 7fffffffff800000: 800000 -1 
3 0: 0: 8000000000000000: 0 0 
4 0: 8000000000000000: 8000000000000000: 0 -

Table 4: Differential path from R0 to R4 (E-differences) for related-tweak attacks on Threefish-256. The 
given path does not yet account for the effects of subkey additions. For each round, the difference in the 
input to that round is displayed. 

those which we used in the preceding study of related-key attacks on Threefish. The observed probabilities 
for single round transitions are in very good agreement with these predictions. For the whole path, the 
predicted transition probability of 2−17.26 is somewhat lower than the observed one of ≈ 2−15.1 which was 
observed in 107 trials. 

Details for Eβ Eβ has in this attack exactly the same structure as in the previous attack but covers the 
keyless parts of rounds 8 to 11 here. As in the previous attack, we observe a matching probability of one. 
Input and output differences in this sub-rectangle are (0, δ, 0, 0) and (0, δ, 0, 0) respectively. 

Details for Eγ For the decryption phase of the boomerang, we can take a tweak difference of (δ, 0). Table 
5 gives a differential from the input to R20 to the output of the subkey addition in R16 which produces a 
difference of (0, 0, δ, 0) after this subkey addition, hence matching the subkey difference induced by the tweak 
and inducing a collision in the keyless parts of rounds 15 to 12. Upon applying during decryption the subkey 
addition of round 12, appropriate differences between the encryptions of P1 and P2 and the decryptions of 
C3 and C4 for the sub-boomerang in Eβ are induced. 
The empirically observed transition probabilities for this path differ significantly from theoretical predictions 
for rounds 17 and 18, where instead of the given values transition probabilities of respectively ≈ 1 and 2−5.17 

2 
have been observed in one million trials each. For a boomerang attack covering 19 rounds, the empirically 
observed contribution to success probability of this appended differential path is approximately 2−11.2 . 

The truncated differential on Dα We use a similar truncated differential in this attack to cover the last 
four rounds of the decryption direction of the boomerang as in the previous attack, but as also the forward 
differential path in this attack is of much higher probability, we get a truncated differential defined in many 
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Runde ΔM log2(P) 
16 0: 0: 8000000000000000: 0 0 
17 0: 8000000000000000: 8000000000000000: 0 -2.58 
18 8000000000000000: 8000000000000000: 8000000000000000: 8000000000000000 -8.34 
19 0: 8008008000000: 8000000000000: 400000 -14.30 
E−1 8008008000000: 808000000400000: 8000000400000: 108108108000000 -

Table 5: Appended E-differential for related tweak attacks on up to 20 rounds of Threefish-256 using related 
tweak attacks. Corrections due to final subkey additions are not yet considered. 

more bits than before. The differential in question is 

(0, δ, δ, 0) → (10000, 10000, 40, 80) 

and is defined on 49 bits. Empirically, we see a probability of ≈ 99.9 percent for this truncated path to occur. 
Therefore, we detect an event which has a generic probability of ≈ 2−49 in this distinguisher and as far as the 
19-round distinguisher is concerned do so with a likelihood of 2−26.3 per boomerang evaluation, which means 
that no retesting mechanism is required. As each boomerang evaluation requires two encryption queries and 
two decryption queries, the total expected number of queries required for the distinguisher is about 228.3 . 
This is well supported by tests carried out on a full implementation of this distinguisher. 

Conclusions 

The present paper reports on attempts to see how many rounds variants of the best known theoretical 
distinguishers against Threefish-256 can cover if we require practical time and memory complexity. The 
main result of this study is that up to 27 rounds of Threefish-256 have suboptimal cryptographic properties 
under related-key attack which can be demonstrated in practice and up to at least 19 rounds allow attacks 
of low complexity which use a single key and four tweak values. Also, we find that a straightforward model 
of the Mix transform can be used to derive reasonably good predictions on the probability of E-differential 
transitions of the Threefish round function. Finally, some of the optimisations used in our distinguishers 
may be of some limited use in improving theoretical distinguishing attacks on round-reduced versions of 
Threefish. 
While in the present work we focused entirely on Threefish-256, it is absolutely natural to expect that similar 
attacks will, with similar or possibly slightly lower complexity, apply as well to similar numbers of rounds of 
Threefish variants with larger state. 
That being said, the attacks described in this paper do not transfer to attacks against the Skein hash function 
when the underlying Threefish version is reduced to 27 or 19 rounds respectively. 
Finally, I thank Ernst Schulte-Geers for useful discussion during the completion of the work reported in this 
paper. 
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