
SHA-3 on ARM11 processors

Bo-Yin Yang

Joint work with Peter Schwabe, Shang-Yi Yang

March 22, 2012

3rd SHA-3 Candidate Conference



Introduction

I Most smartphones and tablets and many embedded devices are
powered by ARM processors

I One of the most widespread microarchitectures: ARM11 (>
500,000,000 chips sold per year)

I Large portion of those chips is used in environments that want fast
crypto

I Question answered here: How fast are the 256-bit output versions of
the 5 remaining SHA-3 candidates on ARM11

I Implementations in hand-optmized assembly
I Further interpretations of the results:

I Performance of SHA-3 candidates on a “typical” 32-bit
microarchitecture

I How good are compilers at optmizing existing C implementations for
a simple 32-bit architecture

SHA-3 on ARM11 processors 2



Introduction

I Most smartphones and tablets and many embedded devices are
powered by ARM processors

I One of the most widespread microarchitectures: ARM11 (>
500,000,000 chips sold per year)

I Large portion of those chips is used in environments that want fast
crypto

I Question answered here: How fast are the 256-bit output versions of
the 5 remaining SHA-3 candidates on ARM11

I Implementations in hand-optmized assembly
I Further interpretations of the results:

I Performance of SHA-3 candidates on a “typical” 32-bit
microarchitecture

I How good are compilers at optmizing existing C implementations for
a simple 32-bit architecture

SHA-3 on ARM11 processors 2



The ARM11 microarchitecture

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjecent
32-bit registers (same cost as 32-bit load/store)

SHA-3 on ARM11 processors 3



The ARM11 microarchitecture

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjecent
32-bit registers (same cost as 32-bit load/store)

SHA-3 on ARM11 processors 3



The ARM11 microarchitecture

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjecent
32-bit registers (same cost as 32-bit load/store)

SHA-3 on ARM11 processors 3



BLAKE

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances

I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates

I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 4



BLAKE

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates
I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 4



BLAKE

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates
I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 4



BLAKE

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates

I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 4



BLAKE

I Main work: 14 rounds, each consisting of 8 evaluations of G
I Each G: 6 additions, 6 xors, 4 rotations by fixed distances
I Merge rotations of outputs with arithmetic:

I Do not rotate output after instruction, rotate for free when the value
is used as input

I Eventually, both inputs of an instruction need to be rotated:

a← (b ≫ n1)� (c ≫ n2).

I Compute:
a← b� (c ≫ (n2 − n1))

and set the implicit rotation distance of a to n1

I With full unrolling this eliminates all but the last rotates
I Additional optimization: Reduction of loads and stores
I Speed: 33.93 cycles/byte for long messages

SHA-3 on ARM11 processors 4



Grøstl

I Main work: 10 rounds, each consisting of permutations P and Q,
similar to AES

I Use Lookup-table-based approach (similar to AES)
I Each round, each permutation: 64 64-bit table lookups and 56 xors

of 64-bit values
I With suitable tables (8 KB): support 64-bit loads
I Use interleaved tables to reduce the size of constant offsets
I Speed: 110.16 cycles/byte for long messages

SHA-3 on ARM11 processors 5



JH

I Designed for bitsliced implementations (128-bit or 256-bit vectors)
I Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)

I Full unrolling would result in very large code: unroll 7 loop iterations
instead

I Two loops: over 4 32-bit words and over 6 blocks of 7 rounds
I Reorder loops to avoid frequent loads and stores (requires attention

in the last two rounds of each block)
I Additional operation: Swap blocks of adjecent bits (1-bit, 2-bit,

4-bit, . . . 64-bit blocks)
I For 16-bit blocks: Use free rotation, for 8-bit blocks use rev16

instruction
I Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors 6



JH

I Designed for bitsliced implementations (128-bit or 256-bit vectors)
I Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)
I Full unrolling would result in very large code: unroll 7 loop iterations

instead
I Two loops: over 4 32-bit words and over 6 blocks of 7 rounds
I Reorder loops to avoid frequent loads and stores (requires attention

in the last two rounds of each block)

I Additional operation: Swap blocks of adjecent bits (1-bit, 2-bit,
4-bit, . . . 64-bit blocks)

I For 16-bit blocks: Use free rotation, for 8-bit blocks use rev16
instruction

I Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors 6



JH

I Designed for bitsliced implementations (128-bit or 256-bit vectors)
I Main work: 42 rounds, each with 48 logical operations on 128-bit

vectors (4 operations on 32-bit words)
I Full unrolling would result in very large code: unroll 7 loop iterations

instead
I Two loops: over 4 32-bit words and over 6 blocks of 7 rounds
I Reorder loops to avoid frequent loads and stores (requires attention

in the last two rounds of each block)
I Additional operation: Swap blocks of adjecent bits (1-bit, 2-bit,

4-bit, . . . 64-bit blocks)
I For 16-bit blocks: Use free rotation, for 8-bit blocks use rev16

instruction
I Speed: 156.43 cycles/byte for long messages

SHA-3 on ARM11 processors 6



Keccak

I Keccak is operating on 64-bit words, but no additions involved
I Implementation technique suggested by designers for 32-bit

architectures: bit interleaving
I All bits of odd positions in one 32-bit word, all bits at even positions

in another 32-bit word
I Advantage: Rotations can be done as 32-bit rotations (free for

ARM11)

I Main work: 24 rounds, each round consists of 150 xors and 50 ands
I Merge (almost) all rotations with arithmetic as for Blake
I Main trouble: Almost 50% overhead from loads and stores
I This is with use of 64-bit stores
I Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors 7



Keccak

I Keccak is operating on 64-bit words, but no additions involved
I Implementation technique suggested by designers for 32-bit

architectures: bit interleaving
I All bits of odd positions in one 32-bit word, all bits at even positions

in another 32-bit word
I Advantage: Rotations can be done as 32-bit rotations (free for

ARM11)
I Main work: 24 rounds, each round consists of 150 xors and 50 ands
I Merge (almost) all rotations with arithmetic as for Blake

I Main trouble: Almost 50% overhead from loads and stores
I This is with use of 64-bit stores
I Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors 7



Keccak

I Keccak is operating on 64-bit words, but no additions involved
I Implementation technique suggested by designers for 32-bit

architectures: bit interleaving
I All bits of odd positions in one 32-bit word, all bits at even positions

in another 32-bit word
I Advantage: Rotations can be done as 32-bit rotations (free for

ARM11)
I Main work: 24 rounds, each round consists of 150 xors and 50 ands
I Merge (almost) all rotations with arithmetic as for Blake
I Main trouble: Almost 50% overhead from loads and stores
I This is with use of 64-bit stores
I Speed: 71.73 cycles/byte for long messages

SHA-3 on ARM11 processors 7



Skein

I Main work: 72 rounds, each performing 4 MIX operations
I Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

rotation
I After each 4 rounds: “key injection”

I Naive implementation has huge overhead from register spills
I Optimization consists in rearranging independent MIX operations to

reduce number of spills
I Furthermore, we precompute part of the key injection: speedup by

1.78 cycles/byte
I Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Skein

I Main work: 72 rounds, each performing 4 MIX operations
I Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

rotation
I After each 4 rounds: “key injection”
I Naive implementation has huge overhead from register spills
I Optimization consists in rearranging independent MIX operations to

reduce number of spills

I Furthermore, we precompute part of the key injection: speedup by
1.78 cycles/byte

I Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Skein

I Main work: 72 rounds, each performing 4 MIX operations
I Each MIX operation: One 64-bit addition, one 64-bit xor, one 64-bit

rotation
I After each 4 rounds: “key injection”
I Naive implementation has huge overhead from register spills
I Optimization consists in rearranging independent MIX operations to

reduce number of spills
I Furthermore, we precompute part of the key injection: speedup by

1.78 cycles/byte
I Speed: 42.10 cycles/byte for long messages

SHA-3 on ARM11 processors 8



Results

Cycles/byte reported by eBASH on a Samsung Galaxy i7500 smart phone
(528 MHz ARM11) for long messages (median):

This paper Previously fastest in eBASH
Blake 33.93 46.29 (sphlib v3.0)
Grøstl 110.16 140.17 (arm32, assembly!)
JH 156.43 247.16 (bitslice_opt32,

round-2 version with only 35.5 rounds)
Keccak 71.73 86.95 (simple32bi)
Skein 42.10 94.57 (sphlib-small v3.0)
SHA-256 26.6 39.19 (sphlib v3.0)

Details for various message lengths and quartiles in the paper.

SHA-3 on ARM11 processors 9



Results online

I All software is in the public domain and included in SUPERCOP
I Paper is online at http://cryptojedi.org/papers/#sha3arm

SHA-3 on ARM11 processors 10


