

Securely Managing Cryptographic Keys used within a Cloud Environment

Dr. Sarbari Gupta

sarbari@electrosoft-inc.com

703-437-9451 ext 12

2012 NIST Cryptographic Key Management Workshop September 10-11, 2012

- Federal government moving computing/storage to Cloud
 - Vivek Kundra's Cloud First Strategy
 - OMB M-10-19 FY 2012 Budget Guidance

- Remote operations, Co-tenancy, Distributed Management
- Cryptography essential to secure cloud operations
 - Use of sound Key Management Practices is critical
 - Yet, limited visibility into Cloud Key Management
- FedRAMP streamlines Cloud Authorizations
 - Does it provide enough visibility or assurance for Cloud Key Management?

Cloud Service Provider (CSP) - Models

- Cloud Service Models
 - Software as a Service (SaaS) Access to applications and services hosted in cloud
 - Platform as a Service (PaaS) Building blocks to rapidly develop/host cloud applications
 - Infrastructure as a Service (laas) processing power, storage
- Cloud Deployment Models
 - Public Cloud
 - Private Cloud
 - Community Cloud
 - Hybrid Cloud

Not all Clouds are created equal!

Cloud Based Systems – Uncertainties

Processor

- Where is my process running?
- Am I sharing the processor with other users/organizations?

Data Storage

- Where does my data reside?
- Is my data co-resident with other users' data?

Communication

- How does my CSP know who I am?
- How is my connection to cloud components protected?

Administration

- Who administers the Cloud Infrastructure?
- Who has access to my data? My activity history?

Key Management

- Where and how are keys: Generated? Stored?
- How are keys: Distributed? Protected?
- How are keys and data recovered if lost?
- When and how are keys destroyed?

Cloud Systems – Dependence on Browser

- Browser is integral to Cloud Systems
 - User Interface Presentation
 - Data input and output from Cloud
 - Communication with Cloud Components
- Browsers have significant vulnerabilities
 - Weak implementation of security protocols
 - Man-in-the-middle (MITM) and other attacks
 - Browser contamination from other websites

Browser represents inherent weakness!

Cryptography Integral to Cloud Operations

- Supports strong authentication of remote Users, Administrators
- Implements strong communication protocols between User (browser) and cloud
- Partitions User data in co-tenancy environments
- Provides data confidentiality (even from Administrators)
- Supports data integrity (tamperdetection)

Cryptographic Key Management - Basics (I)

- Cryptographic Keys Core Functions
 - Confidentiality
 - Integrity
 - Source Authentication
- Key Management Scope
 - Key Generation
 - Key Storage
 - Key Distribution
 - Key Recovery
 - Key Destruction

Cryptographic Key Management - Basics (II)

- Key Management Critical Dimensions
 - Key Type, Algorithms, Strength, Crypto-period, Metadata
 - Key Generation, Acquisition
 - Key Use, Users, Applications
 - Key Establishment, Agreement, Distribution
 - Key Material Protection (storage, transit)
 - Key Access Control
 - Key Backup, Recovery
 - Key Renewal, Revocation, Destruction

Cloud Cryptography – Visibility and Control

- Remote Authentication; Secure Communication with Cloud
 - Some Visibility
 - Use of Third Party Credential Providers; Standard Communication Protocols (TLS/SSL)
 - Some Control
 - User may select own Credential Provider, Configure Browser settings
- Cloud Data Protection (Confidentiality, Integrity)
 - SaaS no visibility; no control
 - CSP implements all crypto opaque to Cloud User
 - PaaS limited visibility; limited control
 - o CSP implements crypto in lower layers opaque to Cloud User
 - o May provide toolset (building blocks) for application development
 - laas limited visibility; more control
 - CSP implements infrastructure level crypto opaque to Cloud User
 - Cloud User controls key management for virtualized IT components

FedRAMP Control for Key Management (based on SP 800-53 R3)

SC-12 CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT

- Control: The organization establishes and manages cryptographic keys for required cryptography employed within the information system.
- Control Enhancements for MODERATE baseline:
 - (2) The organization produces, controls, and distributes symmetric cryptographic keys using [NIST-approved] key management technology and processes.
 - o (5) The organization produces, controls, and distributes asymmetric cryptographic keys using approved PKI Class 3 or Class 4 certificates and hardware security tokens that protect the user's private key.

SC-13 USE OF CRYPTOGRAPHY

- Control: The information system implements required cryptographic protections using cryptographic modules that comply with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.
- Control Enhancements for MODERATE baseline:
 - o (1)The organization employs, at a minimum, FIPS-validated cryptography to protect unclassified information.

FedRAMP

FedRAMP Weaknesses for Key Management

- No minimum requirements for key parameters
- No explicit requirement for Key Management Policy (KMP)
- No explicit requirement for Key Management Practices Statement (KMPS)
- No requirement for key recovery
- Result Cloud User has:
 - Little visibility into cloud key management
 - Limited assurance of soundness of key management policies, practices and operations

Way Forward 01010

- Establish Federal Profile for Cloud Key Management
 - Based on SP 800-152 (being developed)
 - More stringent requirements due to Cloud Environment

- FedRAMP require that CSPs
 - Follow Federal Profile for Cloud Key Management
 - Develop Key Management Plan (KMP) and Key Management Practices Statements (KMPS)
 - NIST SP 800-57– Part 2: Best Practices for Key Management Organization
 - Have Mandatory 3rd Party Auditing against KMP/KMPS

Wrap-Up and Contact Information

Dr. Sarbari Gupta – Electrosoft

Email: <u>sarbari@electrosoft-inc.com</u>

Phone: 703-437-9451 ext 12

LinkedIn: <u>http://www.linkedin.com/profile/view?id=8759633</u>

