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Abstract. The sponge construction, designed by Bertoni, Daemen, Peeters, and Ass­
cheis, is the framework for hash functions such as Keccak, PHOTON, Quark, and spon­
gent. The designers give a keyed sponge construction by prepending the message with 
key and prove a bound on its pseudorandomness in the ideal permutation model . In this 
paper we give a different keyed sponge construction that is based on the Even-Mansour 
permutation and prove its pseudorandomness in the standard model. 
Key Words : Sponge Construction, Pseudorandomness, Indifferentiability. 

1 Introduction 

A hash function is a crucial component for cryptographic primitives such as message authen­
tication codes, pseudorandom functions, pseudorandom-bit generators, and digital signatures. 
Different uses require different security properties from the hash function, such as preimage 
resistance, second-preimage resistance, collision resistance, pseudorandomness of output distri­
bution, and so on. 

A popular methodology for designing hash functions is to construct a domain extension 
for an underlying fixed input length component, with the goal of reducing the desired security 
properties of the larger construction to properties of the component, so that the designers can 
focus on achieving the necessary properties in the component. For example, the designers of 
Skein, one of the SHA-3 finalists, give pseudorandom and indifferentiable security proofs for 
the Skein domain extension when its underlying tweakable block cipher is pseudorandom or 
ideal, respectively [2]. Another example is that Merkle-Damg̊ard (MD) construction [23, 16] 
with message length padding (also called Merkle-Damg̊ard Strengthening); this domain exten­
sion, used in MD5 and SHA-1, preserves the collision resistance and the preimage resistance of 
the underlying compression function. 

There are several ways to construct pseudorandom functions from MD hash functions, i.e., 
hash functions based on the MD construction with message length padding : HMAC [10], the 
Sandwich method [24] and the H2 construction method [25]. In each case the underlying keyed 
compression function of the hash function is assumed to be pseudorandom. 

The sponge construction [3] is a hash domain extension, designed by Bertoni, Daemen, 
Peeters, and Assche, that has influenced hash functions such as Keccak [4], PHOTON [18], 
Quark [1] and spongent[12]. Recently, the Keccak team provided pseudorandom security 
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proofs of a keyed sponge construction and an authenticated-encryption scheme based on thesSponge 
construction, in which the key is located in the prefix of the message [5, 6]. It is preferable that 
the security assumptions be as practical as possible. 

In this paper, we propose a new, efficient PRF construction that is based on the sponge 
construction, called the E-M keyed Sponge construction (EMKSC), and we give a proof of 
pseudorandomness in the standard model. In particular, we assume that for a given permutation 
f underlying the sponge construction, the permutation FK (·) = f(·⊕ K)⊕ K is pseudorandom. 
The latter permutation is a specialization of the Even-Mansour permutation construction [17], 
EMK1,K2 (M) = f(M ⊕ K1) ⊕ K2, where |M | = |K1| = |K2| = n. 
. In Section 3 we describe three variants of EMKSC, with different effective key sizes, called 
EMKSC1, EMKSC2, and EMKSC3. Table 1 shows that, when the underlying hash function is 
based on the sponge construction, this PRF compares favorably with other constructions that 
have proofs in the standard model. 

Algorithm # of Hash Calls # of Underlying 
function Calls 

Final Output 
Key Masking 

HMAC [10] 2 at least H+3 No 
Sandwich [24] 1 at least H+2 No 

H2 with one key [25] 2 at least H+2 No 
EMKSC1 1 H+1 Yes 
EMKSC2 1 H Yes 
EMKSC3 1 H No 

Table 1. Comparison of standard model PRF constructions based on a sponge hash function: H is the 
number of the underlying function calls in EMKSC2 and EMKSC3. 

2 Preliminaries 

Let F unc(Dom, Range) be the set of all functions from Dom → Range. Let f : K × Dom → 
Range. We say that f is E-prf if for any efficient adversary A, the following holds: 

prf Adv (A) = |Pr[K ←r K : Af(K,·) = 1] − Pr[u ←r F unc(Dom, Range) : Au(·) = 1]| ≤ E.f 

Let P erm(Dom, Range) be the set of all permutations from Dom → Range, where |Dom| = 
|Range|. We say that f is E-prp if for any efficient adversary A, the following holds: 

Advprp (A) = |Pr[K ←r K : Af (K,·) = 1] − Pr[u ←r P erm(Dom, Range) : Au(·) = 1]| ≤ E.f 

The maximum prf or prp advantages for all the adversaries with at most q-queries are 
defined as follows: 

prf prf Adv (q) := MAXAAdv (A) and Advprp (q) := MAXAAdvprp (A).f f f f 

The Sponge Construction [3]. The sponge construction, denoted SP ONGEf here, is a 
domain-codomain extension for a hash function that is based on a permutation or function f , 
with a fixed input and output length, n. The construction has two other parameters that we omit 
from our notation: a positive integer r less than n, called the bitrate, and an injective padding 



function, denoted pad. For any input string M , called the message, the length of pad(M) is a 
multiple of r, and the last r bits of pad(M) are not all 0. The quantity n−r is called the capacity, 
dentoed c. The two inputs to the construction are the length of the desired output, denoted £, 
and the message. It will be convenient to slightly generalize the construction to allow an initial 
n-bit string, denoted IV , as a third input. The generalized construction, denoted Spongef , is 
defined in Fig. 1. SP ONGEf (M, £) is defined to be Spongef (0

r+c,M, £), as illustrated in Fig. 2. 

The Sponge Construction With Initial Value: Spongef (IV, M, H) 
Let pad(M) = (M1||....||Mt), for some positive t where each |Mi| = r. 
Requirement : Mt  = 0r and pad is injective. 
100 sa = firstr (IV ) and sb = lastc(IV ) 
200 for i = 1 to t, 
201 (sa||sb) = f((sa ⊕ Mi)||sb). 
300 for i = 1 to I e

r l, 
301 Zi = sa. 
302 c = f(sa||sb). 
400 return first(sa||sb) bits.
 

Fig. 1. The Sponge Construction With Initial Value.
 

Fig. 2. The Sponge Construction: SP ONGEf (M, H) = firste(Z1||Z2||Z3...). 

The Keyed Sponge Construction [5]. The keyed sponge construction (called keySP ONGE) 
is defined as follows; for a message M , a secret key K of any size, and the desired bit-size £ 
of output, keySP ONGEf (K,M, £) = SP ONGEf (K||M, £). The keyed sponge construction is 
proven to be pseudorandom, under the assumption that f is an ideal permutation [5]. 

The EMKSC. The E-M keyed Sponge construction (called EMKSC) based on the Sponge con­
struction is defined as follows. (See Fig. 3). For a message M , a (r + c) − bit secret key K1||K2, 
and the desired bit-size £ of output, EMKSCf (K1||K2,M, £) = Spongef (K1||K2, M, £) ⊕ 
first£(K1||K1||...). 

Indifferentiability [22]. Maurer et al. [22] defined the indifferentiable security of a tar­
get system TS, when the adversary can have access to a tuple of additional oracles AO = 
(AO1, ..., AOi). If there exists a tuple of efficient simulators S = (S1, ..., Si) such that E is neg­
ligible for any adversary D, we say that TS is (E, AO, S)-indifferentiable from the compared 
oracle CO if 



Fig. 3. EMKSCf (K1||K2, M, H) = Spongef (K1||K2, pad(M), H) ⊕ firste(K1||....||K1). 

Advindiff 
T S,AO,S (D) = |Pr[DT S,AO = 1] − Pr[DCO,S = 1] ≤ E, 

where TS and AO may have access to each other by the definitions of TS and AO, and S may 
have access to CO by the definition of a protocol based on CO. 

3 Security of EMKSC 

Depending on how the key is generated, we consider the following three variants of the EMKSC 
in the standard model: 

1. EMKSC1: K1 is a r-bit random string and K2 = 0c. This case is applied to Keccak without 
any modification if K1 is considered as the first block of message of Keccak and K1 is again 
xored to the output of Keccak as long as its size of hash output is less than or equal to r. 

2. EMKSC2: K1 and K2 are r-bit and c-bit random strings, respectively. 
3. EMKSC3: K1 = 0r and K2 is a c-bit random string. Note that there is no key masking of 

the final output because K1 = 0c). 

3.1 Pseudorandomness of the EMKSC 

EMKSC in Fig. 3 can be described in a different way as shown in Fig. 4. So, we will give a 
PRF security proof of the EMKSC, using the alternative description in Fig. 4, when FK is 
pseudorandom. 
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Fig. 4. Alternative Description of the EMKSC, where K = K1||K2. 



Theorem 1. For any key K, let FK (·) = f(·⊕K)⊕K be a permutation from (c+r)-bit strings 
to (c + r)-bit strings. Let pad be a padding function such that the function is injective and the 
final r-bit block of its output is not 0r . Let EMKSCf be the EMKSC based on f , where the 
output size is fixed as £. Let M1,M2 , · · · ,Mq be q distinct inputs of the sponge construction. Let tq
σ1 = tj and σ2 = q ·l £ l, where for each i pad(M i) = (M1

i,M2
i, ..., M i ). Then, for any prf j=1 r ti 

prf (A) ≤ (σ1+σ2+1)2 (σ1+σ2+1)2 

+Advprp attacker A with at most q-queries, Adv 2c+1 + 2r+c+1 (σ1 +σ2).EMKSCf F 

$ $
Proof. For K = K1||K2, we consider three cases; 1) K1 ← {0, 1}r and K2 = 0c, 2) K1||K2 ← 

${0, 1}r+c, and 3) K1 = 0r and K2 ← {0, 1}c . It is clear that the game G0 exactly simulates 
EMKSCf (K, ·, £)(= SpongeFK (0

r+c, pad(·), £)) for the three cases. Also, the game G1 ex­
actly simulates Spongeu(0r+c, pad(·), £), where u is a random permutation from {0, 1}r+c → 
{0, 1}r+c . Since other functionalities are same except u and FK , it is clear that |Pr[AG0 = 
1] − Pr[AG1 = 1]| ≤ Advprp (σ1 + σ2), where σ1 + σ2 is the maximum number of calls of u orF 
FK . 

(σ1+σ2+1)2 

Claim 1. |Pr[AG1 = 1] − Pr[AG2 = 1]| ≤ Pr[AG1 sets BAD] ≤ (σ1+σ2+1)2 

+ .2c+1 2r+c+1 

Proof of Claim 1. There are three types of bad events, BAD1, BAD2 and BAD3. The maximum 
number of the subroutine g calls in Fig. 6 is σ1 + σ2. So, it is clear that Pr[AG1 sets BAD1] ≤ 
(σ1+σ2 +1)2 

and Pr[AG1 sets BAD2] ≤ (σ1+σ2+1)2 

. In case of the event BAD3, as long as BAD1 

doesn’t occur, there is no way that BAD2 occurs, because “g(x) is already defined and ε  ∈ P re” 
means that there should be internal collision on the last c-bit, which is not allowed in line 303. 
Therefore, the Claim 1 holds. D 

2r+c+1 2c+1 

Claim 2. The game G2 exactly simulates a random function from {0, 1}∗ → {0, 1}£ . 
Proof of Claim 2. We have to prove that for each query M i its output distribution should be 
random. In Fig. 6, the output value z in line 215 is defined from the first r-bit output values of 
the function g. So, it is sufficient to show that for all different queries all the first r-bit output 
values of the function g, which determine the final output value z in line 215, are independently 
random. In the game G2, for a new query x of the function g, in line 301, the first r-bit output y1 

is randomly chosen, and in line 303, the last c-bit output y2 is chosen differently from all the last 
c-bits of previous outputs. Moreover, since the last c-bit of the output of the function g becomes 
again the last c-bit of the input of the function g, for any M i  , Spongeg(0r+c, pad(M i), £)= M j 

is independent from Spongeg (0
r+c, pad(M j ), £). Therefore, the Claim 2 holds. D 

prf (σ1+σ2+1)2 

+Advprp Therefore, Adv (A) ≤ |Pr[AG0 = 1]−Pr[AG2 = 1]| ≤ (σ1+σ2+1)2 

+ (σ1 +2c+1 2r+c+1 

σ2). 
P RFf F 

3.2 Security Analysis of FK 

Here, we show that it can be “reasonably assumed” that FK (·) = f(·⊕K)⊕K is pseudorandom, 
where K = K1||K2, and f is the underlying permutation of the sponge construction. We provide 
the two security analyses of FK : one suggests that there is no structural weakness FK , using 
the notion of indifferentiability, and the other gives a security bound of FK against known 
attack techniques. The results of this subsection suggest that the design of FK is sound to use 
in practice. 



Game G0 
Initialize : f is a fixed permutation, and K = K1||K2. 

For the first case, K1 
$← {0, 1}r and K2 = 0c . 

For the second case, K1||K2 
$← {0, 1}r+c . 

For the third case, K1 = 0r and K2 
$← {0, 1}c . 

100 On i-th query M i , 
101 z i = SpongeFK (0

r+c, pad(M i), H), 
102 return z i . 
200 Routine SpongeFK -query (0r+c, x, H), 
201 Let x = (m1||....||mt), where each |mi| = r. 
202 (sa, sb) = (0r , 0c). 
203 ε is initialized as the empty string. 
204 for i = 1 to t, 
205 ε = ε||mi. 
206 (sa||sb) = FK (sa ⊕ mi||sb). 
207 z is initialized as the empty string. 
208 for i = 1 to I e 

r l, 
209 Zi = sa and z = (z||Zi). 
210 ε = ε||0r . 
211 (sa||sb) = FK (sa||sb). 
212 z:= the first H-bit of z. 
213 return z. 
300 Subroutine FK -query x where |x| = r + c, 
301 define y := f(x ⊕ K) ⊕ K. 
302 return y. 

Fig. 5. G0 perfectly simulates EMKSCf (K, ·, H)(= SpongeFK (0
r+c, pad(·), H)). 

Structural Soundness of FK . In Fig. 2, Fig. 3, and Fig. 4, we want to show the security 
bound of FK for general distinguishing attacks which do not use the internal structure of f . For 
this, we assume that f is an easy-to-invert ideal permutation, where any attacker can access 
f . Then, we show that FK is indifferentiable from the invertible random permutation oracle F 
on {0, 1}r+c . 

Theorem 2 (K1 is random and K2 = 0). FK (x1||x2) := y1||y2 = f((x1 ⊕K1)||x2)⊕(K1||0c), 
where |x1| = |y1| = |K1| = r, |x2| = |y2| = c, and f is an easy-to-invert permutation on 
{0, 1}r+c. Then, we can construct a simulator S = (Sf , Sf −1 ) such that for any indifferentia­
bility adversary A making at most (q1, q2, q3) queries to its three oracles the following holds; 

2 

Advindiff 3·q(A) ≤ , where q = q1 + q2 + q3.FK ,(f,f −1),S 2r −q 

Proof. Fig. 7 shows how FK , (f, f−1) and the simulator S work. It is easy to check that Games 
G2 and G3 in Fig. 8 perfectly simulate (FK , f, f−1) and (F , Sf , Sf−1 ) respectively. So, we have 
only to compute the bound of probability that bad events, BAD1, BAD2, and BAD3 occur. 
Since K is randomly chosen from {0, 1}r and the remaining c bits of input can be controlled 

qby the attacker A, it is clear that for each i, Pr[AG2 sets BADi] ≤ 
2 

. Therefore, the above 2r −q 
theorem holds. 



Theorem 3 (K1 and K2 are both random). Let FK1,K2 (x1||x2) := y1||y2 = f((x1 ⊕ 
K1)||(x2 ⊕ K2)) ⊕ (K1||K2), where |x1| = |y1| = |K1| = r, |x2| = |y2| = |K2| = c, and f is 
an easy-to-invert permutation on {0, 1}r+c. Then, we can construct a simulator S = (Sf , Sf−1 ) 
such that for any indifferentiability adversary A making at most (q1, q2, q3) queries to its three 
oracles the following holds; 

2 

Advindiff	 3·q(A) ≤ , where q = q1 + q2 + q3.FK1 ,K2 ,(f,f −1),S 2r+c−q 

Proof. This can be proven in the same way as Theorem 2. 

Theorem 4 (K1 = 0 and K2 is random). FK (x1||x2) := y1||y2 = f(x1||(x2 ⊕K2))⊕(0r||K2), 
where |x1| = |y1| = r, |x2| = |y2| = |K2| = c, and f is an easy-to-invert permutation on 
{0, 1}r+c. Then, we can construct a simulator S = (Sf , Sf −1 ) such that for any indifferentia­
bility adversary A making at most (q1, q2, q3) queries to its three oracles the following holds; 

2 

Advindiff 3·q(A) ≤ , where q = q1 + q2 + q3.FK ,(f,f −1),S 2c −q 

Proof. This can be proven in the same way as Theorem 2. 

Security of FK against Key-recovery Attack Even and Mansour first proposed a block-
cipher construction from a publicly known permutation f , called the Even-Mansour construc­
tion [17], which is EMK1,K2 (M) = f(M ⊕ K1) ⊕ K2, where |M | = |K1| = |K2| = n. Informally, 
they proved that the Even-Mansour construction is secure when f is an ideal permutation, 
where an attacker can freely access f , and the number of queries to f and FK is bounded by 
O(2n/2) [17]. There are several known key-recovery attacks on the Even-Mansour construction 
where the input and output masks are chosen independently at random. Daemen [15] described 
known and chosen plaintext-based key recovery attacks on the Even-Mansour construction with 
complexity abot 2n−1 and 2n/2, respectively. But our specialization of the construction differs 
in two ways: 1) the input and output masking keys are the same and 2) the masking key for 
EMKSC1 and EMKSC3 affects only part of the input and output of the underlying public 
permutation f . Here, we modify Daemen’s attack a little bit to give the security of FK against 
the chosen plaintext attack. 

[K1 is random and K2 = 0] FK (x1||x2) := y1||y2 = f((x1 ⊕ K1)||x2) ⊕ (K1||0c), where 
|x1| = |y1| = |K1| = r, |x2| = |y2| = c, and f is an easy-to-invertible permutation on {0, 1}r+c . 
The complexity of our key recovery attack is 2r/2 queries and 2r/2 memory as follows. 

The Attacker A works as follows: 

1. An attacker A makes 2r/2 queries (M i ,M i) (where 1 ≤ i ≤ 2r/2) to FK and obtains 2r/2 
a b 

(Ci , Ci), where for all i, |M i | = |M i| = r + c, M i ⊕ M i = v||0c for some r-bit constant v,a b	 a b a b 
and the substring of the last c bits of both M i and M i is a constant, w.a b 

2.	 A repeats the following step at most 2r/2 times: For an r-bit random value X, A computes 
ΔW = f(X||w) ⊕ f((X ⊕ v)||w) and checks if there exists an i such that ΔCi = ΔW , 
where ΔCi = Ci ⊕ Ci. If X is the same as the first r-bit M i ⊕ (K||0c) or M i ⊕ (K||0c)a b	 a b 
for some i, then ΔW should be the same as ΔCi. But, for each trial for X, the probability 
that ΔW = ΔCi for some i is about 2r/2. So, we can expect at least one X among 2r/2 

trials which satisfies the condition, that is, we can find the key K with 2r/2 queries and 
2r/2 memory. 



Remark. The above attack shows that the indifferentiable security bound of FK shown in The­
orem 2 is tight as O(2r/2). The result of this section can be applied to Keccak [4], because we 
don’t need to change any initial value and internal structure except for the input and output 
values of Keccak. 

[K1 and K2 are both random] FK1,K2 (x1||x2) := y1||y2 = f((x1 ⊕K1)||(x2 ⊕K2))⊕(K1||K2), 
where |x1| = |y1| = |K1| = r, |x2| = |y2| = |K2| = c, and f is an easy-to-invertible permutation 
on {0, 1}r+c. The complexity of our key recovery attack is 2(r+c)/2 queries and 2(r+c)/2 memory, 
which can be shown in a similar way. 

Remark. The above attack shows that the indifferentiable security bound of FK1,K2 shown in 
Theorem 3 is O(2(r+c)/2), which is much bigger than the security bound O(2r/2) of our first 
construction. 

[K1 = 0 and K2 is random] In the same way of above attacks, we can define an key recovery 
attacker A on FK of the third construction with 2c/2 queries and 2c/2 memory. 

4 Conclusion 

In this paper, we have shown how to prove the pseudorandomness of a new keyed sponge 
construction in the standard model. Our proof technique may be applied to prove the pseudo­
random security of keyed constructions based on domain extensions of the hash functions: Luffa 
[13], CubeHash [8], Fugue [19], and an authenticated-encryption scheme based on the sponge 
construction [6]. 

References 

1.	 J. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, Quark: A Lightweight Hash, CHES’10, 
LNCS 6225, Springer-Verlag, pp. 1-15, 2010. 

2.	 M. Bellare, T. Kohno, S. Lucks, N. Ferguson, B. Schneier, D. Whiting, J. Callas, J. Walker, Provable 
Security Support for the Skein Hash Family, http://www.skein-hash.info/sites/default/files/skein­
proofs.pdf. 

3.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the Indifferentiability of the Sponge 
Construction, Advances in Cryptology – EUROCRYPT’08, LNCS 4965, Springer-Verlag, pp. 181­
197, 2008. 

4.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, The Keccak sponge function family, Submis­
sion to NIST, 2008. (http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions rnd2.html) 

5.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the se­
curity of the keyed sponge construction, Submission to the NIST sec­
ond SHA-3 workshop, 2010. (http://csrc.nist.gov/groups/ST/hash/sha-
3/Round2/Aug2010/documents/papers/VANASSCHE SpongeKeyed.pdf) 

6.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Duplexing the sponge: 
single-pass authenticated encryption and other applications, Submission to the 
NIST second SHA-3 workshop, 2010. (http://csrc.nist.gov/groups/ST/hash/sha-
3/Round2/Aug2010/documents/papers/DAEMEN DuplexSponge.pdf) 

7.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Duplexing the sponge: 
single-pass authenticated encryption and other applications, SAC’11, to apear, 2011. 
(http://sac2011.ryerson.ca/SAC2011/BDPVA.pdf) 

http://sac2011.ryerson.ca/SAC2011/BDPVA.pdf
http://csrc.nist.gov/groups/ST/hash/sha
http://csrc.nist.gov/groups/ST/hash/sha
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions
http://www.skein-hash.info/sites/default/files/skein


8.	 D. Bernstein, CubeHash: a simple hash function, Submission to NIST, 2008. 
(http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions rnd2.html) 

9.	 M. Bellare and P. Rogaway, The Security of Triple Encryption and a Framework for Code-Based 
Game-Playing Proofs, Advances in Cryptology – EUROCRYPT’06, LNCS 4004, Springer-Verlag, 
pp. 409-426, 2006. 

10.	 M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication, Ad­
vances in Cryptology – EUROCRYPT’96, LNCS 1109, Springer-Verlag, pp. 1-15, 1996. 

11.	 M. Bellare and T. Ristenpart, Multi-Property-Preserving Hash Domain Extension and the EMD 
Transform, Advances in Cryptology – ASIACRYPT’06, LNCS 4284, pp. 299–314, 2006. 
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Game G1 and G2 
Initialize : g : {0, 1}r+c → {0, 1}r+c is everywhere-undefined, V = {0c}, and W = P re = ∅. 
100 On i-th query M i , 
101 z i = Spongeg (0

r+c, pad(M i), H), 
102 return z i . 
200 Routine Spongeg -query (0r+c, x, H), 
201 Let x = (m1||....||mt), where each |mi| = r. 
202 (sa, sb) = (0r , 0c), where 0j is the j-bit zeros. 
203 ε is initialized as the empty string. 
204 for i = 1 to t, 
205 ε = ε||mi. 
206 (sa||sb) = g(sa ⊕ mi||sb). 
207 P re = P re ∪ {ε}. 
208 z is initialized as the empty string. 
209 for i = 1 to I e 

r l, 
210 Zi = sa and z = (z||Zi). 
211 ε = ε||0r . 
212 (sa||sb) = g(sa||sb). 
213 P re = P re ∪ {ε}. 
214 z:= the first H-bit of z. 
215 return z. 
300 Subroutine g-query x where |x| = r + c, 

301 y := y1||y2 
$← {0, 1}r+c . 

302 if y ∈ W , then BAD1 ← true and y := y1||y2 
$← {0, 1}r+c \ W . 

303 if y2 ∈ V then BAD2 ← true and y2 
$← {0, 1}c \ V . 

304 if g(x) is already defined and ε ∈ P re, then y = g(x). 
305 V = V ∪ {y2}. 
306 if g(x) is already defined and ε  ∈ P re, then BAD3 ← true and y = g(x) . 

307 define g(x) := y and W = W ∪ {y}. 
308 return y. 

Fig. 6. G1 executes with the non-dotted boxed statement and without the dotted boxed statement, 
whereas G2 executes with the dotted boxed statement and without the non-dotted boxed statement. 
Clearly G1 and G2 are identical-until-BAD. G1 perfectly simulates Spongeu(0r+c, pad(·), H), where u 
is a random permutation from {0, 1}r+c → {0, 1}r+c . G2 perfectly simulates a random function from 
{0, 1} ∗ → {0, 1}e . 



(FK , f, f−1) (F , Sf , Sf−1 ) 

Initialize : K1 
$← {0, 1}r . 

100 On i-th FK query x i = x i 
1||x i 

2, 

101 y i := y i 
1||y i 

2 = f((x i 
1 ⊕ K1)||x i 

2) ⊕ (K1||0c). 
102 return y i . 
200 On i-th f query a i = a i 

1||a i 
2, 

201 bi := bi 
1||bi 

2 = f(a i). 
202 return bi . 
300 On i-th f−1 query bi = bi 

1||bi 
2, 

301 a i := a i 
1||a i 

2 = f−1(bi). 
302 return a i . 

Initialize : W = X = Z = ∅. 
100 On i-th F query x i = x i 

1||x i 
2, 

101 y i := y i 
1||y i 

2 
$← {0, 1}r+c \ W . 

102 W = W ∪ {y i} and return y i . 
200 On i-th Sf query a i = a i 

1||a i 
2, 

201 bi := bi 
1||bi 

2 
$← {0, 1}r+c \ X. 

202 Z = Z ∪ {a i}, X = X ∪ {bi}, and return bi . 
300 On i-th Sf −1 query bi = bi 

1||bi 
2, 

301 a i := a i 
1||a i 

2 
$← {0, 1}r+c \ Z. 

302 Z i}, X = X ∪ {bi}, and return a i .= Z ∪ {a 

Fig. 7. (FK , f, f−1) and (F , Sf , Sf−1 ). FK (x1||x2) := y1||y2 = f((x1 ⊕ K1)||x2) ⊕ (K1||0c), where 
K = K1||K2, K2 = 0, |x1| = |y1| = |K1| = r, |x2| = |y2| = c, and f is an easy-to-invertible permutation 
on {0, 1}r+c . 

Game G2 and G3 

Initialize : K1 
$← {0, 1}r and U = V = W = X = Z = ∅. 

100 On i-th O1 query x i = x i 
1||x i 

2 where |x i 
1| = r and |x i 

2| = c, 

101 y i := y i 
1||y i 

2 
$← {0, 1}r+c \ W . 

102 if (x i 
1 ⊕ K1)||x i 

2 ∈ {x|(x, ∗) ∈ U}, then BAD1 ← true and y i = (K||0c) ⊕ f((x i 
1 ⊕ K1)||x i 

2) . 

103 define f '((x i 
1 ⊕ K1)||x i 

2) := y i , W = W ∪ {y i} and V = V ∪ {((x i 
1 ⊕ K1)||x i 

2, y i ⊕ (K1||0c))}. 
104 return y i . 
200 On i-th O2 query a i = a i 

1||a i 
2 where |a i 

1| = r and |a i 
2| = c, 

201 bi := bi 
1||bi 

2 
$← {0, 1}r+c \ X. 

202 if a i ∈ {a|(a, ∗) ∈ V }, then BAD2 ← true and bi = f '(a i) . 

203 define f(a i) := bi , Z = Z ∪ {a i}, X = X ∪ {bi} and U = U ∪ {(a i, bi)}. 
204 return bi . 
300 On i-th O3 query bi = bi 

1||bi 
2 where |bi 

1| = r and |bi 
2| = c, 

301 a i := a i 
1||a i 

2 
$← {0, 1}r+c \ Z. 

302 if bi ∈ {b|(∗, b) ∈ V }, then BAD3 ← true and a i = f '−1(bi) . 

303 define f(a i) := bi , Z = Z ∪ {a i}, X = X ∪ {bi} and U = U ∪ {(a i, bi)}. 
304 return a i . 

Fig. 8. G2 executes with boxed statements whereas G3 executes without these. Clearly G2 and G3 
are identical-until-BAD. G2 and G3 perfectly simulate (FK , f, f−1) and (F , Sf , Sf−1 ) respectively. In 
this games, we assume that there is no repetition query. Note that the simulator S = (Sf , Sf−1 ) works 
without access to F . 


