
1001 Ways To Implement Keccak

1001 Ways To Implement Keccak

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1 Ronny Van Keer1

1STMicroelectronics

2NXP Semiconductors

Third SHA-3 candidate conference, Washington DC
March 22-23, 2012

1 / 24



1001 Ways To Implement Keccak

Outline

1 Keccak’s structure

2 How to cut a state
Cutting in lanes
Cutting in slices
Bit interleaving

3 High-end platforms

4 Protection against side-channel attacks

5 Closing words

2 / 24



1001 Ways To Implement Keccak

Keccak’s structure

Outline

1 Keccak’s structure

2 How to cut a state
Cutting in lanes
Cutting in slices
Bit interleaving

3 High-end platforms

4 Protection against side-channel attacks

5 Closing words

3 / 24



1001 Ways To Implement Keccak

Keccak’s structure

Keccak: the sponge construction

One permutation for the SHA-3 competition:

Keccak-f[1600]

Benefits of using a single permutation
Saving ROM code size / FPGA slices / ASIC area
No 32-bit/64-bit mismatch (see bit interleaving)

4 / 24



1001 Ways To Implement Keccak

Keccak’s structure

But how to easily report speed vs security?

We report figures for Keccak[r = 1024, c = 576]

In general, throughput proportional to rate r

[NIST SP 800-57] Relative
Rate Capacity Security strength performance

1376 224 112 ×1.343
1344 256 128 ×1.312
1216 384 192 ×1.188
1088 512 256 ×1.063

1024 576 n/a 1.000

576 1024 n/a ÷1.778

5 / 24



1001 Ways To Implement Keccak

Keccak’s structure

The state in Keccak

Keccak-f operates on 3D state

Efficient implementations
based on state organization
and transformations

x

y z
state

6 / 24



1001 Ways To Implement Keccak

Keccak’s structure

The state in Keccak

Keccak-f operates on 3D state

Efficient implementations
based on state organization
and transformations

x

y z
slice

6 / 24



1001 Ways To Implement Keccak

Keccak’s structure

The state in Keccak

Keccak-f operates on 3D state

Efficient implementations
based on state organization
and transformations

x

y z
lane

6 / 24



1001 Ways To Implement Keccak

Keccak’s structure

The state in Keccak

Keccak-f operates on 3D state

Efficient implementations
based on state organization
and transformations

x

y z
row

6 / 24



1001 Ways To Implement Keccak

Keccak’s structure

The state in Keccak

Keccak-f operates on 3D state

Efficient implementations
based on state organization
and transformations

x

y z
column

6 / 24



1001 Ways To Implement Keccak

Keccak’s structure

The step mappings of Keccak-f

7 / 24



1001 Ways To Implement Keccak

How to cut a state

Outline

1 Keccak’s structure

2 How to cut a state
Cutting in lanes
Cutting in slices
Bit interleaving

3 High-end platforms

4 Protection against side-channel attacks

5 Closing words

8 / 24



1001 Ways To Implement Keccak

How to cut a state

Not cutting it: straightforward hardware architecture

Logic for one round + register for the state
very short critical path ⇒ high throughput

Multiple rounds can be computed in a single clock cycle
2, 3, 4 or 6 rounds in one shot

9 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in lanes

Lanes: straightforward software implementation

Lanes fit in 64-bit registers

Very basic operations required:

θ XOR and 1-bit rotations
ρ rotations
π just reading the correct words
χ XOR, AND, NOT
ι just a XOR

10 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in lanes

Lane-wise hardware architecture

Basic processing unit + RAM
Improvements over our co-processor:

5 registers and barrel rotator
[Kerckhof et al. CARDIS 2011]
4-stage pipeline, ρ in 2 cycles,
instruction-based parallel execution
[San and At, ISJ 2012]

Permutation latency in clock cycles:
From 5160, to 2137, down to 1062

11 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in slices

Slice-wise hardware architecture

Re-schedule the execution
χ and θ on blocks of slices
[Jungk et al, ReConFig 2011]

Suitable for compact FPGA or ASIC
Performance-area trade-offs

Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in slices

Slice-wise hardware architecture

Re-schedule the execution
χ and θ on blocks of slices
[Jungk et al, ReConFig 2011]

Suitable for compact FPGA or ASIC
Performance-area trade-offs

Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in slices

Slice-wise hardware architecture

Re-schedule the execution
χ and θ on blocks of slices
[Jungk et al, ReConFig 2011]

Suitable for compact FPGA or ASIC
Performance-area trade-offs

Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in slices

Slice-wise hardware architecture

Re-schedule the execution
χ and θ on blocks of slices
[Jungk et al, ReConFig 2011]

Suitable for compact FPGA or ASIC
Performance-area trade-offs

Possible to select number of processed
slices from 1 up to 32
[VHDL on http://keccak.noekeon.org/]

12 / 24



1001 Ways To Implement Keccak

How to cut a state

Cutting in lanes or in slices?

Cutting the state in lanes or in slices?

Both solutions are efficient, results for Virtex 5

Architecture T.put Freq. Slices Latency Efficiency
Mbit/s MHz (+RAM) clocks Mbit/s/slice

Lane-wise [1] 52 265 448 5160 0.12
Lane-wise [2] 501 520 151 (+3) 1062 3.32
Slice-wise [3] 813 159 372 200 2.18

High-Speed [4] 12789 305 1384 24 9.2

[1] Keccak Team, Keccak implementation overview

[2] San, At, ISJ 2012

[3] Jungk, Apfelbeck, ReConFig 2011 (scaled to r = 1024)

[4] GMU ATHENa (scaled to r = 1024)
13 / 24



1001 Ways To Implement Keccak

How to cut a state

Bit interleaving

Bit interleaving

Ex.: map 64-bit lane to 32-bit words
ρ seems the critical step
Even bits in one word
Odd bits in a second word
ROT64 ↔ 2×ROT32

Can be generalized
to 16- and 8-bit words

Can be combined
with lane/slice-wise architectures
with most other techniques

[Keccak impl. overview, Section 2.1]

14 / 24



1001 Ways To Implement Keccak

High-end platforms

Outline

1 Keccak’s structure

2 How to cut a state
Cutting in lanes
Cutting in slices
Bit interleaving

3 High-end platforms

4 Protection against side-channel attacks

5 Closing words

15 / 24



1001 Ways To Implement Keccak

High-end platforms

SIMD and tree hashing

Tree hashing is …
attractive for exploiting multicore availability
already interesting on a single core

Efficient evaluation of 2× Keccak-f on latest CPUs
In eBASH: keccakc512treed2 using SSE or AVX

≈ 7 cycle · core/byte on Sandy Bridge [eBASH]

16 / 24



1001 Ways To Implement Keccak

High-end platforms

Instruction-level parallelism

Improving CPUs via parallel execution units

Degree of parallelism is intrinsic to the algorithm
Parallelism for Keccak transformations:

Up to 25 for χ, ρ and part of θ
Minimum is 5 when computing θ-effect

For instance Itanium 2 versus Intel Core i7:
6.02 cpb vs 11.48 cpb [eBASH]

17 / 24



1001 Ways To Implement Keccak

High-end platforms

Dedicated instructions

Intel, AMD and ARM are adopting dedicated instructions
for speeding-up cryptographic algorithms
Keccak can benefit of simple dedicated instructions:

Storing the state in 128/256-bit registers
XOR-AND-NOT for χ
Rotate 64-bit words and assign

Can also benefit to other primitives!

18 / 24



1001 Ways To Implement Keccak

Protection against side-channel attacks

Outline

1 Keccak’s structure

2 How to cut a state
Cutting in lanes
Cutting in slices
Bit interleaving

3 High-end platforms

4 Protection against side-channel attacks

5 Closing words

19 / 24



1001 Ways To Implement Keccak

Protection against side-channel attacks

Secure implementations

Keyed modes may require protected implementations

Keccak offers protection against
timing or cache-miss attacks
no table look-ups
side channels (DPA)
efficient secret sharing thanks
to degree-2 round function

[Keccak impl. overview, Chapter 5]

20 / 24



1001 Ways To Implement Keccak

Closing words

Outline

1 Keccak’s structure

2 How to cut a state
Cutting in lanes
Cutting in slices
Bit interleaving

3 High-end platforms

4 Protection against side-channel attacks

5 Closing words

21 / 24



1001 Ways To Implement Keccak

Closing words

Conclusions

The state can be cut in many ways
Lane-wise or slice-wise (e.g., compact hardware)
Bit interleaving for low-end CPUs

Good potential for improvements on high-end CPUs
Simple dedicated instructions
Instruction-level parallelism
SIMD instructions with 256-bit registers

Very simple and efficient side channel protection

22 / 24



1001 Ways To Implement Keccak

Closing words

Some references

Keccak implementation overview (version 3.1 or later)
Note on side-channel attacks and their counterm…, NIST hash forum 2009
Building power analysis resistant implementations of Keccak, SHA-3 2010
Note on Keccak parameters and usage, NIST hash forum 2010
Software implementations

Bernstein and Lange, eBASH
Wenzel-Benner and Gräf, XBX

Hardware implementations on FPGA
Kerckhof et al., CARDIS 2011
Jungk and Apfelbeck, ReConFig 2011
San and At, ISJ 2012
ATHENa project

Hardware implementations on ASIC
Henzen et al., CHES 2010
Tillich et al., SHA-3 2010
Guo et al., DATE 2012

http://keccak.noekeon.org/
23 / 24

http://keccak.noekeon.org/


1001 Ways To Implement Keccak

Closing words

Thank you!

24 / 24


	Keccak's structure
	How to cut a state
	Cutting in lanes
	Cutting in slices
	Bit interleaving

	High-end platforms
	Protection against side-channel attacks
	Closing words

