
1001 Ways To Implement Keccak 

1001 Ways To Implement Keccak 

Guido Bertoni1 Joan Daemen1
 

Michaël Peeters2 Gilles Van Assche1 Ronny Van Keer1
 

1STMicroelectronics 

2NXP Semiconductors 

Third SHA-3 candidate conference, Washington DC
 
March 22-23, 2012
 

1 / 24 



1001 Ways To Implement Keccak 

Outline
 

1 

2 

3 

4 

5 

Keccak’s structure 

How to cut a state 
Cutting in lanes 
Cutting in slices 
Bit interleaving 

High-end platforms 

Protection against side-channel attacks 

Closing words 

2 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

Outline
 

1 

2 

3 

4 

5 

Keccak’s structure 

How to cut a state 
Cutting in lanes 
Cutting in slices 
Bit interleaving 

High-end platforms 

Protection against side-channel attacks 

Closing words 

3 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

Keccak: the sponge construction
 

One permutation for the SHA-3 competition: 

Keccak-f[1600] 

Benefits of using a single permutation 
Saving ROM code size / FPGA slices / ASIC area 
No 32-bit/64-bit mismatch (see bit interleaving) 

4 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

But how to easily report speed vs security? 

We report figures for Keccak[r = 1024, c = 576] 

In general, throughput proportional to rate r 

Rate Capacity 
[NIST SP 800-57] 

Security strength 
Relative 

performance 

1376 224 112 ×1.343 
1344 256 128 ×1.312 
1216 384 192 ×1.188 
1088 512 256 ×1.063 

1024 576 n/a 1.000 

576 1024 n/a ÷1.778 

5 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

The state in Keccak 

Keccak-f operates on 3D state 

Efficient implementations 
based on state organization 
and transformations 

x

y z
state

6 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

The state in Keccak 

Keccak-f operates on 3D state 

Efficient implementations 
based on state organization 
and transformations 

x

y z
slice

6 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

The state in Keccak 

Keccak-f operates on 3D state 

Efficient implementations 
based on state organization 
and transformations 

x

y z
lane

6 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

The state in Keccak 

Keccak-f operates on 3D state 

Efficient implementations 
based on state organization 
and transformations 

x

y z
row

6 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

The state in Keccak 

Keccak-f operates on 3D state 

Efficient implementations 
based on state organization 
and transformations 

x

y z
column

6 / 24 



1001 Ways To Implement Keccak 

Keccak’s structure 

The step mappings of Keccak-f
 

7 / 24
 



1001 Ways To Implement Keccak 

How to cut a state 

Outline
 

1 

2 

3 

4 

5 

Keccak’s structure 

How to cut a state 
Cutting in lanes 
Cutting in slices 
Bit interleaving 

High-end platforms 

Protection against side-channel attacks 

Closing words 

8 / 24 



1001 Ways To Implement Keccak 

How to cut a state 

Not cutting it: straightforward hardware architecture
 

Logic for one round + register for the state 
very short critical path = high throughput 

Multiple rounds can be computed in a single clock cycle 
2, 3, 4 or 6 rounds in one shot 

9 / 24 



1001 Ways To Implement Keccak 

How to cut a state 

Cutting in lanes 

Lanes: straightforward software implementation 

Lanes fit in 64-bit registers 

Very basic operations required: 

χ XOR and 1-bit rotations 
ι rotations 
7 just reading the correct words 
X XOR, AND, NOT 
l just a XOR 

10 / 24 



1001 Ways To Implement Keccak 

How to cut a state 

Cutting in lanes 

Lane-wise hardware architecture 

Basic processing unit + RAM 
Improvements over our co-processor: 

5 registers and barrel rotator 
[Kerckhof et al. CARDIS 2011] 
4-stage pipeline, ι in 2 cycles, 
instruction-based parallel execution 
[San and At, ISJ 2012] 

Permutation latency in clock cycles: 
From 5160, to 2137, down to 1062 

11 / 24 



1001 Ways To Implement Keccak 

How to cut a state 

Cutting in slices 

Slice-wise hardware architecture 

Re-schedule the execution
 
X and χ on blocks of slices 
[Jungk et al, ReConFig 2011] 

Suitable for compact FPGA or ASIC 
Performance-area trade-offs 

Possible to select number of processed 
slices from 1 up to 32 
[VHDL on http://keccak.noekeon.org/] 

12 / 24 

http:http://keccak.noekeon.org


1001 Ways To Implement Keccak 

How to cut a state 

Cutting in slices 

Slice-wise hardware architecture 

Re-schedule the execution
 
X and χ on blocks of slices 
[Jungk et al, ReConFig 2011] 

Suitable for compact FPGA or ASIC 
Performance-area trade-offs 

Possible to select number of processed 
slices from 1 up to 32 
[VHDL on http://keccak.noekeon.org/] 

12 / 24 

http:http://keccak.noekeon.org


1001 Ways To Implement Keccak 

How to cut a state 

Cutting in slices 

Slice-wise hardware architecture 

Re-schedule the execution
 
X and χ on blocks of slices 
[Jungk et al, ReConFig 2011] 

Suitable for compact FPGA or ASIC 
Performance-area trade-offs 

Possible to select number of processed 
slices from 1 up to 32 
[VHDL on http://keccak.noekeon.org/] 

12 / 24 

http:http://keccak.noekeon.org


1001 Ways To Implement Keccak 

How to cut a state 

Cutting in slices 

Slice-wise hardware architecture 

Re-schedule the execution
 
X and χ on blocks of slices 
[Jungk et al, ReConFig 2011] 

Suitable for compact FPGA or ASIC 
Performance-area trade-offs 

Possible to select number of processed 
slices from 1 up to 32 
[VHDL on http://keccak.noekeon.org/] 

12 / 24 

http:http://keccak.noekeon.org


1001 Ways To Implement Keccak 

How to cut a state 

Cutting in lanes or in slices? 

Cutting the state in lanes or in slices? 

Both solutions are efficient, results for Virtex 5 

Architecture T.put 
Mbit/s 

Freq. 
MHz 

Slices 
(+RAM) 

Latency 
clocks 

Efficiency 
Mbit/s/slice 

Lane-wise [1] 52 265 448 5160 0.12 
Lane-wise [2] 501 520 151 (+3) 1062 3.32 
Slice-wise [3] 813 159 372 200 2.18 

High-Speed [4] 12789 305 1384 24 9.2 

[1] Keccak Team, Keccak implementation overview 

[2] San, At, ISJ 2012 

[3] Jungk, Apfelbeck, ReConFig 2011 (scaled to r = 1024) 

[4] GMU ATHENa (scaled to r = 1024) 
13 / 24 



1001 Ways To Implement Keccak 

How to cut a state 

Bit interleaving 

Bit interleaving 

Ex.: map 64-bit lane to 32-bit words 
ι seems the critical step 
Even bits in one word 
Odd bits in a second word 
ROT64 B 2 × ROT32 

Can be generalized 
to 16- and 8-bit words 

Can be combined 
with lane/slice-wise architectures 
with most other techniques 

[Keccak impl. overview, Section 2.1] 

14 / 24 



1001 Ways To Implement Keccak 

High-end platforms 

Outline
 

1 

2 

3 

4 

5 

Keccak’s structure 

How to cut a state 
Cutting in lanes 
Cutting in slices 
Bit interleaving 

High-end platforms 

Protection against side-channel attacks 

Closing words 

15 / 24 



1001 Ways To Implement Keccak 

High-end platforms 

SIMD and tree hashing 

Tree hashing is … 
attractive for exploiting multicore availability 
already interesting on a single core 

Efficient evaluation of 2 × Keccak-f on latest CPUs 
In eBASH: keccakc512treed2 using SSE or AVX 

; 7 cycle · core/byte on Sandy Bridge [eBASH] 

16 / 24 



1001 Ways To Implement Keccak 

High-end platforms 

Instruction-level parallelism
 

Improving CPUs via parallel execution units 

Degree of parallelism is intrinsic to the algorithm 
Parallelism for Keccak transformations: 

Up to 25 for X, ι and part of χ 
Minimum is 5 when computing χ-effect 

For instance Itanium 2 versus Intel Core i7: 
6.02 cpb vs 11.48 cpb [eBASH] 

17 / 24 



1001 Ways To Implement Keccak 

High-end platforms 

Dedicated instructions
 

Intel, AMD and ARM are adopting dedicated instructions 
for speeding-up cryptographic algorithms 
Keccak can benefit of simple dedicated instructions: 

Storing the state in 128/256-bit registers
 
XOR-AND-NOT for X
 
Rotate 64-bit words and assign
 

Can also benefit to other primitives! 

18 / 24 



1001 Ways To Implement Keccak 

Protection against side-channel attacks 

Outline
 

1 

2 

3 

4 

5 

Keccak’s structure 

How to cut a state 
Cutting in lanes 
Cutting in slices 
Bit interleaving 

High-end platforms 

Protection against side-channel attacks 

Closing words 

19 / 24 



1001 Ways To Implement Keccak 

Protection against side-channel attacks 

Secure implementations 

Keyed modes may require protected implementations 

Keccak offers protection against 
timing or cache-miss attacks 
no table look-ups 
side channels (DPA) 
efficient secret sharing thanks 
to degree-2 round function 

[Keccak impl. overview, Chapter 5] 

20 / 24 



1001 Ways To Implement Keccak 

Closing words 

Outline
 

1 

2 

3 

4 

5 

Keccak’s structure 

How to cut a state 
Cutting in lanes 
Cutting in slices 
Bit interleaving 

High-end platforms 

Protection against side-channel attacks 

Closing words 

21 / 24 



1001 Ways To Implement Keccak 

Closing words 

Conclusions
 

The state can be cut in many ways 
Lane-wise or slice-wise (e.g., compact hardware) 
Bit interleaving for low-end CPUs 

Good potential for improvements on high-end CPUs 
Simple dedicated instructions 
Instruction-level parallelism 
SIMD instructions with 256-bit registers 

Very simple and efficient side channel protection 

22 / 24 



1001 Ways To Implement Keccak 

Closing words 

Some references 

Keccak implementation overview (version 3.1 or later)
 
Note on side-channel attacks and their counterm…, NIST hash forum 2009
 

Software implementations
 

Building power analysis resistant implementations of Keccak, SHA-3 2010
 
Note on Keccak parameters and usage, NIST hash forum 2010
 

Bernstein and Lange, eBASH
 
Wenzel-Benner and Gräf, XBX
 

Hardware implementations on FPGA
 
Kerckhof et al., CARDIS 2011
 
Jungk and Apfelbeck, ReConFig 

ATHENa project
 

2011
 
San and At, ISJ 2012
 

Hardware implementations on ASIC
 
Henzen et al., CHES 2010
 
Tillich et al., SHA-3 2010
 
Guo et al., DATE 2012
 

http://keccak.noekeon.org/ 
23 / 24
 

http://keccak.noekeon.org/


1001 Ways To Implement Keccak 

Closing words 

Thank you!
 

24 / 24 


	Keccak's structure
	How to cut a state
	Cutting in lanes
	Cutting in slices
	Bit interleaving

	High-end platforms
	Protection against side-channel attacks
	Closing words

