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Abstract. In 2007, the US National Institute for Standards and Technology announced a call for the
design of a new cryptographic hash algorithm in response to the vulnerabilities identified in widely
employed hash functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got
accepted to the first round. At present, 5 candidates are left in the third round of the competition. An
important criterion in the selection process is the SHA-3 hash function security and more concretely,
the possible reductions of the hash function security to the security of its underlying building blocks.
At NIST’s second SHA-3 Candidate Conference 2010, Andreeva et al. provided a provable security
classification of the second round SHA-3 candidates in the ideal model. In this work, we revisit this
classification for the five SHA-3 finalists. We evaluate recent provable security results on the candidates,
and resolve remaining open problems for Grøstl, JH, and Skein.

Keywords. SHA-3, security classification, (second) preimage resistance, collision resistance, indiffer-
entiability.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In 2004 a series of attacks by
Wang et al. [47, 48] showed security vulnerabilities in the design of the widely adopted hash function SHA-1.
In response, the US National Institute for Standards and Technology (NIST) recommended the replacement
of SHA-1 by the SHA-2 hash function family and announced a call for the design of a new SHA-3 hash
algorithm [38]. The call prescribes that SHA-3 must allow for message digests of length 224, 256, 384 and
512 bits, it should be efficient, and most importantly it should provide an adequate level of security. Five
candidates have reached the third and final round of the competition: BLAKE [7], Grøstl [28], JH [49], Keccak
[10], and Skein [25]. These candidates are under active evaluation by the cryptographic community. As a result
of comparative analysis, several classifications of the SHA-3 candidates, mostly concentrated on hardware
performance, appeared in the literature [24, 26, 46, 31]. At NIST’s second SHA-3 Candidate Conference
2010, Andreeva et al. [4, 5] provided a classification based on the specified by NIST security criteria. Below
we recall the security requirements by NIST in their call for the SHA-3 hash function.

NIST Security Requirements. The future SHA-3 hash function is required to satisfy the following se-
curity requirements [38]: (i) at least one variant of the hash function must securely support HMAC and
randomized hashing. Next, for all n-bit digest values, the hash function must provide (ii) preimage resis-
tance of approximately n bits, (iii) second preimage resistance of approximately n − L bits, where the
first preimage is of length at most 2L blocks, (iv) collision resistance of approximately n/2 bits, and (v) it
must be resistant to the length-extension attack. Finally, (vi) for any m ≤ n, the hash function specified
by taking a fixed subset of m bits of the function’s output is required to satisfy properties (ii)-(v) with n
replaced by m.

Our Contributions. We revisit the provable security classification of Andreeva et al. [4, 5], focussing on the
five remaining SHA-3 finalists. More concretely, we reconsider the preimage, second preimage and collision
resistance (security requirements (ii)-(iv)) for the n = 256 and n = 512 variants of the five candidates.
We also include their indifferentiability security results. The security analysis in this work is realized in the
ideal model, where one or more of the underlying integral building blocks (e.g., the underlying block cipher
or permutation(s)) are assumed to be ideal, i.e. random primitives.



In our updated security classification of the SHA-3 finalists, we include the recent full security analysis
of BLAKE by Andreeva et al. and Chang et al. [2, 20], and the collision security result of JH by Lee and
Hong [33]. Despite these recent advances, there still remain open questions in the earlier security analysis
and classification of [4, 5]. The main contribution of this work is to address these questions. More concretely,
we do so by either providing new security results or improving some of the existing security bounds. We list
our findings for the relevant hash functions below and refer to Table 1 for the summary of all results.

– Grøstl. We analyze Grøstl with respect to its second preimage security due to the lack of an optimal
security result as indicated in [4, 5]. While optimal collision and preimage security are achieved following
a property-preservation argument, this is not true for the second preimage security. Another way (than
property-preservation) to derive security bounds for hash function properties is via an indifferentiability
result (Thm. 2 in [4, 5]). Following this approach, an approximately 128-bit and 256-bit second preimage
resistance bound is obtained, where the output size of the Grøstl hash function is 256 or 512 bits,
respectively. This result is unfortunately not optimal. In this work we take a different approach to improve
these bounds, and we provide a direct second preimage security proof for the Grøstl hash function. Our
proof is realized in the ideal permutation model and indicates that Grøstl, in addition to collision and
preimage security, is also optimally ((256−L)-bit and (512−L)-bit, respectively) second preimage secure,
where 2L is the length of the first preimage in blocks;

– JH. The existing bounds on JH for second and preimage security are derived via the indifferentiability
result and are not optimal; approximately 170-bit security for both the 256 and 512 variants. To improve
these results, we follow the direct approach and derive bounds for both security properties in the ideal
permutation model. As a result we achieve optimal 256-bit security for the 256 variant of the hash
function. The new bound for the 512 variant is still not optimal (as is the existing bound), but improved
to 256-bit security;

– Skein. By the implications of the existing indifferentiability results of Skein we can directly conclude an
optimal 256-bit second preimage security for the 256 version of the hash function. This is however not
true for the 512 version, which offers only 256-bit security following the indifferentiability argument. We,
thus, analyze the generic second preimage security of Skein in the ideal block cipher model and obtain
optimal bounds for both its versions, confirming the second preimage result for the 256 version and
optimally improving the bound for the 512 version.

Table 1. Security results of the SHA-3 finalists. Here, l and m denote the chaining value and the message input
sizes, respectively. The last four columns of both tables correspond to the preimage, second preimage, collision, and
indifferentiability security in bits. Regarding second preimage resistance, we assume that the first preimage is of
length 2L blocks. The results in bold are presented in this work. For a more detailed summary we refer to Table 2.

1234 1234 112345 112345 112345 112345l m pre sec coll indiff

BLAKE-256 256 512 256 256 128 128

Grøstl-256 512 512 256 256–L 128 128

JH-256 1024 512 256 256 128 170

Keccak-256 1600 1088 256 256 128 256

Skein-256 512 512 256 256 128 256

NIST’s requirements [38] 256 256–L 128 —

1234 1234 112345 112345 112345 112345l m pre sec coll indiff

BLAKE-512 512 1024 512 512 256 256

Grøstl-512 1024 1024 512 512–L 256 256

JH-512 1024 512 256 256 256 170

Keccak-512 1600 576 512 512 256 512

Skein-512 512 512 512 512 256 256

NIST’s requirements [38] 512 512–L 256 —

The results of Table 1 show that all candidates, with the exception of the (second) preimage security
of JH-512, achieve optimal collision, second and preimage security for both their 256 and 512 variants. The
optimal results refer to the general iterative structure of all the algorithms. The analysis in all cases is
performed in the ideal setting. But more importantly, we claim that the provided comparison is sufficiently
fair due to the fact that the ideality assumption is hypothesized on basic underlying primitives, such as block
ciphers and permutations, as opposed to higher level compression function building blocks.



On the other hand, while optimality results hold for the five the hash function finalists, the security of
their compression functions again in the ideal model differs. The security here varies from trivially insecure
compression functions for JH and Keccak to optimally secure ones for BLAKE, Grøstl and Skein. We want
to note that the latter remark does not reflect any security criteria indicated in the security requirements
of NIST. In addition to the classical notions of collision, second and preimage security, we also investigate
the notion of indifferentiability [36]. Indifferentiability encompasses structural attacks, such as the length
extension attack in single round interactive protocols [40], and is therefore an important security criteria
satisfied by all five candidates. We include the indifferentiability notion not only because it is relevant by
itself, but it is also an important tool to derive further security results. The JH candidate offers 170-bit
indifferentiability security for both its variants, and Skein offers 256-bit security for both its variants. BLAKE
and Grøstl offer 128-bit and 256-bit security for their respective 256 and 512 variants. Keccak provides higher
indifferentiability guarantees: 256-bit and 512-bit, respectively, and that is achieved by increasing the iterated
state size to 1600 bits as compared to sizes from 256 bits to 1024 bits for the other hash function candidates.

Outline. Section 2 briefly covers the notation, and the basic principles of hash function design. In Sects. 3-7,
we consider the five SHA-3 finalists from a provable security point of view. We give a high level algorithmic
description of each hash function, and discuss the existing and new security results. The revisited security
classification, including the newly found results on Grøstl, JH, and Skein, is given in Table 2. We conclude
the paper with Sect. 8 and give some final remarks on the security comparison.

2 Preliminaries

For n ∈ N, we denote by Zn2 the set of bit strings of length n, and by (Zn2 )∗ the set of strings of length a
positive multiple of n bits. We denote by Z∗2 the set of bit strings of arbitrary length. For two bit strings x, y,
x‖y denotes their concatenation and x⊕y their bitwise XOR. For m,n ∈ N we denote by 〈m〉n the encoding
of m as an n-bit string. The function chopn(x) takes the n leftmost bits of a bit string x. We denote by
Func(m,n) the set of all functions f : Zm2 → Zn2 . A random oracle [9] is a function which provides a random
output for each new query. A random m-to-n-bit function is a function sampled uniformly at random from
Func(m,n). A random primitive will also be called “ideal”. The set of functions Func may be restricted, for
instance to contain block ciphers or permutations only.

Throughout, we use a unified notation for all candidates. The value n denotes the output size of the hash
function, l the size of the chaining value, and m the number of message bits compressed in one iteration
of the compression function. A padded message is always parsed as a sequence of k ≥ 1 message blocks of
length m bits: (M1, . . . ,Mk).

2.1 Preimage, Second Preimage and Collision Security

In our analysis we model the adversary A as a probabilistic algorithm with oracle access to a randomly

sampled primitive P $← Prims. The set Prims depends on the hash function to be analyzed. We consider
information-theoretic adversaries only. This type of adversary has unbounded computational power, and its
complexity is measured by the number of queries made to his oracle. The adversary can make queries to
P. These queries are stored in a query history Q as indexed elements. In the remainder, we assume that Q
always contains the queries required for the attack and that the adversary never makes queries to which it
knows the answer in advance.

Let F : Zp2 → Zn2 for p ≥ n be a compressing function instantiated with a randomly chosen primitive

P $← Prims. Throughout, F will either denote the compression function f or the hash functionH specification
of one of the SHA-3 finalists. For the preimage and second preimage security analysis in this work, we consider
the notions of everywhere preimage and second preimage resistance [41], which guarantees security on every
range (resp. domain) point.



Definition 1. Let p, n ∈ N with p ≥ n and let F : Zp2 → Zn2 be a compressing function using primitive
P ∈ Prims. The advantage of an everywhere preimage finding adversary A is defined as

Advepre
F (A) = max

y∈Zn2
Pr

(
P $← Prims, z ← AP(y) :

F (z) = y

)
.

We define by Advepre
F (q) the maximum advantage of any adversary making q queries to its oracles.

Definition 2. Let p, n ∈ N with p ≥ n and let F : Zp2 → Zn2 be a compressing function using primitive
P ∈ Prims. Let λ ≤ p. The advantage of an everywhere second preimage finding adversary A is defined as

Adv
esec[λ]
F (A) = max

z′∈Zλ2
Pr

(
P $← Prims, z ← AP(z′) :

z 6= z′ ∧ F (z) = F (z′)

)
.

We define by Adv
esec[λ]
F (q) the maximum advantage of any adversary making q queries to its oracles.

If F is a compression function, we require λ = p. Note that, while the length of the first preimage is of
2L blocks following NIST’s security requirements, here we bound the length by λ bits. This translates to
2L ≈ λ/m, where m is the size of the message block.

We define the collision security of F as follows.

Definition 3. Let p, n ∈ N with p ≥ n and let F : Zp2 → Zn2 be a compressing function using primitive
P ∈ Prims. Fix a constant h0 ∈ Zn2 . The advantage of a collision finding adversary A is defined as

Advcol
F (A) = Pr

(
P $← Prims, z, z′ ← AP :

z 6= z′ ∧ F (z) ∈ {F (z′), h0}

)
.

We define by Advcol
F (q) the maximum advantage of any adversary making q queries to its oracles.

If a compressing function F outputs a bit string of length n, one expects to find collisions with high probability
after approximately 2n/2 queries (due to the birthday attack). Similarly, (second) preimages can be found
with high probability after approximately 2n queries1. Moreover, finding second preimages is provably harder

than finding collisions [41]. Formally, we have Ω(q2/2n) = Advcol
F = O(1), Ω(q/2n) = Adv

esec[λ]
F ≤ Advcol

F ,
and Ω(q/2n) = Advepre

F = O(1). In the remainder, we will consider these bounds for granted, and only
include security results that improve either of these bounds. A bound is called tight if the lower and upper
bound are the same up to a constant factor, and optimal if the bound is tight with respect to the original
lower bound.

2.2 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [36] is an extension of the classical notion of
indistinguishability; it ensures that a hash function has no structural defects. We denote the indifferentiability
security of a hash function H by Advpro

H , maximized over all distinguishers making at most q queries of
maximal length K ≥ 0 message blocks to their oracles. We refer to Coron et al. [21] for a formal definition.
An indifferentiability bound guarantees security of the hash function against specific attacks. Although recent
results by Ristenpart et al. [40] show that indifferentiability does not capture all properties of a random oracle,
indifferentiability still remains the best way to rule out structural attacks for a large class of hash function
applications.

It has been demonstrated in [4, 5] that

Advatk
H ≤ Pratk

RO + Advpro
H (1)

for any security notion atk, where Pratk
RO denotes the success probability of a generic attack against H under

atk and RO is an ideal function with the same domain and range space as H.

1 Kelsey and Schneier [30] describe a second preimage attack on the Merkle-Damg̊ard hash function that requires
at most approximately 2n−L queries, where the first preimage is of length at most 2L blocks. This attack does,
however, not apply to all SHA-3 candidates. In particular, the wide-pipe SHA-3 candidates (l� n) remain mostly
unaffected due to their increased internal state (see the remark on Thm. 3).



2.3 Compression Function Design Strategies

A common way to build compression functions is to base it on a block cipher [17, 39, 44], or on a (limited
number of) permutation(s) [16, 42, 43]. Preneel et al. [39] analyzed and categorized 64 block cipher based
compression functions. Twelve of them are formally proven secure by Black et al. [17]. These results have
been generalized by Stam [44]. By ‘PGVx’ we denote the x-th type compression function of [39].

In the context of permutation based compression functions, Black et al. [16] analyzed 2l- to l-bit compres-
sion functions based on one l-bit permutation, and proved them insecure. This result has been generalized by
Rogaway and Steinberger [42], Stam [43] and Steinberger [45] to compression functions with arbitrary input
and output sizes, and an arbitrary number of underlying permutations. Their bounds indicate the number
of queries required to find collisions or preimages for permutation based compression functions.

2.4 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates employ a specific mode of
operation. Central to all designs is the iterated hash function principle [32]: on input of an initialization
vector IV and a message M , the iterated hash function Hf based on the compression function f , applies a
padding mechanism pad to M resulting in (M1, . . . ,Mk), and proceeds as follows:

Hf (IV;M1, . . . ,Mk) = hk, where: h0 = IV,

hi = f(hi−1,Mi) for i = 1, . . . , k.

This principle is also called the plain Merkle-Damg̊ard (MD) design [22, 37]. Each of the five remaining
candidates is based on this design, possibly followed by a final transformation (FT), and/or a chop-function2.

The padding function pad : Z∗2 → (Zm2 )
∗

is an injective mapping that transforms a message of arbitrary
length to a message of length a multiple of m bits (the number of message bits compressed in one com-
pression function iteration). Most of the candidates employ a sufficiently strong padding rule (cf. Fig. 2).
Additionally, in some designs the message blocks are compressed along with specific counters or tweaks, that
may strengthen the padding rule. We distinguish between ‘prefix-free’ and/or ‘suffix-free’ padding.

A padding rule is called suffix-free, if for any distinct M,M ′, there exists no bit string X such that
pad(M ′) = X‖pad(M). The plain MD design with any suffix-free padding (also called MD-strengthening [32])
preserves collision resistance [22, 37]. This result has been generalized in [4, 5]: informally, this preservation
result also holds if the iteration is finalized by a distinct compression function and/or the chop-function.
Similarly, everywhere preimage resistance is preserved. Other security properties, such as second preimage
resistance, are however not preserved in the MD design [6]. It is also proven that the MD design with a suffix-
free padding need not necessarily be indifferentiable [21]. However, the MD construction is indifferentiable if
it ends with a chopping function or a final transformation, both when the underlying compression function
is ideal or when the hash function is based on a PGV compression function [21, 29, 35].

A padding rule is called prefix-free, if for any distinct M,M ′, there exists no bit string X such that
pad(M ′) = pad(M)‖X. It has been proved that the MD design, based on ideal compression function or
ideal PGV construction, with prefix-free padding is indifferentiable from a random oracle [19, 21, 29, 35].
Everywhere preimage resistance is preserved by the MD design with prefix-free padding. Security notions
such as collision resistance are however not preserved in the MD design with prefix-free only padding.

HAIFA design. A concrete design based on the MD principle is the HAIFA construction by Biham and
Dunkelman [15]. In HAIFA the message is padded in a specific way so as to solve some deficiencies of the
original MD construction: in the iteration, each message block is accompanied with a fixed (optional) salt
of s bits and a (mandatory) counter Ci of t bits. The counter Ci keeps track of the number of message
bits hashed so far, and equals 0 by definition if the i-th block does not contain any message bits. Partially
due to the properties of this counter, the HAIFA padding rule is suffix- and prefix-free. As a consequence,
the construction preserves collision resistance and the indifferentiability results of Coron et al. [21] carry

2 The chop-function is not considered to be (a part of) a final transformation. It refers to the chopping off or
discarding a specified number of bits from the output.



over. For the HAIFA design, these indifferentiability results are improved by Bhattacharyya et al. in [13].
Furthermore, the HAIFA construction is proven optimally secure against second preimage attacks if the
underlying compression function is assumed to behave like an ideal primitive [18].
Wide-pipe design. In the wide-pipe design [34], the iterated state size is significantly larger than the final
hash output: at the end of the iteration, a fraction of the output of a construction is discarded. As proved in
[21], the MD construction with a distinct final transformation and/or chopping at the end is indifferentiable
from a random oracle.
Sponge functions. The sponge hash function design is a particular design by Bertoni et al. [12]. It has
been generalized by Andreeva et al. [1]. Two SHA-3 finalists are known to be sponge(-like) functions, JH
and Keccak. We note that both hash functions can also be described in terms of the chop-MD construction.

BLAKE:
(n, l,m, s, t) ∈ {(256, 256, 512, 128, 64),

(512, 512, 1024, 256, 128)}
E : Z2l

2 × Zm2 → Z2l
2 block cipher

L : Zl+s+t2 → Z2l
2 , L′ : Z2l

2 → Zl2 linear functions
f(h,M, S,C) = L′(EM (L(h, S, C)))⊕ h⊕ (S‖S)

BLAKE(M) = hk, where:
(M1, . . . ,Mk)← padb(M); h0 ← IV

S ∈ Zs2; (Ci)
k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

Grøstl:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
P,Q : Zl2 → Zl2 permutations
f(h,M) = P (h⊕M)⊕Q(M)⊕ h
g(h) = P (h)⊕ h

Grøstl(M) = h, where:
(M1, . . . ,Mk)← padg(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(g(hk))

JH:
(n, l,m) ∈ {(256, 1024, 512), (512, 1024, 512)}
P : Zl2 → Zl2 permutation

f(h,M) = P (h⊕ (0l−m‖M))⊕ (M‖0l−m)

JH(M) = h, where:
(M1, . . . ,Mk)← padj(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(hk)

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl2 → Zl2 permutation

f(h,M) = P (h⊕ (M‖0l−m))

Keccak(M) = h, where:
(M1, . . . ,Mk)← padk(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopn(hk)

Skein:
(n, l,m) ∈ {(256, 512, 512), (512, 512, 512)}
E : Zm2 × Z128

2 × Zl2 → Zm2 tweakable block cipher
f(h, T,M) = Eh,T (M)⊕M

Skein(M) = h, where:
(M1, . . . ,Mk)← pads(M); h0 ← IV

(Ti)
k
i=1 round-specific tweaks

hi ← f(hi−1, Ti,Mi) for i = 1, . . . , k
h← chopn(hk)

Fig. 1. In all algorithmic descriptions, IV denotes an initialization vector, h denotes state values, M denotes
message blocks, S denotes a (fixed) salt, C denotes a counter and T denotes a tweak. The padding rules
employed by the functions are summarized in Fig. 2. The functions L,L′ underlying BLAKE are explained
in the corresponding section.

3 BLAKE

The BLAKE hash function [7] is a HAIFA construction. The message blocks are accompanied with a HAIFA-
counter, and the function employs a suffix- and prefix-free padding rule. The underlying compression function
f is based on a block cipher E : Z2l

2 × Zm2 → Z2l
2 .3 It moreover employs an injective linear function L, and

a linear function L′ that XORs the first and second halves of the input. The BLAKE hash function design is
given in Fig. 1.

As the mode of operation of BLAKE is based on the HAIFA structure, all security properties regarding
this type (cf. Sect. 2.4) hold [15], provided the compression function is assumed to be ideal. However, as

3 As observed in [7, Sect. 5], the core part of the compression function can be seen as a permutation keyed by the
message, which we view here as a block cipher.



BLAKE : padb(M) = M‖10−|M|−t−2 mod m1‖〈|M |〉t,
Grøstl : padg(M) = M‖10−|M|−65 mod l‖〈d(|M |+ 65)/le〉64,
JH : padj(M) = M‖10383+(−|M| mod m)‖〈|M |〉128,
Keccak : padk(M) = M‖10−|M|−2 mod m1,

Skein : pads(M) = M ′‖0(−|M′| mod m)+m,where M ′ =

{
M if |M | ≡ 0 mod 8,

M‖1‖0−|M|−1 mod 8 otherwise.

Fig. 2. The padding rules of all SHA-3 hash function candidates are summarized. All padding functions out-
put bit strings parsed as sequences of m-bit blocks, where m is the message block length of the corresponding
function. In our interpretation the complete padding rule of BLAKE and Skein is additionally defined by a
counter or tweak (as explained in Sects. 3 and 7).

independently shown by Andreeva et al. [2] and Chang et al. [20], the BLAKE compression function shows
non-random behavior: it is differentiable from a random compression function in about 2n/4 queries, making
the above-mentioned security properties invalid. This attack has invalidated the results on BLAKE reported
in the second round SHA-3 classification of [4, 5].

The security results have been reconfirmed by Andreeva et al. [2] in the ideal cipher model. Firstly, the
authors prove optimal security bounds on the compression function, Advepre

f = Θ(q/2n) and Advcol
f =

Θ(q2/2n). In the ideal model, everywhere second preimage resistance of the compression function can be
proven similar as the preimage resistance, up to a constant (the security analysis differs only in that we
give the adversary one query for free). The BLAKE mode of operation preserves collision resistance and
everywhere preimage resistance due to which we obtain Advcol

H = Θ(q2/2n) and Advepre
H = Θ(q/2n). The

hash function is moreover proven optimally second preimage resistance in the ideal cipher model by Andreeva

et al. [2], which gives Adv
esec[λ]
H = Θ(q/2n). Finally, the BLAKE hash function is reproven indifferentiable

from a random oracle up to bound Θ((Kq)2/2n), this time under the assumption that the underlying block
cipher is assumed to be ideal [2, 20].

4 Grøstl

The Grøstl hash function [28] is a chop-MD construction, with a final transformation before chopping. The
hash function employs a suffix-free padding rule. The underlying compression function f is based on two
permutations P,Q : Zl2 → Zl2. The final transformation g is defined as g(h) = P (h) ⊕ h. The Grøstl hash
function design is given in Fig. 1.

The compression function of Grøstl is permutation based, and the results of [42, 43] apply. Furthermore,
the preimage resistance of the compression function is analyzed in [27], and an upper bound for collision
resistance can be obtained easily. As a consequence, we obtain tight security bounds on the compression
function, Advepre

f = Θ(q2/2l) and Advcol
f = Θ(q4/2l). In the ideal model, everywhere second preimage

resistance of the compression function can be proven similar as the preimage resistance, up to a constant (the
security analysis differs only in that we give the adversary one query for free). The Grøstl mode of operation
preserves collision resistance and everywhere preimage resistance due to which we obtain Advcol

H = Θ(q2/2n)
and Advepre

H = Θ(q/2n). Finally, it is proven indifferentiable from a random oracle up to bound O((Kq)4/2l)
if the underlying permutations are ideal [3].

As an addition to above results, in this work we consider second preimage resistance of the Grøstl hash
function. We prove that optimal second preimage resistance (up to a constant) is achieved for all versions.

Theorem 1. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in finding a second preimage for the
Grøstl hash function H after q < 2l−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ ((λ+ 65)/m+ 2)q(q − 1)

2l
+

2q

2n
.



Proof. Let M ′ ∈ Zλ2 be any target preimage. Denote by h′0, . . . , h
′
k′ the state values corresponding to the

evaluation of H(M ′), and let h = chopn(P (h′k′)⊕ h′k′).
We consider any adversary A making q queries to its underlying permutations P and Q. Associated to

these queries, we introduce an initially empty graph G that indicates compression function calls for Grøstl
that can be derived from these queries. Note that any P -query (xP , yP ) and any Q-query (xQ, yQ) correspond
to exactly one compression function call, namely xP ⊕ xQ → xP ⊕ yP ⊕ xQ ⊕ yQ where the message input is
xQ. In order to find a second preimage, the adversary

(1) either needs to end up with a graph that contains a path (labeled differently from the first preimage)
from IV to any node of {h′0, . . . , h′k′},

(2) or he needs to find a P -query (xP , yP ) with xP 6= h′k′ such that chopn(xP ⊕ yP ) = h and G contains a
path from IV to xP .

A proof of this claim can be found in [2, 18]. To achieve the first goal, the adversary needs to find a preimage
for the Grøstl compression function, for any image in {h′0, . . . , h′k′}. To achieve the second goal, the adversary
needs to find a preimage for the final transformation of the Grøstl compression function. For i = 1, . . . , q, we
consider the probability of the i-th query to render success. We distinguish between the two success cases.

Case (1). Without loss of generality the i-th query is a forward query xP to P , let yP be the oracle answer
drawn uniformly at random from a set of size at least 2l − q. Let (xQ, yQ) be any Q-query in the query
history. The query results in a compression function call xP ⊕ xQ → xP ⊕ yP ⊕ xQ ⊕ yQ. This value hits

any of {h′0, . . . , h′k′} with probability at most k′+1
2l−q . Considering any of the at most i− 1 possible Q-queries,

case (1) is achieved with probability at most (k′+1)(i−1)
2l−q . The same bound is found for queries to Q and for

inverse queries.

Case (2). Case (2) can only be achieved in a query to P . Without loss of generality, the i-th query is a
forward query xP , let yP be the oracle answer drawn uniformly at random from a set of size at least 2l − q.
This value satisfies chopn(xP ⊕ yP ) = h with probability at most 2l−n

2l−q .

By the union bound, we obtain the following bound on the second preimage resistance of Grøstl:

Adv
esec[λ]
H (q) ≤

q∑
i=1

(k′ + 1)(i− 1)

2l − q
+

2l−n

2l − q
≤ (k′ + 1)q(q − 1)

2(2l − q)
+
q2l−n

2l − q
.

As for q < 2l−1 we have 1
2l−q ≤

2
2l

and k′ ≤ (λ+ 65)/m+ 1, we obtain our result. ut

Given that for Grøstl we have l = 2n, for q < 2n the result of Thm. 1 directly implies a Θ(λ/m · q/2n) bound
on the second preimage resistance.

5 JH

The JH hash function [49] is a sponge-like function, but can also be considered as a parazoa function [1] or a
chop-MD construction. The hash function employs a suffix-free padding rule. The compression function f is
based on a permutation Zl2 → Zl2. The JH hash function design is given in Fig. 1. Note that the parameters
of JH satisfy l = 2m.

The compression function of JH is based on one permutation, and collisions and preimages for the compression
function can be found in one query to the permutation [16]. The JH hash function is proven optimally collision
resistant [33], and we obtain Advcol

H = Θ(q2/2n). Furthermore, it is proven indifferentiable from a random

oracle up to bound O

(
q3

2l−m
+
Kq3

2l−n

)
if the underlying permutation is assumed to be ideal [14]. As explained

in [4, 5], using (1) this indifferentiability bound additionally renders an improved upper bound O
(
q

2n + q3

2l−m

)
on the preimage and second preimage resistance.



We note, however, that these bounds on the preimage and second preimage resistance of JH are non-optimal
for both variants. We improve these bounds in Thms. 2 and 3. Although the new bounds are still not better
than the trivial bound for n = 512 (as was the previous bound), they are now optimal (up to a constant) for
the 256 variant.

In the proofs of Thms. 2 and 3 we will use the chop-function for both the left and right side of x.
Therefore, we introduce the functions leftn(x) and rightn(x) that take the n leftmost and rightmost bits of
x, respectively.

Theorem 2. Let n ∈ N. The advantage of any adversary A in finding a preimage for the JH hash function
H after q < 2l−1 queries can be upper bounded by

Advepre
H (q) ≤ 6q2

2l−m
+

2q

2n
.

Proof. Let h ∈ Zn2 be any point to be inverted (cf. Def. 1). IV denotes the initialization vector of size l bits.
We consider any adversary A making q queries to its underlying permutation P . Associated to these queries,
we introduce an initially empty graph G that indicates compression function calls for JH that can be derived
from these queries. We denote Gi as the graph after the i-th query (i = 0, . . . , q). Each query adds 2m edges
to the graph, and Gi thus contains i2m edges. In order to find a preimage, the adversary must necessarily
end up with a graph that contains a path from node IV to any node in H := {h‖h′ | h′ ∈ Zl−n2 }. We denote
by winAi the event that the i-th query makes this property satisfied.

We denote by Gout
i , resp. Gin

i , the set of nodes in Gi with an outgoing, resp. incoming, edge. We denote
by τ IVi the subgraph of Gi consisting of all nodes and edges reachable from IV. Similarly, τHi denotes the
subgraph of Gi consisting of all nodes and edges from which any node in H can be reached. Next to event
winAi, we say the adversary also wins if either of the following events occurs for any i = 1, . . . , q:

winBi : τ IVi contains two nodes v, v′ with leftl−m(v) = leftl−m(v′),

winCi : τHi \H contains two nodes v, v′ with rightl−m(v) = rightl−m(v′).

We denote by wini = winAi ∪winBi ∪winCi the event that the i-th query results in a winning adversary. We
have

Advepre
H (q) ≤ Pr (winAq) ≤ Pr (winq) ≤

q∑
i=1

Pr (wini | ¬wini−1) . (2)

For i = 1, . . . , q, we consider the probability of the i-th query to render success. We distinguish between
forward and inverse queries.

Forward query. Suppose the adversary makes a forward query xi to receive a random yi. By ¬winBi−1,
there is at most one v ∈ τ IVi−1 such that leftl−m(v) = leftl−m(xi). Denote M = rightl−m(v) ⊕ rightl−m(xi);
this query will add only the edge v → yi ⊕ (M‖0l−m) =: w to the tree. We define the following events.

badAi : rightl−m(yi) ∈ {rightl−m(w) | w ∈ τHi−1},
badBi : leftl−m(w) ∈ {leftl−m(v) | v ∈ τ IVi−1},
badCi : w ∈ Gout

i ,

badDi : leftn(w) = h.

Here, badAi covers the event that τHi−1 is extended. Event badBi covers the case that the updated τ IVi contains
two nodes with the same left half (note that this would directly make winBi satisfied). The case badCi covers
the event that the newly added edge to τ IVi hits any node with outgoing edge, and badDi covers the event
that the newly added edge to the tree would hit h (in both cases a valid preimage path may have been
established). Denote badi = badAi ∪ badBi ∪ badCi ∪ badDi.

By basic probability theory, we have in case of forward queries

Pr (wini | ¬wini−1) ≤ Pr (wini | ¬wini−1 ∧ ¬badi) + Pr (badi | ¬wini−1) .



We consider the first probability. Assume ¬wini−1 ∧ ¬badi. Recall that by ¬winBi−1, v → w is the only
edge added to τ IVi−1. Now, we have ¬winAi by ¬winAi−1 and as by ¬badCi ∧ ¬badDi this new edge does not
connect τ IVi with H. Case ¬winBi follows from ¬winBi−1 ∧ ¬badBi. Finally, by ¬badAi, the tree τHi−1 is not
extended, and hence ¬winCi follows from ¬winCi−1. Thus, for forward queries we have Pr (wini | ¬wini−1) ≤
Pr (badi | ¬wini−1). This probability will be analyzed later.

Inverse query. Suppose the adversary makes an inverse query yi to receive a random xi. By ¬winCi−1,
there is at most one v ∈ τHi−1 such that rightl−m(v) = rightl−m(yi). Denote M = leftl−m(v)⊕ leftl−m(yi); this
query will add only the edge w := xi ⊕ (0l−m‖M)→ v to the tree. We define the following events.

badA′i : leftl−m(xi) ∈ {leftl−m(v) | v ∈ τ IVi−1},
badB′i : rightl−m(v) ∈ {rightl−m(w) | w ∈ τHi−1},
badC′i : v ∈ Gin

i ,

badD′i : v = IV.

Here, badA′i covers the event that τ IVi−1 is extended. Event badB′i covers the case that the updated τHi contains
two nodes with the same right half (note that this would directly make winCi satisfied). The case badC′i covers
the event that the newly added edge to τHi hits any node with incoming edge, and badD′i covers the event
that the newly added edge to the tree would hit IV (in both cases a valid preimage path may have been
established). Denote bad′i = badA′i ∪ badB′i ∪ badC′i ∪ badD′i.

By basic probability theory, we have in case of inverse queries

Pr (wini | ¬wini−1) ≤ Pr
(
wini | ¬wini−1 ∧ ¬bad′i

)
+ Pr

(
bad′i | ¬wini−1

)
.

We consider the first probability. Assume ¬wini−1 ∧ ¬bad′i. Recall that by ¬winCi−1, v → w is the only
edge added to τHi−1. Now, we have ¬winAi by ¬winAi−1 and as by ¬badC′i ∧ ¬badD

′
i this new edge does not

connect IV with τHi . By ¬badA′i, the tree τ IVi−1 is not extended, and hence ¬winBi follows from ¬winBi−1.
Finally, case ¬winCi follows from ¬winCi−1∧¬badB′i. Thus, for inverse queries we have Pr (wini | ¬wini−1) ≤
Pr
(
bad′i | ¬wini−1

)
. This probability will be analyzed later.

As each query is either a forward or an inverse query, we obtain for i = 1, . . . , q:

Pr (wini | ¬wini−1) ≤ Pr (badi | ¬wini−1; forward query) +

Pr
(
bad′i | ¬wini−1; inverse query

)
. (3)

As explained above, provided ¬wini−1, the i-th query adds at most one node to τ IVi−1 and at most one node
to τHi−1, regardless whether it is a forward or inverse query. This particularly means that |τ IVi−1|, |τHi−1| ≤ i−1.
Additionally, |Gout

i |, |Gin
i | ≤ i2m. It is now straightforward to analyze the success probabilities of badi, bad

′
i

to occur. As the answer from P is drawn uniformly at random from a set of size at least 2l − q, we obtain
from (3):

Pr (wini | ¬wini−1) ≤ 4(i− 1)2m

2l − q
+

2i2m

2l − q
+

2l−n

2l − q
+

1

2l − q
. (4)

This combines with (2) to

Advepre
H (q) ≤

q∑
i=1

(6i− 4)2m

2l − q
+

2l−n + 1

2l − q
≤ 3q22m

2l − q
+
q2l−n

2l − q
,

The result is now obtained as for q < 2l−1 we have 1
2l−q ≤

2
2l

. ut

The proof of second preimage resistance of JH is similar. Note that the attack by Kelsey and Schneier [30]
only impacts JH in the internal state, which is reflected by the second part of the bound. In accordance with
NIST’s security requirements, we can assume q < 2n−L, or in particular that λ/m · q . 2n (see the remark
below Def. 2). Consequently, the second term of the second preimage bound is negligible.



Theorem 3. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in finding a second preimage for the
JH hash function H after q < 2l−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ 6q2

2l−m
+

4(λ/m+ 2)q

2l
+

2q

2n
.

Proof. The proof follows the same argument as the proof of Thm. 2; we only highlight the differences. Let
M ′ ∈ Zλ2 be any target preimage. Denote by h′0, . . . , h

′
k′ the state values corresponding to the evaluation of

H(M ′), and set leftn(h′k′) = h. Now, the adversary necessarily needs to end up with a graph that contains a
path from IV to any node in

{h′0, . . . , h′k′} ∪ {h‖h′ | h′ ∈ Zl−n2 }.

This path must be labeled by a message different from M ′. The analysis of Thm. 2 carries over, with the
minor difference that badCi and badC′i are replaced by

badCi : w ∈ Gout
i ∪ {h′0, . . . , h′k′−1},

badC′i : v ∈ Gin
i ∪ {h′1, . . . , h′k′}.

Similar as before, we obtain

Adv
esec[λ]
H (q) ≤

q∑
i=1

(6i− 4)2m

2l − q
+

2k′

2l − q
+

2l−n + 1

2l − q
≤ 3q22m

2l − q
+

2k′q

2l − q
+
q2l−n

2l − q
.

The result is now obtained from the fact that k′ ≤ λ/m+ 2. ut

6 Keccak

The Keccak hash function [10] is a sponge function, but can also be considered as a parazoa function [1] or a
chop-MD construction. The compression function f is based on a permutation Zl2 → Zl2. The hash function
output is obtained by chopping off l − n bits of the state4. Notice that the parameters of Keccak satisfy
l = 2n+m. The Keccak hash function design is given in Fig. 1.

The compression function of Keccak is based on one permutation, and collisions and preimages for the
compression function can be found in one query to the permutation [16]. The Keccak hash function is proven
indifferentiable from a random oracle up to bound Θ((Kq)2/2l−m) if the underlying permutation is assumed
to be ideal [11]. Using (1), this indifferentiability bound renders an optimal collision resistance bound for
Keccak, Advcol

H = Θ(q2/2n), as well as optimal preimage second preimage resistance bounds Θ(q/2n).

7 Skein

The Skein hash function [25] is a chop-MD construction. The message blocks are accompanied with a round-
specific tweak5, and the function employs a suffix- and prefix-free padding rule. The compression function f
is based on a tweakable block cipher E : Zm2 × Z128

2 × Zl2 → Zm2 . The Skein hash function design is given in
Fig. 1.

The compression function of Skein is the PGV1, or Matyas-Meyer-Oseas, compression function, with a
difference that a tweak is involved. As claimed in [8], the results of [17] carry over, which in turn results

4 We notice that sponge function designs are more general [12], but for Keccak this description suffices.
5 More formally, the design is based on the UBI (unique block identifier) chaining mode which queries its underlying

tweakable block cipher on additional tweaks, that differ in each iteration. The general description of Skein involves
a specific final transformation. In the primary proposal of the hash function, however, this final transformation
consists of another execution of the compression function, with an output-specific tweak and with message 0m. As
we included this final message block in the padding, the given description of Skein suffices.



in optimal security bounds on the compression function. In the ideal model, everywhere second preimage
resistance of the compression function can be proven similar as the preimage resistance, up to a constant (the
security analysis differs only in that we give the adversary one query for free). The Skein mode of operation
preserves collision resistance and everywhere preimage resistance due to which we obtain Advcol

H = Θ(q2/2n)
and Advepre

H = Θ(q/2n). Furthermore, the Skein hash function is proven indifferentiable from a random oracle
up to bound O((Kq)2/2l) if the underlying tweakable block cipher is assumed to be ideal [8]. This proof is
based on the preimage awareness approach [23]. Using (1), this indifferentiability bound additionally renders

an improved upper bound O
(
q

2n + q2

2l

)
on the second preimage resistance.

The second preimage bound for Skein is optimal for the n = 256 variant, but meets the trivial bound for the
n = 512 variant. Therefore, we reconsider second preimage resistance of the Skein hash function. We prove
that optimal second preimage resistance (up to a constant) is achieved for all versions.

Theorem 4. Let n ∈ N, and λ ≥ 0. The advantage of any adversary A in finding a second preimage for the
Skein hash function H after q < 2l−1 queries can be upper bounded by

Adv
esec[λ]
H (q) ≤ 2q

2l
+

2q

2n
.

Proof. The proof follows a similar reasoning as the proof of Thm. 1, and we only highlight the differences.
Let M ′ ∈ Zλ2 be any target preimage. Denote by h′0, . . . , h

′
k′ the state values corresponding to the evaluation

of H(M ′), and let h = chopn(h′k′).
We consider any adversary A making q queries to its underlying block cipher E. Associated to these

queries, we introduce an initially empty graph G that indicates compression function calls for Skein that
can be derived from these queries. Note that any query tuple (M,T, h) → C corresponds to exactly one
compression function call, namely h→ C ⊕M where the message input is M and where T is a tweak value.
These tweaks are round-specific (see Fig. 1). In order to find a second preimage, the adversary needs to
end up with a graph that contains a path (labeled different from the first preimage) from IV to any node
of {h′0, . . . , h′k′} ∪ {h‖h′ | h′ ∈ Zl−n2 }, where the associated tweaks need to be compliant with the hash
function evaluation corresponding to the path. A proof of this claim can be found in [2, 18]. To achieve
the first goal, the adversary needs to find a preimage for the Skein compression function, for any image in
H1 := {h′0, . . . , h′k′} or H2 := {h‖h′ | h′ ∈ Zl−n2 } (where the tweak is compliant). For i = 1, . . . , q, we
consider the probability of the i-th query to render success. We distinguish between the two sets H1, H2.
Without loss of generality, let the i-th query be a forward query M,T, h, and let C be the oracle answer
drawn uniformly at random from a set of size at least 2l− q. The same bounds are found for inverse queries.

Set H1. As the tweaks need to be compliant, depending on T there is at most one value h ∈ H1 for which a
collision h = C ⊕M may result in a valid second preimage. The i-th query thus renders a collision with H1

probability at most 1
2l−q .

Set H2. A collision with any element from H2 may result in a valid preimage. C ⊕M collides with any

element from H2 with probability at most 2l−n

2l−q .

By the union bound, we obtain the following bound on the second preimage resistance of Skein:

Adv
esec[λ]
H (q) ≤

q∑
i=1

1

2l − q
+

2l−n

2l − q
≤ q

2l − q
+
q2l−n

2l − q
.

The result is now obtained as for q < 2l−1 we have 1
2l−q ≤

2
2l

. ut

8 Conclusions

In this work we revisited the previous summary of [4, 5] with respect to the five finalist SHA-3 hash functions.
More concretely, we updated existing results with the new results in the area in Table 2, part of which are



freshly proved in this paper. A main improvement of this work is that all results in our analysis hold for
ideal primitives of comparable size; either ideal ciphers or permutations. Secondly, most “security gaps”
(with respect to preimage, second preimage, and collision resistance) remaining from [4, 5] are closed. One
of the few open problems left for the security analysis of the five finalist hash functions in the ideal model is
achieving an optimal (second) preimage bound of the 512 variant of the JH hash function.

We note that our security analysis needs to be read with care and for this purpose we provide the following
discussion:

– Ideal primitives do not exist and the ideal model proofs are only an indication for security. In particular,
none of the candidates’ underlying block cipher or permutation is ideal. However, due to the lack of
security proofs in the standard model (other than preserving collision security of the compression function
in MD based designs), assuming ideality of these underlying primitives gives significantly more confidence
in the security of the higher level hash function structure than any ad-hoc analysis or no proof at all;

– While assuming ideality of sizable underlying building blocks like permutations and block ciphers allows
for a fair security comparison of the candidates on one hand, it disregards internal differences between
the idealized primitives on the other. Such specific design details can distort the security results for the
distinct hash functions when concrete attacks exploiting the internal primitive weaknesses are applied.
Moreover, further differences, such as chaining sizes and message input sizes, are also not fully reflected
in the security results.

Table 2. A schematic summary of all security results of the SHA-3 finalists. The second column summarizes the
parameters n, l,m, which denote the hash function output size, the chaining value size and the message input size,
respectively. The last row of the table gives a representation of the security requirements (ii)-(iv) by NIST.

n/l/m Advepre
f Adv

esec[λ]
f Advcol

f Advepre
H Adv

esec[λ]
H Advcol

H Advpro
H

BLAKE
256/256/512,
512/512/1024

Θ(q/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q2/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q2/2n)
E ideal

Θ((Kq)2/2n)
E ideal

Grøstl
256/512/512,

512/1024/1024
Θ(q2/2l)
P,Q ideal

Θ(q2/2l)
P,Q ideal

Θ(q4/2l)
P,Q ideal

Θ(q/2n)
P ideal

Θ(λ/m · q/2n)
P,Q ideal

Θ(q2/2n)
P,Q ideal

O((Kq)4/2l)
P,Q ideal

JH
256/1024/512,
512/1024/512

Θ(1)
P ideal

Θ(1)
P ideal

Θ(1)
P ideal

O(q/2n +

q2/2l−m)
P ideal

O(q/2n +

q2/2l−m)
P ideal

Θ(q2/2n)
P ideal

O(Kq3/2l−n +

q3/2l−m)
P ideal

Keccak
256/1600/1088,
512/1600/576

Θ(1)
P ideal

Θ(1)
P ideal

Θ(1)
P ideal

Θ(q/2n)
P ideal

Θ(q/2n)
P ideal

Θ(q2/2n)
P ideal

Θ((Kq)2/2l−m)
P ideal

Skein
256/512/512,
512/512/512

Θ(q/2l)
E ideal

Θ(q/2l)
E ideal

Θ(q2/2l)
E ideal

Θ(q/2n)
E ideal

Θ(q/2n)
E ideal

Θ(q2/2n)
E ideal

O((Kq)2/2l)
E ideal

NIST’s security
requirements [38]

(not
specified)

(not
specified)

(not
specified)

O(q/2n) O(λ/m · q/2n) O(q2/2n)
(not

specified)
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