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Abstract. This paper presents high-speed assembly implementations of the 256-bit-output ver­
sions of all five SHA-3 finalists and of SHA-256 for the ARM11 family of processors. We report 
new speed records for all of the six implemented functions. For example our implementation 
of the round-3 version of JH-256 is 35% faster than the fastest implementation of the round-2 
version of JH-256 in eBASH. Scaled with the number of rounds this is more than a 45% improve­
ment. We also improve upon previous assembly implementations for 32-bit ARM processors. For 
example the implementation of Grøstl-256 described in this paper is about 20% faster than the 
arm32 implementation in eBASH. 
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1 Introduction 

In 2007 the National Institute for Standards and Technology (NIST) issued a public call 
for submissions to a hash function competition (SHA-3 competition) [17]. This call received 
64 submissions by October 2008, 51 of which entered round 1 of the competition. These 51 
candidates have since been analyzed by the international cryptologic research community. 
Based on this analysis, NIST selected 14 candidates in July 2009 for round 2, and 5 finalists 
out of these 14 in December 2010. 

NIST will announce the winner of the competition, which will be standardized as SHA-3. 
The security of the 5 SHA-3 finalists has been carefully analyzed in the last 3 years and we do 
not expect serious flaws or vulnerabilities to be found in any of them. The main criterion for 
NIST’s decision is therefore going to be performance of the finalists in hardware and software. 
Consequently much effort had been dedicated to optimizing software implementations of the 
SHA-3 finalists by many groups for a variety of platforms. Benchmarks of these software 
implementations are collected by the eBASH benchmarking project led by Bernstein and 
Lange [10]. 

It is notable that most of the aforementioned optimizations in software implementations 
target high-end 64-bit processors by Intel and AMD. In many cases, they make significant use 
of the x86 sophisticated vector instructions. Although the number of processors in embedded 
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devices, smart phones and other “small computers” is much larger than the number of high-
end Intel and AMD desktop and server processors, the number of optimized implementations 
of the SHA-3 finalists targeting such small computers is comparatively small. 

This paper describes assembly implementations of all SHA-3 finalists for the ARM11 fam­
ily of processors. These implementations set new speed records for all of the SHA-3 finalists; 
for comparison we also implemented SHA-256 for the ARM11. ARM11 processors can be 
found in many smartphones by Apple, Samsung, HTC, Nokia and others. They can also be 
found in embedded devices, cars and other small devices. According to [3,1,2] ARM ships 
more than half a billion ARM11 CPUs each year, many of them are used in environments 
that need fast cryptography, including hash functions. 

Aside from new speed records on a particular processor that help evaluate the performance 
of the SHA-3 finalists, we may draw two perhaps surprising conclusions from our results: First 
one would expect that compilers are able to transform C implementations of the SHA-3 final­
ists into high-performance code for this relatively simple 32-bit RISC architecture. However, 
in some cases we were able to improve upon the fastest C implementations included in eBASH 
by more than a factor of 2. This shows the importance of platform-specific optimization on 
the assembly level. Second some of the finalists are designed to achieve high performance on 
64-bit processors or for implementations that use 128-bit or 256-bit vector instructions. This 
paper shows the consequences of such design decisions for performance on a simple 32-bit 
platform that does not support vector instructions. 

We submitted the software described in this paper to the eBASH benchmarking project 
for public benchmarking. All benchmarks reported in this paper are from the SUPERCOP 
benchmarking suite. All software described in this paper has or will be placed into the public 
domain to maximize reusability. 

Notation. We use ⊕ for a bitwise xor, ∨ for bitwise or and ∧ for bitwise and. 

Acknowledgements. We thank the CyanogenMod and GAOSP teams for their work on 
alternative firmware for Android smartphones. Their work made it possible to install Debian 
GNU/Linux in a chroot environment on a Samsung GT i7500 Galaxy phone and use it as 
development and benchmarking platform. Furthermore we thank all the authors of SHA-3­
candidate implementations who published their software and included it in eBASH. 

2 The ARM11 processor family 

The ARM11 family of microprocessors has been introduced by ARM in 2002 and is the only 
implementation of the ARMv6 architecture. The most widely used processor of this family is 
the ARM1136, others are the ARM1156 and the ARM1176. We developed and benchmarked 
the software described in this paper on an ARM1136 processor, more specifically on a Samsung 
GT i7500 Galaxy smartphone containing a Qualcomm MSM7200A chip released in 2007. The 
characteristics of ARM11 processors are described in detail in the ARM11 technical reference 
manuals [6,4,5,7,8]. In the following we give a summary of the features that are most relevant 
to the implementations described in this paper. 

ARM11 processors have a 32-bit instruction set and 16 architectural 32-bit integer regis­
ters. One register is used as stack pointer, one as program counter, so 14 registers are freely 
usable. Instructions are issued in order, one instruction per cycle. The arithmetic instructions 
relevant to the implementations described in this paper have a latency of 1 cycle, the result 
of an instruction can thus be used as input to the next instruction without latency penalty. 
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Access to memory is cached with cache sizes between 4 KB and 64 KB. Loads from cache 
have a latency of 3 cycles. 

The instruction set is a standard RISC load-store instruction set except for two features: 
free shifts and rotates and loads and stores of more than 32 bits. 

Free shifts and rotates. All arithmetic instructions have three operands, the output does 
not necessarily overwrite one of the inputs. Additionally, the second input operand can be 
shifted or rotated by arbitrary distances provided as immidiate value or through a register. 
These shifts or rotates as part of arithmetic instructions do not decrease throughput or in­
crease latency of the instruction, they are essentially for free. However, the shifted or rotated 
input value is required one stage earlier in the pipeline than a non-shifted input. Therefore, 
using the output of one instruction as shifted or rotated input to the next instruction imposes 
a penalty of one cycle. 

Load and store double and multiple. The ARMv6 instruction set contains load and store 
instructions that move more than 32 bits between memory and registers. More specifically, 
the strd instruction stores 64 bits from two consecutive registers (e.g., r0 and r1) to a 64-bit 
memory location, the ldrd loads 64 bits from memory into two consecutive registers. Some 
additional restrictions apply for these 64-bit load and store instructions: 

–	 The first register argument has to be an even register (r0, r2, r4, . . . ), 
–	 the instructions do not support all addressing modes that their 32-bit counterparts sup­

port, in particular they do not support shifted register offsets (documentation is very 
misleading here, see, e.g. [6, Section 16.11] says that performance of ldrd and strd de­
pends on the shift distance of the register offset), and 

–	 they take one memory cycle only if the memory location is 8-byte aligned, otherwise they 
take 2 memory cycles. 

For details also see [6, Section 16.11]. The ARMv6 architecture also supports loads and stores 
of more than 64 bits in one instruction (ldm and stm instructions). Addressing modes are even 
more limited than for strd and ldrd. They need as many memory cycles as a corresponding 
sequence of 64-bit loads or stores and thus yield better performance only in very special cases 
that we were not able to exploit in our implementations. 

Accessing the cycle counter. Access to the 32-bit cycle counter is only possible from kernel 
mode, for example using the following code: 

unsigned int c; 
asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(c)); 

In a posting to the eBATS mailing list ebats@list.cr.yp.to from August 12, 2010, Bern-
stein publicized code for a kernel module that gives access to the cycle counter on ARM11 
devices through the Linux device file /dev/cpucycles4ns. The SUPERCOP benchmarking 
suite [10] supports cycle counts through this device file; we use SUPERCOP for all bench­
marks. 

3 Blake 

The full specification of Blake is given in [9]. We only briefly recall the structure of the 
computationally most expensive part, the compression function. The inputs to the Blake-256 
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compression function are a chaining value of 8 32-bit words h0, . . . , h7, a message block of 16 
32-bit words m0, . . . ,m15, a salt of 4 32-bit words s0, . . . , s3. and counter consisting of 2 32-bit 
words t0, t1 The output is a new chaining value consisting of 8 32-bit words. The compression 
consists of 3 main steps: 

–	 An initialization expands the 14 words of chaining value, salt and counter to a 16-word 
state (v0, . . . , v15). 

–	 The 16-word state is transformed through 14 rounds. Each round consists of 8 evaluations 
of a function G, which modifies 4 words of the state in place and takes as additional 
inputs 2 words of the message block and two out of a set of 16 constants c0, . . . , c15 The 
total of 14 · 8 = 112 evaluations of G are the main computation of the Blake-256 hash 
function. Each evaluation of G requires 6 32-bit word additions, 6 32-bit xor operations, 
and 4 rotations of 32-bit words by 16,12,8, and 7 bits, respectively. The 8 evaluations of 
G can be seen as 2 blocks of 4 evaluations each; evalutions of G in each of the two blocks 
are independent and can be swapped or interleaved. 

–	 The finalization uses 24 32-bit xor operations to map h0, . . . , h7, s0, . . . , s3, v0, . . . , v15 to 
a new chaining value h�0, . . . , h

�
7. 

3.1 Implementation details 

The 6 additions and 6 xors in each evaluation of G add up to a total of 112 · 12 = 1344 
arithmetic instructions throughout the 14-round main loop. This corresponds to a 1344/64 = 
21 cycles lower bound for Blake-256. This lower bound is ignoring costs for loads of message 
words, costs for loads of constants, spills of state words, as the 16 state words do not fit into 
the usable 14 registers, and overhead from the initalization and finalization phase. Furthemore 
it assumes that all rotations can be carried out for free in the second argument of additions 
or xors. 

To obtain the speed of 33.93 cycles per byte for long messages we applied two optimization 
techniques. First we manage to merge (almost) all rotations with arithmetic instructions and 
second we carefully reschedule code to reduce the number of spills. 

Removing rotations. As explained in Section 2, the second argument of arithmetic instruc­
tions can be shifted or rotated arbitrarily. This shift or rotation does not cost any additional 
cycles, if the shifted value is not the output of the directly preceding instruction. In other 
words, the combination of an arithmetic operation 8 with a rotation by n of the form 

a ← b 8 (c » n) 

costs the same as 8 without the rotation (but imposes an additional scheduling constraint). 
The 4 rotations used inside the function G are not of this form, they rotate the result of an 
arithmetic instruction instead of one of the inputs: 

a ← (b 8 c) » n). 

This can easily be decomposed into two instructions 

a ← (b 8 c), and 

a ← a » n. 
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Our implementation instead only computes the first of the two instructions and rotates a by 
n the next time a is used as input. We consistently apply this technique to all variables. This 
means that we keep track of the implicit rotation distances for each variable and apply this 
rotation whenever the variable is used as an input. Very soon this will lead to the case that 
both inputs to an arithmetic instruction need to be rotated, i.e., 

a ← (b » n1) 8 (c » n2). 

In this case we compute 

a ← b 8 (c » (n2 − n1)) 

and set the implicit rotation distance of a to n1. Note at this point that all rotation distances 
are constants; the value n2 − n1 is computed at compile time. 

In principle we can merge all rotations with arithmetic instructions in this way; the only 
restriction is that implicit rotation distances of variables must be invariant across different 
iterations of loops. We fully unrolled the 14 rounds of the Blake-256 compression function, so 
we only need to make the implicit rotations distances explicit by actual rotations at the very 
end of the loop. Out of the 16 state words, 12 end up with a implicit rotation distance of 0, 
so we only need 4 dedicated rotation instructions for the whole compression function. 

Reducing spills. The 16 32-bit words v0, . . . , v15, the 16 constants c0, . . . , c15, and the 16 
32-bit message words clearly do not fit into the 14 usable 32-bit registers. Even worse, not 
even the 16 state words can be kept in registers, the compression function thus requires loads 
and stores. To keep the number of loads and stores low we do the following: 

–	 Before entering the compression loop we put the 16 constants on the stack so that they 
can be accessed through the stack pointer. We could also access them through offsets to 
the program counter, but our code is too long to access constants from any position in 
the code through the allowed 8-bit offset. 

–	 In each iteration of the compression loop we place the 16 message words on the stack. This 
saves one register containing the pointer to the message block, furthermore we can easily 
convert from big-endian to little-endian encoding by loading message blocks in big-endian 
mode once and storing them in little endian mode on the stack. 

–	 We partition the set of state words into low words v0, . . . , v7 and high words v8, . . . , v15, we 
keep the low state words in registers throughout the whole computation. Each evaluation 
of G transforms 2 low state words and 2 high state words, so we can compute G with 12 
arithmetic instructions, 2 loads of high words, 2 stores of high words, 2 loads of message 
words, and 2 loads of constants – a total of 20 instructions. 

–	 We replace the two loads of high 32-bit words by one 64-bit load, this reduces the number 
of instructions per evaluation of G to 19. For this to work we need to make sure that 
previous stores of these two words store them to consecutive memory locations. 

–	 We reorder evaluations of G in a way that allows us to reuse the output high state words 
as input to the next evaluation where possible. 

In total the 112 evaluations of G take 2044 instructions, 18.25 instructions per evaluation 
of G. These instructions are carefully scheduled to hide all latencies and thus contribute 
2044/64 = 31.94 cycles/byte to the total cost. 
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4 Grøstl 

We only recall the computationally intensive part of Grøstl-256, the compression function. 
The full specification of Grøstl is given in [16]. The compression function maps a 512-bit state 
hi−1 and a 512-bit message block mi to a 512-bit state hi. This compression uses two 512-bit 
permutations P and Q and computes 

hi = P (hi−1 ⊕ mi) ⊕ Q(mi) ⊕ hi−1. 

The design of the permutations P and Q is inspired by AES, the main change is the size 
of the state which for Grøstl is an 8 × 8 byte matrix instead of the 4 × 4 matrix for AES. This 
change allows to make more efficient use of 64-bit architectures. The permutations P and Q 
are very similar, both transform the state in 10 rounds each round consists of the operations 
AddRoundConstant, SubBytes, ShiftBytes, and MixBytes. The SubBytes and the 
MixBytes operations are the same for P and Q; SubBytes is the byte substitution also 
used in AES. The AddRoundConstants and MixBytes operations are slightly different 
in P and Q; this requires separate implementations of P and Q but has no effect on the 
implementation techniques. Everything explained in the following is valid for both P and Q. 

4.1 Implementation details 

The designers of Grøstl recommend in [16, Section 8.1.3] to use a lookup-table based imple­
mentation for 32-bit processors that do not support 128-bit vector instructions. The idea is 
to compute the SubBytes, ShiftBytes, and MixBytes operations columnwise, where the 
computation of each column consists of 

–	 8 table lookups of 64-bit values from 8 tables T0, . . . , T7 of size 2 KB each, each lookup 
indexed by one byte of the state, and 

–	 7 64-bit xors of these 8 values to obtain the new the 64-bit column. 

This is the same idea as the lookup-table-based approach for AES described in [14, Section 
5.2]. 

For a 32-bit implementation all operations on 64-bit values need to be split into 2 opera­
tions on 32-bit values; a small benefit is that the total size of the tables can be halved because 
entries in tables T1, . . . , T7 are simply rotations of values in table T0. ARM addressing modes 
do not allow to load from a base address (pointer to the tables) plus a shifted offset regis­
ter value. Each of these column computations thus requires 8 byte extractions (for example 
single-byte loads), 8 additions of the table pointer to a (shifted) byte offset, 16 32-bit loads, 
14 xors, and 2 32-bit stores of the computed new state column. These final stores are required 
because the complete state does not fit into registers and allows to perform byte extraction 
through single-byte loads. This total of 48 instructions, performed 8 times per round, over 
10 rounds in both P and Q yields a lower bound of (48 · 8 · 10 · 2)/64 = 120 cycles per byte, 
ignoring the cost of AddRoundConstants. 

This approach is what the arm32 assembly implementation for 32-bit ARM processors by 
Wieser (included in SUPERCOP since version 20110914) does. With about 140 cycles/byte 
it comes remarkably close to the lower bound if we consider cost for AddRoundConstants 
and loop overhead. 
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At a speed of about 110 cycles per byte for long messages, our implementation improves 
upon this implementation by more than 20%. The main reason is that it makes use of 64-bit 
table lookups. 

64-bit lookups. Instead of performing the table lookups with 32-bit loads we use the ldrd 
instruction to perform 64-bit lookups. As the result of such a lookup is returned in two 32-bit 
registers, we do not need larger tables, “rotation by 32” is free, the tables only need 8 KB of 
storage. With this improvement the computation of one column only requires 8 byte lookups, 
8 additions of the table base pointer to the shifted byte offsets, 8 64-bit lookups, 14 xors, and 
1 64-bit store. These 39 instructions yield a lower bound of (39 · 8 · 10 · 2)/64 = 97.5 cycles per 
byte, again ignoring the cost of the AddRoundConstants operation and loop overhead. 

Interleaved tables. If the 4 lookup tables of size 2 KB each were layed out in memory one 
after the other, we would need to either keep 4 table addresses in memory or add constant 
offsets of 2048, 4096 or 6192 to 75% of the lookup addresses. The ARM addressing modes 
for the ldrd instruction support adding constant offsets to a base address, but these offsets 
must not be larger than 8 bytes (signed). We circumvent this problem by interleaving 64-bit 
entries of the 4 tables in memory, two consecutive 64-bit entries of the same table thus start 
at addresses that are 32 bytes apart. The bytes extracted from the state thus need to be 
shifted by 5 instead of 2 to serve as lookup offsets. 

5 JH 

The JH construction may be considered a modified Sponge. The full specification of JH-256 
is given in [18]. The central part of the JH hash functions is the compression function. This 
compression function transforms a 1024-bit state and a 512-bit input block into a 1024-bit 
state as follows: 

–	 Xor the input block into the first half of the state, 
–	 apply a block cipher E8 with a fixed key (expanded to hash-function round constants) to 

the state, and 
–	 xor the input block into the second half of the state. 

The speed-critical part of this compression is the application of the block cipher E8 which 
consists of 42 rounds of a substitution-permutation network designed for efficient bitsliced 
implementations using 128-bit or 256-bit vector registers. In bitsliced implementation using 
128-bit vector registers the state is decomposed into 8 128-bit vectors. Each round operates 
on these 128-bit vectors of the state and 2 128-bit round constant. One round consists of the 
following operations: 

–	 2 applications of the Sbox operation, an in-place transformation of 4 state vectors involving 
1 round constant (see Listing 1), 

–	 1 application of the L operation, an in-place transformation of 8 state vectors (see Listing 
1), and 

–	 swapping of adjacent bit blocks in 4 of the state vectors. The size of these bit blocks is 
2(i mod 7) in round i, i.e., in rounds 0, 7, 14, 21, 28, and 35 swap adjacent bits; in rounds 
1, 8, 15, 22, 29, and 36 swap adjacent blocks of 2 bits; in rounds 2, 9, 16, 23, 30, and 37 
swap adjacent blocks of 4 bits; and so on; and in rounds 6, 13, 20, 27, 34, and 41 swap 
adjacent blocks of 64 bits. 
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Listing 1 The Sbox and the L operations of the JH compression function
 
#define Sbox(v0,v1,v2,v3,rcst) \ /*The MDS transform*/ 
v3 = ~(v3); \ #define L(v0,v1,v2,v3,v4,v5,v6,v7) \ 
v0 ^= ((~(v2)) & (rcst)); \ (v4) ^= (v1); \ 
tmp0 = (rcst) ^ ((v0) & (v1)); \ (v5) ^= (v2); \ 
v0 ^= ((v2) & (v3)); \ (v6) ^= (v0) ^ (v3); \ 
v3 ^= ((~(v1)) & (v2)); \ (v7) ^= (v0); \ 
v1 ^= ((v0) & (v2)); \ (v0) ^= (v5); \ 
v2 ^= ((v0) & (~(v3))); \ (v1) ^= (v6); \ 
v0 ^= ((v1) | (v3)); \ (v2) ^= (v4) ^ (v7); \ 
v3 ^= ((v1) & (v2)); \ (v3) ^= (v4); 
v1 ^= (tmp0 & (v0)); \ 
v2 ^= tmp0; 

5.1 Implementation details 

For the ARM11, each operation on 128-bit vectors needs to be decomposed into 4 operations 
on 32-bit values. The 19 bit-logical operations in the Sbox operation (ignoring negations) and 
the 10 bit-logical operations in the L operation thus yield a lower bound on JH performance 
of 42 · 4 · (2 · 19 + 10) = 8064 cycles per block or 126 cycles per byte. This ignores costs 
for loads and stores, loop overhead and for the bit-block swapping. We now describe the 
optimization techniques that we applied to obtain the performance of 156.43 cycles per byte 
for long messages. 

Partial unrolling. Fully unrolling the compression function would result in code larger than 
32 KB, more than the instruction cache on by far most ARM11 processors. Instead we unroll 
7 rounds, a choice that comes from the block sizes in the swapping step. This way we keep the 
size of the compression function comfortably below 8 KB. Instead of using a round counter in 
a register we place a sentinel value at the end of the round-constant table and exit the loop 
when this sentinel value is read. 

Loop reordering. As we decomposed 128-bit vectors into 4 32-bit values, the compression 
function has two loops, one loop over the 42 rounds, another one over the 4 vector chunks. If 
we ignored the bit-block swapping step at the end of each round these loops could permute, 
but in the last two out of 7 rounds (bit block sizes of 32 and 64) registers at different positions 
in the vector communicate. The obvious way of ordering the loops is thus an outside (partially 
unrolled) loop of the rounds and then a loop of length 4 (unrolled) inside each round. Each 
of these iterations of the inside loop operates on different 8 32-bit state values, so with the 
14 available registers this solution requires 32 load and 32 store operations per round. 

However, by swapping the order of the two loops in the first 5 rounds of a 7-round block, 
these 32 load-save pairs can avoided. Only the last two rounds of a 7-round block require 
frequent loads and stores. We then reverse the processing order in the last round of a 7-round 
block, saving a further 4 stores and 4 loads between this round and the previous round, as 
well as this round and the next block. 

For the state we use a memory layout that allows us to perform all loads and stores of the 
state in 64-bit, halving the number of load-store operations. This layout also allows us to use 
64-bit loads and stores in the xor sequences at the beginning and the end of the compression 
function. 

Optimized Sbox operation. The ARMv6 instruction set allows to combine a logical and 
with a negation of one of the arguments (bic instruction). Most negations inside the Sbox 
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operation are exactly of this type but the negation in the first line (cmp. Listing 1) can not 
easily be eliminated. However, in 2/7 of all uses of Sbox the negated value is the output of a 
swap operation. In these cases the negation can be combined with a logical and in the swap 
operation (see below). 

Efficient bit-block swapping. The swapping of 16-bit blocks is a rotation that is free if we 
merge it with subsequent uses of the value in arithmetic instructions. Swapping 8-bit blocks 
can be done in just one instruction using the rev16 instruction. Swapping of adjacent bit 
blocks of size 1, 2, and 4 is not that straightforward but can still make use of free shifts. 
For example swapping adjacent bits in a register x uses a mask m = 0xaaaaaaaa in another 
register and three instructions as follows: 

t ← m ∧ (x « 1) 

x ← m ∧ x 

x ← t ⊕ (x » 1) 

Note that in one out of four swaps, the bic instruction (which negates the shifted second 
operand) is substituted for the logical and to save the negation at the beginning of the Sbox 
operation (see above). 

6 Keccak 

The Keccak hash function uses a sponge construction. The message is absorbed into a 1600­
bit state in r-bit blocks, for Keccak with 256-bit output the SHA-3 submission specifies 
r = 1088 [12, Section 2]. Each absorbtion of an r-bit block consists of two steps: 

–	 Xor the message block with the first r bits of the state, and 
–	 transform the state through the 1600-bit permutation Keccak-f [1600]. 

After all blocks of the (padded) message have been absorbed, the hash value is extracted 
from the state in a squeeze operation. The speed-critical part of hashing long messages is 
the absorbtion and in particular the Keccak-f [1600] transformation. A full specification of 
Keccak is given in [11] and in [12]. 

The Keccak-f [1600] transformation considers the state a 5 × 5 × 8 byte cuboid or a 5 × 5 
matrix of 64-bit lanes. The transformation is performed in 24 rounds, each round consists of 
the following steps: 

–	 xor the 5 lanes of each column to obtain values b0, . . . , b4, 
–	 compute 5 values c0, . . . , c4, each as the xor of one of the bi with another of the bi rotated 

by 1, 
–	 compute the updated state columnwise, for each column 
•	 pick up 5 state lanes diagonally, 
•	 xor each of these state lanes with a different ci (one lane of the whole state is addi­
tionally xored with a round constant), 
•	 rotate each of these lanes by a different fixed distance, 
•	 compute each lane of the updated column by negating one of the lanes, computing the 

logical and with another lane and then xoring the result to a third lane. 
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6.1 Implementation details 

For 32-bit architectures without vector registers the designers of Keccak suggest the tech­
nique of bit interleaving [13, Sections 1.4 and 2.2]. The idea is to collect all bits on even 
positions of a 64-bit lane in one 32-bit register and all bits at odd positions in another 32-bit 
register. This requires interleaving every 64-bit chunk of the message, but allows to perform 
all rotations as rotations of 32-bit words which is particularly efficient for the ARM11 as such 
rotations are essentially free. 

All logical operations on 64-bit lanes need to be carried out as two 32-bit operations. 
Computation of b0, . . . , b4 thus takes 40 xors, computation of c0, . . . , c4 takes another 10 xors. 
The computation of each column requires 10 xors with a constant, and 10 xors and 10 ands 
(with negation) of 32-bit half-lanes. A lower bound on the number of cycles for all 24 rounds 
(ignoring rotations and negations) can thus be derived as 24·(40+10+5·(10+10+10)) = 4800, 
this corresponds to 4800/136 = 35.294 cycles per byte, an additional cost of about 4 cycles 
per byte is required for the interleaving of the 64-bit message chunks. 

The Keccak designers recommend the simple32bi implementation as starting point for 
implementations targeting 32-bit architectures. This implementation is included in SUPER­
COP, it uses the interleaving technique and provides best performance on an ARM11 of all 
Keccak implementations benchmarked in eBACS; the armasm implementation by Ronny van 
Keer fails the tests of the SUPERCOP benchmarking suite. 

Our assembly implementation requires 71.73 cycles per byte for long messages, 17.5% 
faster than the simple32bi implementation but quite a bit slower than the lower bound derived 
above. The main reason that neither the simple32bi nor our implementation get closer to the 
lower bound is a the overhead from frequent loads and stores of parts of the large state. There 
are mainly two reasons why our implementation outperforms previous implementations: we 
manage to reduce the number of load and store instructions and we merge more rotations 
with arithmetic instructions. 

Reducing the number of loads and stores. Updating the state columnwise as described 
above uses 5 blocks of operations on 64-bit lanes or 10 blocks of computations on 32-bit half-
lanes. A straight-forward implementation loads 5 half-lanes per block, then loads 5 32-bit 
ci values, performs arithmetic instructions and then uses 5 store instructions to update the 
column half-lanes. With all rotations merged into arithmetic instructions each block only uses 
15 arithmetic instructions, loads and stores thuscontribute a 50% overhead. 

With an appropriate memory layout of the state we reduce the number of store instructions 
to 3 by using 2 64-bit stores. Furthermore we reorganize the 10 blocks of computations such 
that ci in registers can be reused across blocks as much as possible. The initial computation 
of b0, . . . , b4 (in 10 32-bit words) uses 64-bit loads of the state. 

Removing rotations. We use the same techniques as for Blake to merge almost all rotations 
with arithmetic instructions. Unrolling all 24 rounds would result in excessively large code, 
instead we perform the first round, then a loop of length 11 around 2 rounds and then the 
final round. All rounds but the last produce shifted state half-lanes, the shift distances are the 
same for all rounds. All rounds but the first perform shifts of state half-lanes whenever they 
are used as input to an arithmetic instruction. In order to keep shift distances invariant over 
iterations of the loop we need to perform 10 dedicated shifts in the computation of b0, . . . , b4. 
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7 Skein 

The idea of Skein is to build a hash function out of the tweakable block cipher Threefish. The 
full specification of Skein is given in [15]. We only briefly review the Threefish block cipher, 
the most important component of Skein. Threefish as used in Skein uses a 512-bit state that 
is transformed in 72 rounds. Each round consists of 4 so-called MIX operations. After every 
4 rounds the 64-bit words of the state are permuted and a key (round constant) is injected. 
An additional round constant is injected before the first round. The key injection loads 8 out 
of 9 64-bit extended-key words, it loads 2 out of 3 64-words of extended tweak value, adds 
each of the 8 extended-key words to one of the state words, adds each of the 2 tweak values 
to one of the state words, and in i-th key injection adds i to one of the state words. 

7.1 Implementation details 

Each MIX operation takes 2 64-bit integers x and y as inputs. It computes 2 64-bit output 
integers u and v as 

u = (x + y) mod 264 , and v = u ⊕ (y » R), 

where R is a round-dependent constant. On the 32-bit ARMv6 architecture we need to split 
each 64-bit word into two 32-bit chunks. With x = (x0, x1) and y = (y0, y1) we can compute 
u = (u0, u1) with one addition and one addition with carry. Xoring u with the shifted y can 
be done in 4 instructions as follows: 

t ← u1 ⊕ (y0 » (32 − R)) 

v0 ← u0 ⊕ (y0 « R) 

v0 ← v0 ⊕ (y1 » (32 − R)) 

v1 ← t ⊕ (y1 « R). 

From 72 rounds with 4 mix operations each we get 1728 instructions per block. From 19 
key injections we would expect another 19 · 11 64-bit additions, i.e. 19 · 22 = 418 instructions; 
this would together yield a lower bound from pure arithmetic instructions of (1728+418)/64 = 
33.53 cycles per byte. 

Since the 14 general-purpose registers cannot hold all the state words, the most important 
optimization required to come close to this bound is minimizing the number of loads and stores 
of the state words. We do this by rearranging the executation sequence to keep as many state 
words in memory as long as possible. This task is aided by a self-written program that traces 
the use of state words. Furthermore we show how key injection can be done with less than 11 
additions and less than 10 64-bit loads. 

Rearranging the execution sequence. Before entering the key injection, there are four 
rounds, each of which consists of four MIX operations followed by a permutation. As the 
common practice in unrolling loops, we mix the “permuted” state instead of doing mix and 
permutation in order. In this way, we can interleave the MIX functions of all these four rounds 
to achieve a much small number of loads and stores. 
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Consider for example the first 4 rounds. Let s0 to s7 be the state words. The orignial 
sequence of MIX operations is the following: 

Round 1: MIX(s0, s1), MIX(s2, s3), MIX(s4, s5), MIX(s6, s7) 
Round 2: MIX(s2, s1), MIX(s4, s7), MIX(s6, s5), MIX(s0, s3) 
Round 3: MIX(s4, s1), MIX(s6, s3), MIX(s0, s5), MIX(s2, s7) 
Round 4: MIX(s6, s1), MIX(s0, s7), MIX(s2, s5), MIX(s4, s3). 

Performing the mix operations in this order would cause a lot of overhead from loading 
and storing state words. For example s0 is used in the first MIX operation, then all other 
state words are used before s0 is used again, this means that s0 needs to be spilled. Similar 
statements hold for the other state values. 

To keep as many state words in registers as long as possible, we reorder the MIX sequence 
as follows: 

MIX(s0, s1), MIX(s2, s3), MIX(s2, s1), MIX(s0, s3) 
MIX(s4, s5), MIX(s6, s7), MIX(s6, s5), MIX(s4, s7) 
MIX(s4, s1), MIX(s6, s3), MIX(s6, s1), MIX(s4, s3) 
MIX(s0, s5), MIX(s2, s7), MIX(s2, s5), MIX(s0, s7). 

This order of MIX operations allows us load and store state words only every four MIX 
functions. Furthermore we interleave each round-constant injection with the preceeding MIX 
operations to eliminate some loads and stores. 

Precomputing parts of the key injection. In the key injection, two of the 64-bit state 
words, s5 and s6, are modified by adding a 64-bit word of the extended key k and a 64-bit 
word of the extended tweak value t. In the i-th key injection this is done as 

s5 ← s5 + k(i+5) mod 9 + ti mod 3, 

s6 ← s6 + k(i+6) mod 9 + t(i+1) mod 3, 

where the additions are all modulo 264. In the intuitive implementation this takes 4 loads of 
64-bit words and 4 64-bit additions, a total of 4 + 2 · 4 = 12 instructions. 

In our implementation, we see that regarding to all possible values of i, there are only nine 
possibilities for k(i+5) mod 9 + ti mod 3 and k(i+6) mod 9 + t(i+1) mod 3, namely {k0, k3, k6} + t1, 
{k1, k4, k7} + t2 and {k2, k5, k8} + t0. We precompute these 9 values as kt0,1, kt3,1, kt6,1, kt1,2, 
kt4,2, kt7,2, etc. and perform only two 64-bit loads and two 64-bit additions, which saves 6 
instructions per key schedule or about (19 · 6)/64 = 1.78 cycles per byte. 

8 SHA-256 

For reference we also optimized SHA-256 in assembly. Unlike all SHA-3 candidates, the 256­
bit state of SHA-256 fits into the available registers. Furthermore the design favors 32-bit 
architectures such as the ARMv6 and can make efficient use of the free rotations. For example 
a transformation like 

(x » a) ⊕ (x » b) ⊕ (x » c) 

with constants a, b, and c can turn into 

(x ⊕ (x » (b − a)) ⊕ (x » (c − a))) » a 
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and thus make use of the same techniques we used for Blake to eliminate dedicated rotations. 
Likewise we can write 

Maj(b, c, d) = (b ∧ c) ⊕ (c ∧ d) ⊕ (b ∧ d) = (b ∧ c) ∨ (d ∧ (b ∨ c)) 

and cache the value of b ∧ c and b ∨ c until they can be reused when calculating Maj(a, b, c) = 
(b ∧ c) ∨ (a ∧ (b ∨ c)). It is thus not surprising to see that SHA-256 outperforms all SHA-3 
candidates on this platform. 

9 Results and Comparison 

This section presents performance results of our implementations and a comparison with the 
previously fastest implementation in eBASH (SUPERCOP version 20110914). All numbers in 
Tables 1–6 are cycles per byte as reported by the SUPERCOP benchmarking suite. For the 
benchmarks we removed several compiler options from SUPERCOP that are irrelevant for 
ARM11 (such as -m64 or -mcpu=ultrasparc), with these compiler options the benchmarking 
results would not have been ready for the submission of this paper. We also added compiler 
options, specifically we added the flag -no-schedule-insns to various previously contained 
combinations of compiler flags. This flag is crucial for best performance of many C implemen­
tations; we also informed the eBACS editors about this observation, the changes are included 
in the most recent version of SUPERCOP (version 20111120). We will update the paper with 
benchmarks from SUPERCOP version 20111120. SUPERCOP in version 20110914 did not 
contain any implementation of the round-3 version of JH-256. We compare our results with 
the benchmarks of the round-2 version, note that this version is only using 35.5 rounds instead 
of the 42 of our implementation. 

For the display of benchmarks we follow eBACS [10]. Specifically, for each message length 
we report the median of 45 measurements and the 25% and 75% quartiles. The value for 
“long” messages is extrapolated from measurements of 4096-byte messages and 2048-byte 
messages. 

All measurements were performed on a Samsung GT I7500 Galaxy smartphone with a 
528-MHz ARM1136 processor inside a Qualcomm MSM7200A chip. All code was compiled 
with gcc 4.4.5. 

Other related work. The tables only compare with the fastest implementation in eBASH as 
of SUPERCOP version 20110914; there are many more slower implementations for all candi­
dates submitted to eBASH that can be used on ARM11 CPUs. An assembly implementation 
of Skein supporting different output and state sizes targeting the ARM Cortex-A8 family 
of CPUs by Hitland can be found on https://github.com/unbounded/skein-arm. We ran the 
benchmarking tool shipped with this implementation on the same platform we used for eBASH 
benchmarks. For Skein with a 512-bit state size and 256-bit output size the tool reports a 
median of 48.78 cycles per byte, only slightly slower than our implementation. Parts of this 
implementation (using the NEON vector instruction set of the Cortex-A8 CPU) are included 
in the latest SUPERCOP suite, we encourage the author to also submit the non-NEON part 
of his implementation to eBASH for more extensive comparative benchmarking. 

https://github.com/unbounded/skein-arm
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long 4096 bytes 1536 bytes 576 bytes 64 bytes 8 bytes 
this papera 25%-quartile 

median 
75%-quartile 

33.96 
33.93 
33.46 

34.95 
34.97 
35.11 

36.62 
36.68 
36.94 

40.95 
41.04 
41.48 

94.88 
95.00 
98.19 

509.00 
521.50 
546.00 

sphlib (ver. 3.0)b 25%-quartile 
median 
75%-quartile 

46.29 
46.29 
46.44 

47.49 
47.49 
47.74 

49.48 
49.48 
49.52 

54.82 
55.09 
55.97 

123.06 
123.06 
123.13 

614.00 
614.50 
719.16 

a Compiled with gcc -funroll-loops -fno-schedule-insns -O2 -fomit-frame-pointer 
b Compiled with gcc -mcpu=arm1136j-s -Os -fomit-frame-pointer -fno-schedule-insns 

Table 1. Benchmark results of Blake-256 

long 4096 bytes 1536 bytes 576 bytes 64 bytes 8 bytes 
this papera 25%-quartile 

median 
75%-quartile 

110.11 
110.16 
111.14 

113.17 
113.24 
114.28 

118.26 
118.44 
120.38 

131.87 
131.95 
132.47 

301.88 
301.94 
304.63 

1551.0 
1559.5 

1604.13 
arm32b 25%-quartile 

median 
75%-quartile 

139.89 
140.17 
141.51 

143.48 
143.62 
144.34 

149.52 
149.65 
152.00 

165.86 
165.86 
168.01 

374.63 
374.63 
377.80 

1882.00 
1882.00 
1998.38 

a Compiled with gcc -funroll-loops -fno-schedule-insns -O2 -fomit-frame-pointer 
b Compiled with gcc -mcpu=arm1020t -O -fomit-frame-pointer 

Table 2. Benchmark results of Grøstl-256 

long 4096 bytes 1536 bytes 576 bytes 64 bytes 8 bytes 
this papera 25%-quartile 

median 
75%-quartile 

156.31 
156.43 
157.33 

159.09 
159.17 
159.78 

163.73 
163.76 
163.95 

176.26 
176.43 
179.02 

337.43 
339.00 
341.59 

2733.50 
2746.00 
2773.50 

bitslice opt32b,c 25%quartile 
median 
75%quartile 

246.33 
247.16 
258.13 

250.37 
250.89 
256.98 

257.26 
257.60 
259.02 

276.41 
276.74 
277.17 

519.83 
523.06 
529.19 

4155.88 
4195.00 
4232.50 

a Compiled with gcc -funroll-loops -O3 -fomit-frame-pointer 
b Compiled with gcc -funroll-loops -fno-schedule-insns -O2 -fomit-frame-pointer 
c Round-2 version with only 35.5 instead of 42 rounds 

Table 3. Benchmark results of JH-256 

long 4096 bytes 1536 bytes 576 bytes 64 bytes 8 bytes 
this papera 25%-quartile 

median 
75%-quartile 

71.50 
71.73 
72.87 

74.31 
74.45 
75.18 

77.46 
77.50 
77.78 

87.80 
87.91 
88.79 

180.59 
182.22 
185.20 

1438.00 
1447.00 
1486.38 

simple32bib 25%-quartile 
median 
75%-quartile 

86.86 
86.95 
88.27 

90.22 
90.28 
90.99 

93.89 
93.92 
94.51 

106.33 
106.54 
106.80 

216.06 
217.75 
218.81 

1723.00 
1731.00 
1752.50 

a Compiled with gcc -funroll-loops -O3 -fomit-frame-pointer 
b Compiled with gcc -mcpu=arm1136jf-s -O3 -fomit-frame-pointer -fno-schedule-insns 

Table 4. Benchmark results of Keccak 
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long 4096 bytes 1536 bytes 576 bytes 64 bytes 8 bytes 
this papera 25%-quartile 42.07 43.13 44.91 49.64 108.48 867.88 

median 42.10 43.16 45.04 49.67 108.73 874.13 
75%-quartile 43.53 43.93 45.83 50.05 113.11 893.50 

sphlib-small 25%-quartile 94.48 96.32 99.39 107.58 209.11 1688.00 
(ver. 3.0)b median 94.57 96.40 99.41 107.65 210.64 1688.88 

75%-quartile 97.18 97.83 99.63 108.79 211.30 1698.50 
a Compiled with gcc -funroll-loops -march=iwmmxt -O2 -fomit-frame-pointer 
b Compiled with gcc -mcpu=arm1136jf-s -O3 -fomit-frame-pointer -fno-schedule-insns 

Table 5. Benchmark results of Skein-256 

long 4096 bytes 1536 bytes 576 bytes 64 bytes 8 bytes 
this papera 25%-quartile 

median 
75%-quartile 

26.72 
26.68 
26.77 

27.48 
27.52 
27.59 

28.95 
29.02 
29.06 

32.48 
32.64 
32.72 

78.20 
79.55 
80.98 

454.50 
461.00 
493.88 

sphlib (ver. 3.0)b 25%-quartile 
median 
75%-quartile 

39.19 
39.19 
39.26 

40.19 
40.19 
40.25 

41.86 
41.86 
41.86 

46.33 
46.33 
46.34 

103.31 
103.31 
103.38 

522.50 
522.50 
535.50 

a Compiled with gcc -mcpu=arm1136j-s -O3 -fomit-frame-pointer 
b Compiled with gcc -mcpu=arm1136jf-s -O2 -fomit-frame-pointer -fno-schedule-insns 

Table 6. Benchmark results of SHA-256 
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