Securely Managing Cryptographic Keys used within a Cloud Environment

Dr. Sarbari Gupta
sarbari@electrosoft-inc.com
703-437-9451 ext 12

2012 NIST Cryptographic Key Management Workshop
September 10-11, 2012
Introduction

- Federal government moving computing/storage to Cloud
 - Vivek Kundra’s Cloud First Strategy
 - OMB M-10-19 – FY 2012 Budget Guidance

- Cloud Computing has **unique** security challenges
 - Remote operations, Co-tenancy, Distributed Management

- Cryptography essential to secure cloud operations
 - Use of sound Key Management Practices is critical
 - Yet, limited visibility into Cloud Key Management

- FedRAMP streamlines Cloud Authorizations
 - Does it provide enough visibility or assurance for Cloud Key Management?
Cloud Service Provider (CSP) - Models

- **Cloud Service Models**
 - *Software as a Service (SaaS)* - Access to applications and services hosted in cloud
 - *Platform as a Service (PaaS)* - Building blocks to rapidly develop/host cloud applications
 - *Infrastructure as a Service (IaaS)* - Processing power, storage

- **Cloud Deployment Models**
 - *Public Cloud*
 - *Private Cloud*
 - *Community Cloud*
 - *Hybrid Cloud*

- *Not all Clouds are created equal!*
Cloud Based Systems – Uncertainties

- **Processor**
 - *Where is my process running?*
 - *Am I sharing the processor with other users/organizations?*

- **Data Storage**
 - *Where does my data reside?*
 - *Is my data co-resident with other users’ data?*

- **Communication**
 - *How does my CSP know who I am?*
 - *How is my connection to cloud components protected?*

- **Administration**
 - *Who administers the Cloud Infrastructure?*
 - *Who has access to my data? My activity history?*

- **Key Management**
 - *Where and how are keys: Generated? Stored?*
 - *How are keys: Distributed? Protected?*
 - *How are keys and data recovered if lost?*
 - *When and how are keys destroyed?*
Browser is integral to Cloud Systems
- User Interface – Presentation
- Data input and output from Cloud
- Communication with Cloud Components

Browsers have significant vulnerabilities
- Weak implementation of security protocols
- Man-in-the-middle (MITM) and other attacks
- Browser contamination from other websites

Browser represents inherent weakness!
Cryptography Integral to Cloud Operations

- Supports strong authentication of remote Users, Administrators

- Implements strong communication protocols between User (browser) and cloud

- Partitions User data in co-tenancy environments

- Provides data confidentiality (even from Administrators)

- Supports data integrity (tamper-detection)
Cryptographic Key Management – Basics (I)

- Cryptographic Keys - Core Functions
 - Confidentiality
 - Integrity
 - Source Authentication

- Key Management - Scope
 - Key Generation
 - Key Storage
 - Key Distribution
 - Key Recovery
 - Key Destruction
Key Management - Critical Dimensions

- Key Type, Algorithms, Strength, Crypto-period, Metadata
- Key Generation, Acquisition
- Key Use, Users, Applications
- Key Establishment, Agreement, Distribution
- Key Material Protection (storage, transit)
- Key Access Control
- Key Backup, Recovery
- Key Renewal, Revocation, Destruction
Remote Authentication; Secure Communication with Cloud

- **Some Visibility**
 - Use of Third Party Credential Providers; Standard Communication Protocols (TLS/SSL)

- **Some Control**
 - User may select own Credential Provider, Configure Browser settings

Cloud Data Protection (Confidentiality, Integrity)

- **SaaS - no visibility; no control**
 - CSP implements all crypto – opaque to Cloud User

- **PaaS – limited visibility; limited control**
 - CSP implements crypto in lower layers – opaque to Cloud User
 - May provide toolset (building blocks) for application development

- **IaaS – limited visibility; more control**
 - CSP implements infrastructure level crypto – opaque to Cloud User
 - Cloud User controls key management for virtualized IT components
FedRAMP Control for Key Management
(based on SP 800-53 R3)

- **SC-12 CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT**
 - **Control:** The organization establishes and manages cryptographic keys for required cryptography employed within the information system.
 - **Control Enhancements for MODERATE baseline:**
 - (2) The organization produces, controls, and distributes symmetric cryptographic keys using [NIST-approved] key management technology and processes.
 - (5) The organization produces, controls, and distributes asymmetric cryptographic keys using approved PKI Class 3 or Class 4 certificates and hardware security tokens that protect the user’s private key.

- **SC-13 USE OF CRYPTOGRAPHY**
 - **Control:** The information system implements required cryptographic protections using cryptographic modules that comply with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and guidance.
 - **Control Enhancements for MODERATE baseline:**
 - (1) The organization employs, at a minimum, FIPS-validated cryptography to protect unclassified information.
FedRAMP Weaknesses for Key Management

- No minimum requirements for key parameters
- No explicit requirement for Key Management Policy (KMP)
- No explicit requirement for Key Management Practices Statement (KMPS)
- No requirement for key recovery

Result – Cloud User has:
- Little visibility into cloud key management
- Limited assurance of soundness of key management policies, practices and operations
Way Forward

- Establish Federal Profile for Cloud Key Management
 - Based on SP 800-152 (being developed)
 - More stringent requirements due to Cloud Environment

- FedRAMP require that CSPs
 - Follow Federal Profile for Cloud Key Management
 - Develop Key Management Plan (KMP) and Key Management Practices Statements (KMPS)
 - NIST SP 800-57– Part 2: Best Practices for Key Management Organization
 - Have Mandatory 3rd Party Auditing against KMP/KMPS
Dr. Sarbari Gupta – Electrosoft

Email: sarbari@electrosoft-inc.com
Phone: 703-437-9451 ext 12
LinkedIn: http://www.linkedin.com/profile/view?id=8759633