Key Management:
Lessons Learned

Vijay Bharadwaj

Microsoft Corporation

For those viewing via webcast, please submit questions for
this presentation to kmwquestions@nist.gov

Background

* Microsoft ships a lot of cryptography
— CryptoAPI since 1996 (Windows 95/ IE 3.0)
— CNG since 2006/2007 (Windows Vista)

— BitLocker, EFS, TLS, IPsec, CMS, Certificate
Services, ...

— Office, SQL, Exchange, ...
e Also many third party CAPI/CNG applications

e This talk is about stuff we’ve learned over the
years

mailto:kmwquestions@nist.gov

Naive Key Recovery

e Build an encryption application.
— What if we lose the keys?
* Add a recovery key.
— What if we lose the recovery key?
e Add key escrow.
— What if we don’t trust the server?
— What about key distribution, roaming, etc.?

Key Recovery: Lessons

Need to analyze the system for both security and
reliability

Need trust agility, e.g.:

— Enterprise: untrusted client, trusted server

— Consumer cloud service: trusted client, untrusted
server

— Federated: node in two domains

Need to scale over the complete lifecycle
— Expiration, revocation, rekeying, etc.

SP 800-57 is a good start

Cryptography and Real Life

* Keys are used to achieve security, but real-life
security objectives are defined in human terms
— Systems are broken by exploiting this difference

e Example:

— Security objective: only Alice and Bob can read this
email

— Crypto achieves: only K
email

and K, , can decrypt the

alice

— The gap must be addressed by key management

Modeling System Security

-
-
#

Commands. ; Configuration
User < : > Data
Responses \ Results
\

A
*

e Security Development Lifecycle (SDL)
— Conceived in 2002, mandatory since 2004
— Requires threat modeling at design stage

— Threat analysis based on STRIDE model applied to
a Data Flow Diagram

«»» SDL: http://msdn.microsoft.com/en-us/security/cc448177.aspx
+»» Threat Modeling Tool: http://msdn.microsoft.com/en-us/security/dd206731.aspx

http://msdn.microsoft.com/en-us/security/dd206731.aspx
http://msdn.microsoft.com/en-us/security/cc448177.aspx

Ceremonies

* Representation of one path through a DFD

e Useful for analyzing end-to-end security of
processes

e Analysis finds “out of band” attacks such as
social engineering

«» Ceremony analysis: http://eprint.iacr.org/2007/399

Ceremony Example: S/MIME

Bob’s

Alice’s
phone

computer

Signed, encrypted message

http://eprint.iacr.org/2007/399

Ceremony Example: S/MIME

Al Alice’s Alice’s Bob’s Bob’s Bob
ice computer directory computer phone
Message,
endto | Get K
Bob |e——>3
Signed, encrypted message
KBOB
—> Messags
i i Carol’s Bob’s Bob’s
Alice Alice’s Alice’s Carol A Bob
computer directory CA computer phone
Negotiate
Request Regquestikeys
Kear Kagg
K
<~ —— b BOB_ _ | _ ___
Kea
Message,
Send to, | Get K
“Bob fe——%
Signed fencryptedimessage
KBOB
Messagg

Why does this matter?

e Designing key management in isolation leads
to broken ceremonies
— Good ceremonies tend to be application-specific
* Keep cryptography out of end-user Ul metaphor

— Design key management platform for
composability with existing subsystems such as
identity and authentication

— Analyze end-to-end process for security and
reliability

Engineering Considerations

Crypto is not just another math function

— Even bug-free crypto code decays over time
— Plan for algorithms breaking (cf. DES, MDS5, ...)

Algorithm agility is a must

* Are you creating a super-administrator?
— Need administrative role separation

What about authentication keys?

Engineering Considerations

* Hardware is not software
— Different failure modes
— Different ability to update
e Form factors — the low end (CPU, network,
power) is always with us
* Above all, simplicity counts
— Dev/test complexity is exponential in # of MAYs

Summary

* Good key management is application-specific

— Its success is defined by how secure and reliable the
whole system is

— Therefore, it needs to be deeply integrated with the
rest of the system
* So what do we need from a generic key
management system?

— A collection of generic building blocks that can be
integrated into a system

— Methods to analyze the resulting system end to end

