
Evaluation Of Compact FPGA Implementations For All SHA-3
 
Finalists 

Bernhard Jungk 
bernhard.jungk@hs-rm.de 

Hochschule RheinMain
 
University of Applied Sciences
 

Wiesbaden Rüsselsheim Geisenheim
 

Abstract. Secure cryptographic hash functions are core components in many applications like 
challenge-response authentication systems or digital signature schemes. Many of these applications 
are used in cost-sensitive markets and thus low budget implementations of such components are 
very important. 
In the present paper, we evalute the finalists of the SHA-3 competition, started by the National 
Institute of Standards and Technology (NIST). This work adds new valuable data to the competition, 
by providing architectures for compact implementations of all finalists. 
We focus on area-efficiency and therefore we do not rank the candidates by absolute throughput, 
but rather by the area and the throughput-area ratio. The results hint that Grøstl is the best 
overall performer for compact implementations, if the throughput-area ratio is most important. The 
following candidates are JH, Keccak and BLAKE, which are close together, while the current Skein 
architecture trails behind. The area ranking changes the results and puts JH on the top, followed 
by one of the BLAKE implementations, Grøstl, Keccak and Skein. 

Key words: Cryptography, Hash Functions, SHA-3, Compact Implementation, FPGA 

1 Introduction 

The SHA-3 competition, run by the National Institute of Standards and Technology (NIST), 
spawns a lot of new research on hash functions. The competition itself is very much organized 
like the past AES competition (cf. [1]), and has the goal to overcome security problems and 
speculations about the SHA-1 (cf. [2]) and the SHA-2 family (e.g. [3,4]). Similar to the former 
effort, this competition requires third party software and hardware implementations of all 
proposed candidates to evaluate the overall performance and resource requirements. 

In the present paper, we describe FPGA designs of all SHA-3 finalists, namely BLAKE 
(cf. [5]), Grøstl (cf. [6]), JH (cf. [7]), Keccak (cf. [8]) and Skein (cf. [9]). For all candidates, an 
area-optimized implementation was developed and evaluated. Most of the applied optimizations 
are of architectural nature, reducing the number of slices by arranging the necessary registers, 
RAMs and logic or by pipelining. However, the serialization of the algorithms is the main tool 
to build area-efficient designs. This technique is often called folding (cf. [10]). 

One of the other groups we know of, which published compact designs of all finalists, reported 
their results only for Virtex-6 and Spartan-6 FPGAs (cf. [11]). The other group implemented 
their designs for more architectures but in contrast to the results presented in [11] and our 
results, the results include block RAM. Therefore both earlier reports are difficult to compare to 
our results. Nonetheless we think, that our work adds valuable input to the SHA-3 competition: 
The throughput-area ratio of our implementations ranks the candidates for Virtex-5 devices in 

mailto:bernhard.jungk@hs-rm.de


the following order: Grøstl, JH, Keccak, BLAKE, Skein. If we disregard the throughput and 
look only on the area, the ranking changes a little bit. A different JH implementation is now on 
the top, followed by BLAKE, Grøstl and Keccak. Skein is, as before, the last candidate in this 
list. Recent results can usually be found in the ATHENa database1 . 

The rest of the paper discusses previous and related work on FPGA implementations in 
Section 2 and then continues with a description of the hardware interface in Section 3. Then, in 
Section 4 each design is described in detail, followed by the evaluation of the implementation 
results (Section 5) and our conclusion (Section 6). 

2 Previous work 

There is plenty of previous work regarding FPGA implementations of the SHA-3 finalists. Most 
of the previous implementations (e.g. [10,12]) are optimized for high-throughput and much 
less is known about compact designs. Early results on compact BLAKE implementations are 
available in [13]. They use a similar approach to the proposed design in this paper, but they use 
block RAM instead of distributed RAM and thus, the area results are not comparable. Here, all 
algorithms were implemented using distributed RAM. Thus all required resources are included 
in the slice count (Tab. 2). 

Results on compact implementations of Grøstl, Skein and JH were reported in [14], followed 
up by [15]. The present work improves on these results by supplying new implementations of 
JH and BLAKE, which take more or less the same number of slices than Grøstl and Keccak. 
Furthermore the present work supplies numbers for other Xilinx devices. 

The first study of compact implementations for all SHA-3 finalists was published in [11]. They 
reported results for all SHA-3 finalists for Virtex-6 and Spartan-6 FPGAs. They implemented 
all candidates for both 256 and 512 bit digests. Some of their designs differ considerably from 
the ones presented in the present paper, e.g. the new Keccak design is much faster, while 
others achieve a very similar overall performance (e.g. Grøstl). These results were followed by a 
comparative study by Kaps et al. (cf. [16]). Compared to the present work, they use block RAM 
and thus their results differ significantly from our results. 

3 Hardware Interface 

One important aspect of hardware architectures is the interface. Especially for compact imple­
mentations, the interface may have a major impact on the overall area. Thus all algorithms were 
implemented using the same interface. 

This interface is compliant to the Fast Simplex Link (FSL) specification (cf. [17]). The FSL 
is a popular method to connect IP cores to microprocessors, e.g. the Xilinx Microblaze softcore 
processor. The FSL is a generic 32 bit wide unidirectional link with an optional FIFO. Two 
synchronous links form the bidirectional interface of all our implementations (see Tab. 1). 

The incoming link (the hash function is the slave) is utilized to transfer the input message to 
the hash function in message blocks of exactly 512 (or 1088) bit. The bit and byte ordering is 
implemented according to the NIST specification. Hence, some effort in terms of area had to 
be spent to reorder the bits of the last byte in the case of Keccak, if the message length is not 

1 http://cryptography.gmu.edu/athenadb/table view 

http://cryptography.gmu.edu/athenadb/table


Signal Name I/O Description 
FSL Clk I FSL Clock for synchronous FIFO mode 
FSL Rst I Peripheral reset 

FSL M Data O Master input data (32 bits) 
FSL M Write O Master writes data to the FIFO 
FSL M Full I Master FIFO is full 
FSL S Data I Slave output data (32 bits) 
FSL S Read O Slave reads data from the FIFO 

FSL S Exists I Data exists in the slave FIFO 

Tab. 1: Implemented I/Os of the FSL interface. 

a multiple of 8 bits. All algorithms start the computation of the round function as soon as a 
complete message block has been transfered. 

We implemented a streaming interface where each message block comes along with a length 
information. Thus, the total length of the input message does not need to be known beforehand 
and is only limited by the design of the hash functions, which is according to the NIST 
requirements at least 264 bit. 

–	 First, the total length of the actual message block is transfered as a 10 (or 11) bit vector. 
Additionally, the 11th (or 12th) bit is used to signal the end of the input message to handle 
the case when the last message block is exactly 512 (or 1088) bit long. If the number of bits 
is less than 512 (or 1088) in the last message block, nonetheless a complete message block 
with 512 (or 1088) bit has to be transfered. Thus this last message block will be filled with 
0s. 

–	 Then, the message block is sent in 32 bit blocks over the link, with a total number of 16 or 
34 blocks. 

–	 On the receiving side, the padding rule of the respective algorithm is applied. For the 
bit positions where the padding would pad the last transfered message block with 0s, the 
implementations skip the padding with 0s and assume that it is filled with 0s as mentioned 
above to save additional multiplexers. 

The output is handled similarly using the other link (the hash function acts as the master) 
without sending the length information as this is known in advance. 

For the area and speed measurements, only the implementation of control logic for the FSL 
is included. The FSL implementation itself is not included, because it is configurable (e.g. the 
size and implementation style of the FIFO) and thus the area and speed of the FSL link varies 
depending on the requirements of the application. 

4 Implementations 

4.1 BLAKE-256 

For BLAKE, we implemented two ideas, because the original idea was much smaller compared 
to Grøstl and Keccak. BLAKE consists of eight almost identical functions G0, . . . , G7. Each one 
operates on 128 bit of BLAKE’s 512 bit state. Furthermore G4, . . . , G7 depend on the output 



of G0, . . . , G3. Thus four Gi functions can be theoretically computed in parallel. The present 
design (Fig. 1) uses some of the properties common to all Gi functions, to achieve a area-efficient 
design with reasonable throughput: 

–	 Implementing one half of a Gi-function. 
–	 Pipelining of the Gi function. 
–	 Executing the Gi functions in the order 0, 1, 2, 3, 7, 4, 5, 6. This ensures, that the pipeline 

never stalls (cf. [13]). 

The first idea can be applied, because each Gi function consists of two almost identical halves, 
each computing two 32 bit additions, two 32 bit XORs and two 32 bit rotations and they differ 
only in the rotation constants. 

If the input to each Gi function would be 128 bit wide and all 128 bits of the input would 
become available at the same clock cycle, pipelining the Gi function would be inefficient because 
we would have pipeline stalls. Instead the inputs to each half round function become consecutively 
available in 32 bit blocks. 

For most LUT-based FPGAs the additional registers do not require a lot more area, because 
they can often be mapped together with the logic in the same slice. At the same time, the 
pipelined computation of the complete compression function does not need fundamentally more 
clock cycles, while the clock frequency will be higher. Thus, the throughput-area ratio increases. 
This pipeline is only efficient, combined with the third idea mentioned above. That is the G7 

function has to be computed before G4. Otherwise, we would run into pipeline stalls, again. 
Another important feature of the design is its usage of distributed RAMs for the input 

message including double-buffering (M, 32 × 32), the round constants (C, 16 × 32), the state of 
BLAKE (4 × 4 × 32) and the chaining value used in by the finalization (8 × 32). The message 
length counter (T) is however implemented with 64 registers. 

Overall, the compression function in this implementation needs a moderate number of clock 
cycles: 

–	 For every Gi function evaluation, it takes 2 clock cycles and thus, to compute a whole round 
we need 16 clock cycles. 

Fig. 1: The first BLAKE architecture.
 



Fig. 2: The second BLAKE architecture. 

–	 The round function is executed 14 times. 
–	 Continuing with the next execution of the compression function is only possible 4 cycles 

later, due to the finalization after each compression function invocation. 

Thus, each computation of the compression function takes 228 clock cycles. 
The second and larger implementation is based on the previously described ideas and doubles 

the number of half Gi implementations. Basically there are two ways to do this: 

1. Use a full Gi function 
2. Operate two half Gi functions in parallel 

The first option was not implemented, because it is difficult to implement the full Gi function 
using a pipelined core without additional wait cycles. The second idea is straightforward, using 
a pipeline with half the depth (Fig. 2). While it is quite easy to evolve the first architecture into 
the second one, there are three small issues which have to be dealt with: 

–	 We need additional multiplexers for the input or the output of the state RAM to deal with 
the different input patterns between G0,1,2,3 and G4,5,6,7. 

–	 The first implementation of finalize stored intermediate inputs in distributed RAM. Now, the 
inputs are available earlier and in parallel, thus we need registers in addition to the RAM. 

–	 We need 256 binary XORs compared to 64 ternary XORs in the smaller implementation, if 
we want to process all inputs in parallel. One additional clock cycle removes one half of the 
XORs. 

The previous analysis on the number of clock cycles applies, but halved. The exception is the one 
additional clock cycle for the finalization. Thus the new implementation uses 115 clock cycles. 

4.2 Grøstl-256 

The general idea to implement Grøstl in a lightweight manner is to fold the computation of a 
complete round into eight smaller parts. Thus only one eighth of the original round function has 
to be fitted into the design, at the expense of an eightfold increase of clock cycles necessary for 



Fig. 3: The Grøstl architecture. 

the computation of the compression function. The compression function is designed very similar 
to AES and thus, a compact implementation may benefit from similar optimizations. 

The implementation consists of three main details (Fig. 3): 

– Usage of distributed RAM. 

– An implicit ShiftBytes transformation. 

– Pipelining of the round transformation. 

We can use eight 8 × 8 distributed RAMs for the whole 512 bit state. For the Grøstl hash 
function, two such memories are necessary, one for each permutation P and Q. Both RAMs 
consist of eight individual RAMs representing the rows of the state matrix. The usage of the 
distributed RAM makes it possible to implement the ShiftBytes sub-transformation implicitly, 
by calculating appropriate read addresses. Furthermore both RAMs can be integrated into a 
single bigger 16 × 8 RAM, because it is possible to read and write alternately to the RAMs. This 
is a very important improvement over the earlier implementation reported in [18]. Furthermore 
a 8 × 8 RAM is needed for the storage of the intermediate output h of the compression function, 
which is very similar to the other memory. 

The last important part of the optimization is the pipelining of the Grøstl round transforma­
tion (Fig. 4). In addition to the speed-up, we gain additional area savings. This is only possible, 
if we add enough pipeline stages, to store the complete internal state in the pipeline, before the 
first part of the computation is completed. Otherwise an additional round counter would be 
required, which would be used as offset to the read and write addresses (cf. [19]). 

Fig. 4: Pipelining the Grøstl round function.
 



The optimization is similar to the one proposed for AES in [20]. The main difference is the 
removal of the second memory necessary for the proposed AES implementation, which results in 
a significant additional area reduction for Grøstl due to its large internal state. 

The S-box is based on finite field arithmetic, which is used to calculate each value on-the­
fly instead of using a lookup table in distributed RAM. The basic idea is a change of the 
representation of each finite field element to a computationally more efficient one (cf. [21]). This 
change works, because all finite fields with the same cardinality are isomorphic. In addition to 
the area saved by this implementation style, it is possible to insert the pipeline registers in this 
S-Box implementation more easily than in a design based on lookup tables. 

The performance of this architecture is quite good, because only 160 clock cycles are needed 
for a complete computation of the compression function (8 clock cycles per round for P and Q, 
10 rounds and thus 8 × 2 × 10 = 160). 

4.3 JH-256 

Similar to the two designs for BLAKE-256, we have two implementations for JH-256. While both 
designs of BLAKE-256 are quite similar, the faster JH-256 design is a more thorough redesign. 
The first design uses an internal state with 1024 bit and computes a very simple round function 
consisting of 256 4 bit S-boxes, 128 linear transformations on 8 bit each and a permutation layer, 
which shuffles the bits of the state in 4 bit blocks. The design can be easily folded (cf. [10]) to 
allow for a very compact implementation (Fig. 5). The logic in JH’s round function is very small, 
thus pipelining does not increase the clock frequency very much. Unfortunately, due to the high 
number of rounds, the absolute throughput of a very compact JH implementation with an 8 bit 
wide data path is quite low. 

The current design uses distributed RAM to store the input, the internal state and the round 
constants. Additionally a RAM is used as a buffer to store the message after its initial usage for 
the message injection after the compression function completes all rounds. 

Fig. 5: The 8 bit JH architecture.
 



Fig. 6: The improved 320 bit JH architecture. 

JH has other interesting features, which are addressed in the design. The positive feature is 
the generation of the round constants, which are computed exactly in the same way the normal 
computation on JH’s state is performed. That means the same logic can be used to compute the 
JH round as well as the round constants. This shared core of the JH architecture consists of two 
S-boxes and one linear transformation (L). 

The less positive feature of JH for this kind of low-area design is the grouping and de-grouping, 
which reorder the bits of the input and output, respectively. These two functions are covered 
by the input and the output RAMs, which therefore are bigger than necessary for the required 
capacity. 

The JH permutation is easily achieved by writing to the state RAM according to the 
specification of the permutation. For the S-boxes and the linear transformation, we used the 
Boolean expressions presented in [7]. 

The first design needs at least 6720 clock cycles to compute the compression function 
completely (128 bytes state, 32 bytes constants and 42 rounds, thus (128 + 32) × 42 = 6720), 
and is therefore very slow compared to the other implementations. 

The second design expands the datapath from 8 bit to 320 bit and thus reduces the number 
of clock cycles per round by a large factor (Fig. 6), while the design itself stays resonably small. 
Compared to the previous design the following additional changes have been made: 

–	 The grouping of the input and the buffering for the XOR happening later is basically the 
same with a wider datapath. 

–	 The degrouping of the final hash value is no longer required, because the all 32 bit transfered 
over the FSL link available in one clock cycle. 

–	 The S-Boxes and linear tranformations are implemented by manually instantiating LUT6 2 
instances. Of course, this does not work on older devices like the Xilinx Spartan-3. 

All in all, the design needs 97,5% less clock cycles for the complete round function (168 
cycles). This can be easily calculated, because the datapath is 40 times bigger than before. 



4.4 Keccak-256 

The state of Keccak can be represented as a three-dimensional state a[x][y][z], with 0 ≤ x ≤ 
4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 63. Thus, the complete state consists of 1600 bit. To describe parts of the 
state, the following conventions of the authors of Keccak are used: 

– A part of a state along the z-axis is called a lane. 
– A two-dimensional part with fixed z is called a slice. 

The Keccak hash function uses five functions θ,ρ,π,χ and ι, which are consecutively computed 
each round. 24 of these rounds are computed for Keccak-256. The functions θ,χ and ι use a 
number of XORs, ANDs and NOTs, while ρ and π are permutations which only reorder the 
state. 

An external message is mapped along the lanes, that means, the first 64 bits are mapped to 
the lane with x = 0, y = 0, the second to x = 1, y = 0 and so on. Therefore it is easy to see how 
to implement Keccak by computing the five functions iteratively on each lane (e.g. [11]), but 
this implementation technique is inefficient. 

The present implementation instead computes the Keccak permutation on eight slices in 
parallel (Fig. 7). The implementation uses three key ideas: 

– The state is stored in 25 8 × 8 distributed RAMs. 
– The ρ permutation can be implemented with the help of additional registers. 
– The round function has to be rescheduled. 

The first two ideas play nicely together. The reason for the choice of the RAM-layout is the ρ 
permutation. We cannot store the state in a 200 × 8 distributed RAM, because the ρ function 
rotates the bits on each lane with a different rotation constant. Furthermore, the rotations are 
not aligned on 8 bit, therefore we cannot store the output directly to a single 8 bit memory 
cell. Instead, we split the writes of a byte according to the ρ permutation, e.g. for x = 0 and 
y = 1, the lane is rotated by 36 bits, and therefore the first 4 bits of the first byte are written to 
address l36 J and the second half to the next memory cell, together with the lower half of the 8 
next byte. Therefore, we have to use additional registers to store the intermediate values. 

Furthermore, this architecture requires that the Keccak round function is rescheduled, adding 
an artificial 25th round. In the first round we execute R1 = π ◦ ρ ◦ θ, in round second and all 
following rounds except the last one, we execute Ri = π ◦ ρ ◦ θ ◦ ι ◦ χ. The last round consists 
only of R25 = ι ◦ χ. 

Fig. 7: The Keccak architecture.
 



Since we are computing 200 bit per sub-round and each sub-round takes exactly one clock 
cycle, a complete round is computed in 8 clock cycles. The Keccak implementation performs 25 of 
these rounds, therefore it takes 200 clock cycles for a complete compression function invocation. 
Note, that Keccak uses message blocks of 1088 bits and thus it computes more than twice as 
many input bit per compression function call, than the implementations of the other candidates. 

4.5 Skein-256 

Skein is an ARX-based design. That means it uses addition, rotation and XOR for its round 
function. Each addition, rotation and XOR works on 64 bit of Skein’s 512 bit state. Therefore it 
is very natural to use a 64 bit wide data-path throughout the implementation (Fig. 8). 

As in all the other designs, the state (16 × 64) is stored in distributed RAM, which has 1024 
bit, to write the output of the round function back to the RAM while still reading the current 
state. Furthermore, the input is buffered in an additional RAM (8 × 64) for the second message 
injection after the computation of all rounds, to allow the loading of a new message block while 
the computation using the current message block is still running. Additionally, the key schedule 
uses a 9 × 64 RAM to store the keys. 

Efficient implementations of Skein for FPGAs are quite a challenge, which is mainly caused 
by the 64 bit adders and further complicated by the rotations which impact the routing on an 
FPGA device. Together both features have a significant impact on the maximum achievable 
clock frequency. Pipelining the round function is the obvious countermeasure, but this is not as 
easy as for other hash functions like Grøstl. 

Fig. 8: The Skein architecture.
 

Fig. 9: Pipelining the Skein round function.
 



The pipeline itself consists of two distinct parts, each using 64 bit as input (Fig. 9). The 3 
necessary 64 bit adders are split into 32 bit adders and used in a way, that only 3 of them are 
necessary. The rotation and the last XOR are distributed over 3 clock cycles, which eases the 
burden on the placement and routing tools. The two parts have two different lengths, such that 
the pipeline never stalls. This is caused by the permutation of Skein, which makes it complicated 
to find a good strategy for pipelining the round function. 

The performance of this design is dominated by the large number of rounds required. Overall 
the architecture requires 584 clock cycles for one execution of the compression function (72 rounds 
+ 1 extra round for the last key injection and 8 clock cycles for each round, thus 73 × 8 = 584). 

5 Evaluation 

We have implemented compact designs of all SHA-3 finalists and generated post place and route 
results for Virtex-5 FPGAs and 256 bit message digests. The search for optimal options and 
timing constraints was automated by a custom evaluation tool, similar to ATHENa (cf. [22]). 

The numbers of the throughput, tp, and the throughput-area ratio, tp-area are calculated 
by the following formula, where p is the clock period, b is the block size, cycles is the number of 
clock cycles for the round transformation and area is the number of used slices. 

b 
tp = 

p×cycles 
tp

tp-area = 
area 

The post-place and route results for the 7 implementations are shown in Tab. 2 (More results 
in Appendix A). Ranking the implementations by their throughput-area ratio, Grøstl is clearly 
wins, while JH-1, Keccak, BLAKE-1 and BLAKE-2 are close together. Skein and JH-1 are the 
weakest performers. The view changes, if we rank the implementations by area alone. Then JH-1 
is the winner, followed by the BLAKE-1 implementation. Grøstl, Keccak-1, BLAKE-2 and JH-2 
have very similar area requirements, while our current Skein design uses many more Slices and 
is thus on the last place. 

The JH-1 design is obviously slow because of the 8 bit data path and the large number of 
clock cycles per round and thus an implementation with a wider data path (JH-2) is a lot faster. 
Skein is also slow, but it neither suffers from a low clock frequency nor a large number of clock 

Algorithm Slices BRAM MHz MBit/s MBit/s/Slice 
Grøstl 368 0 305 975 2.64 

Keccak-1 393 0 159 864 2.19 
(Keccak-2 379 0 159 864 2.29) 
BLAKE-1 251 0 211 477 1.90 
BLAKE-2 374 0 163 725 1.94 

Skein 519 0 299 262 0.50 
JH-1 193 0 283 21.5 0.11 
JH-2 377 0 278 847 2.24 

Tab. 2: Implementation results for Virtex-5 FPGAs. 



Algorithm Slices BRAM MHz MBit/s MBit/s/Slice 
Grøstl 293 0 330 960 3.27 
Keccak 188 0 285 145 0.77 
BLAKE 175 0 347 132 0.75 
Skein 291 0 200 223 0.76 
JH 304 0 299 222 0.73 

Tab. 3: Third party results for Virtex-6 FPGAs by [11].
 

cycles per round. Instead the highly iterative nature of Skein kills the performance. It is not as 
clear as for JH how to solve this problem, because it is not easily to see how to decrease the 
number of clock cycles without increasing the area by a large margin. However, the results from 
[11] show, that at least for Virtex-6 FPGAs, the area required by an implementation can be less. 

Three SHA-3 candidates have two results each in Tab. 2: Keccak and BLAKE and JH. The 
idea behind the Keccak-2 result was to remove the bit reordering of the input required by the 
Keccak specification to investigate how much area is required by this irregularity in the design. 
Each input bit needs an additional multiplexer, and thus the result shows, that this is not very 
significant. This is not very suprising, because only 32 input bits are processed in each clock 
cycle. 

For BLAKE, the second and larger implementation was pursued because of the large area gap 
between the implementations BLAKE-1, Grøstl and Keccak. As we can see, the throughput-area 
of BLAKE stays roughly the same and thus the ranking stays the same. A similar reason applies 
for implementing JH a second time, which gave much better results compared to the JH-1 
implementation. 

The picture gets more complete, if we compare the new results to the previous implementations 
from [11] (Tab. 3). They are for Virtex-6 FPGAs and therefore they are not directly comparable 
to the Virtex-5 results. From their results, we took the values which were optimized for timing 
and for the 256 bit digest results. The only similarities between our results and the results from 
[11] are the quite good performance of Grøstl and the mediocre results of Skein. While our 
JH-1 implementation is obviously worse, we show, that JH, Keccak and BLAKE can be quite 
competitive and the dominance of Grøstl is not that obvious than hinted by the previous results. 

One other obvious difference between the two comparative studies is, that the results from 
[11] are almost consistently smaller. This fact is not only due to differences in the designs, but 
can also be attributed to the padding function which we deliberately included for all candidates 
and which is missing in the other results. Earlier results show, that the padding function can 
add up to 20% to the overall area (cf. [18]). 

6 Conclusion 

The present paper focuses on area-efficient FPGA implementations of the SHA-3 finalists. 
At least one optimized implementation of each candidate was designed and evaluated. The 
throughput-area ratio of Grøstl is the best and at least on of the implementations for JH, Keccak, 
BLAKE follows with little distance while Skein trails behind after a large gap. If the focus is 
the area consumption, the situation is different. It is much easier to implement JH really small. 



One BLAKE design is also quite small, while all other implementations are in the 350-400 slices 
range, except Skein, which is quite large. 

There is still room for improvements and developments of all implementations. For example, 
the area of Keccak can be further reduced by making a design which uses only 4 or 2 slices in 
parallel. Furthermore the second BLAKE implementation could be designed smaller, but probably 
slower, using one full Gi instead of two halves running in parallel. However, the most important 
next step is to improve the Skein implementation, which can certainly be implemented in the 
350-400 slices range but probably without significantly improving the throughput. Therefore 
Skein is likely to be the worst of all finalists for compact FPGA implementations. 

Acknowledgment 

We would like to thank Steffen Reith and Jürgen Apfelbeck for their help and comments on 
various aspects of this paper. This research was supported in part by BMBF grant 17N1308. 

A Results for Spartan-3, Spartan-6 and Virtex-6 FPGAs 

All designs except the new JH implementation are realized in device-independent VHDL code, 
thus they can be synthesized for the other Xilinx targets. The JH implementation for Spartan-3 
FPGAs uses the logic as proposed as Boolean formula in the submission of JH. The results 
in this appendix are for other Xilinx FPGA families, namely Spartan-3 (Tab. 4), Spartan-6 
(Tab. 5) and Virtex-6 (Tab. 6). The overall picture stays roughly the same for these devices. 
The only exception is the improved JH implementation for Spartan-3 FPGAs, which is on the 
fifth place in the throughput-area ratio ranking, while it is the second best design on the other 

Algorithm Slices MHz MBit/s MBit/s 
Slice 

BLAKE-1 948 88.6 198 0.20 
BLAKE-2 1716 71.6 318 0.18 
Grøstl 1220 148 473 0.38 
JH-1 807 124 9.4 0.01 
JH-2 2060 113 344 0.16 

Keccak 1665 71.2 387 0.23 
Skein 1347 128 112 0.08 

Tab. 4: Implementation results for Spartan-3 FPGAs. 

Algorithm Slices MHz MBit/s MBit/s 
Slice 

BLAKE-1 257 155 477 1.85 
BLAKE-2 413 113 725 1.75 
Grøstl 344 236 975 2.83 
JH-1 171 241 22 0.12 
JH-2 372 185 847 2.27 

Keccak 420 122 864 2.05 
Skein 418 210 262 0.62 

Tab. 5: Implementation results for Spartan-6 FPGAs. 



Algorithm Slices MHz MBit/s MBit/s 
Slice 

BLAKE-1 260 263 590 2.26 
BLAKE-2 419 204 908 2.18 
Grøstl 328 365 1168 3.56 
JH-1 221 442 33 0.14 
JH-2 352 344 1048 2.97 

Keccak 397 197 1071 2.69 
Skein 406 316 277 0.68 

Tab. 6: Implementation results for Virtex-6 FPGAs.
 

devices. For the Spartan-3, the root cause is probably the manual instantiation of the LUT6 2 
primitive for the other devices. Nonetheless the throughput-area ratio of BLAKE, Keccak and 
JH is close together and Grøstl is always on the first place. Skein is always the slowest candidate 
and therefore has the poorest throughput-area ratio - except for the slow JH implementation. 

References 

1.	 Kayser, R.F.: Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash 
Algorithm (SHA-3) Family. In: Federal Register. Volume 72. National Institute of Standards and Technology 
(November 2007) 62212–62220 

2.	 Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Proceedings of Crypto. Volume 3621 
of Lecture notes in computer science., Springer (2005) 17–36 

3.	 Sanadhya, S., Sarkar, P.: New collision attacks against up to 24-step SHA-2. In: Progress in Cryptology-
INDOCRYPT. Volume 5365 of Lecture notes in computer science., Springer (2008) 

4.	 Isobe, T., Shibutani, K.: Preimage attacks on reduced Tiger and SHA-2. In: Fast Software Encryption. 
Volume 5665 of Lecture notes in computer science., Springer (2009) 

5.	 Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to NIST (2010) 
6.	 Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: 

Grøstl – a SHA-3 candidate. Submission to NIST (2010) 
7.	 Wu, H.: The Hash Function JH. Submission to NIST (2011) 
8.	 Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: The Keccak SHA-3 submission. Submission to NIST 

(2011) 
9.	 Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein 

Hash Function Family. Submission to NIST (2010) 
10.	 Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing Hardware Performance of Round 3 SHA-3 Candidates 

using Multiple Hardware Architectures in Xilinx and Altera FPGAs. Ecrypt II Hash Workshop (2011) 
11.	 Kerckhof, S., Durvaux, F., Veyrat-Charvillon, N., Regazzoni, F., de Dormale, G.M., Standaert, F.X.: Compact 

FPGA Implementations of the Five SHA-3 Finalists. Ecrypt II Hash Workshop (2011) 
12.	 Baldwin, B., Hanley, N., Hamilton, M., Lu, L., Byrne, A., O’Neill, M., Marnane, W.: FPGA Implementations 

of the Round Two SHA-3 Candidates. The second SHA-3 Candidate Conference (2010) 
13.	 Beuchat, J.L., Okamoto, E., Yamazaki, T.: Compact implementations of BLAKE-32 and BLAKE-64 on 

FPGA. In: FPT. (2010) 170–177 
14.	 Jungk, B.: Compact implementations of Grøstl, JH and Skein for FPGAs. Ecrypt II Hash Workshop (2011) 
15.	 Jungk, B., Apfelbeck, J.: Area-Efficient FPGA Implementations of the SHA-3 Finalists. In: Reconfigurable 

Computing and FPGAs (ReConFig), 2011 International Conference on. (2011) 235 –241 
16.	 Kaps, J.P., Yalla, P., Surapathi, K.K., Habib, B., Vadlamudi, S., Gurung, S., Pham, J.: Lightweight 

implementations of SHA-3 candidates on FPGAs. In: Progress in Cryptology – INDOCRYPT 2011, Springer 
Berlin / Heidelberg (2011) 270–289 

17.	 Xilinx: LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c). (2010) 
18.	 Jungk, B., Reith, S.: On FPGA-Based Implementations of the SHA-3 Candidate Grøstl. International 

Conference on Reconfigurable Computing and FPGAs 2011 (2010) 316–321 



19.	 Jungk, B., Reith, S.: On FPGA-based implementations of Grøstl. Cryptology ePrint Archive, Report 2010/260 
(2010) 

20.	 Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algorithm. In: Proceedings of 5th 
International Workshop on Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag (2003) 
319–333 

21.	 Canright, D.: A Very Compact S-Box for AES. In: Proceedings of 7th International Workshop on Cryptographic 
Hardware and Embedded Systems (CHES), Springer-Verlag (2005) 441–455 

22.	 Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster, B.Y.: ATHENa - Automated 
Tool for Hardware EvaluatioN: Toward Fair and Comprehensive Benchmarking of Cryptographic Hardware 
Using FPGAs. In: Proceedings of the 2010 International Conference on Field Programmable Logic and 
Applications. FPL ’10, IEEE Computer Society (2010) 414–421 


