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Abstract

In this paper, we describe the lightweight variant of the CAESAR
candidate m-Cipher, denoted as w16-Cipher, which provides working with
word sizes of 16-bits and security level of 96-bits or 128 bits. It is parallel,
incremental, nonce based, tag second-preimage resistant, authenticated
encryption cipher with associated data. The basic operations are ARX
(Addition, Rotation and XOR) operations. Its security relies on using
nonce as pair (PMN, SMN). The design of m-Cipher is highly parallel both
for the internal computing engine as well as for the whole crypto primitive.
In this paper we provide an optimized low area implementation for 16-bit
version of the m-function.

1 Introduction

We are living in a period of a big paradigm shift known as the ”Internet of
Things”. The basic premise in this new paradigm is that the ”Internet of
Things” will be a network that connects hundreds of billions or even trillions of
sensors or smart devices. They will be integrated into the wearable things, inte-
grated in the everyday usage, or will be integrated in our surrounding environ-
ment. However, their basic function will be to collect and transmit information.
Then, different types of intelligent applications will use that information to offer
better quality of life, to offer increased safety, to reduce the energy consumption,
the pollution and to offer many other useful actions.

There comes the crucial role of the lightweight cryptography, as a technology
that will ensure the confidentiality, integrity and authenticity of the information
flowing to and from the ”Internet of Things”. In order to solve this security
problems, many lightweight cryptographic algorithms, which include stream ci-
phers, block ciphers and hash functions have already been proposed. However,
these proposals mostly focus on confidentiality and integrity, but not authentic-
ity of the data, as a fundamental security functionality in the real-world systems.



Only a few lightweight authenticated encryption schemes have been proposed
so far, examples are Hummingbird-2 [4] and ALE [3]. Nobody from the ongoing
CAESAR competition for AEAD ciphers [2] has proposed a lightweight version
of their own schemes.

The m-Cipher has its goal to be also lightweight cipher from the designing
time. In its background theory, it uses algebraic structures - quasigroups of order
4 (the smallest one), instead of that from the biggest order and also is designed
to be used on 16-bit registers. The hardware-friendly lightweight block ciphers
in the literature generally result in very costly implementations in software. As
an example, bit permutations are only wiring with zero costs in hardware, while
costing several number of cycles in software. The same is valid for substitution
layers, they generally require large lookup tables in software. This fact led to the
paradox situation that many ”lightweight” ciphers are not actually lightweight
with respect to software implementations. Instead of this, m-Cipher uses only
a set of simple operations, modular addition, bit rotation, and XOR to provide
the diffusion and confusion properties, so it results in relatively fast and cheap
implementation in software and hardware.

The remainder of the paper is organized as follows. Section 2 gives a spec-
ification of the lightweight version of the algorithm. Section 3 introduces some
elements of its cryptanalysis. Section 4 provides lightweight implementation in
hardware. We conclude in Section 5.

2 The lightweight version of m-Cipher

In this section we describe the lightweight variant of the CAESAR candidate
m-Cipher [5]. The recommended variant is with word size of 16-bits and security
level of 96 bits, and is denoted as mw16-Cipher096, or security level of 128 bits,
denoted as m16-Cipher128. Because we are talking about the lightweight version
the number of rounds of the cipher here is 2.

2.1 Specification

m-Cipher is parallel, incremental, nonce based, tag second-preimage resistant,
authenticated encryption cipher with associated data. It is ARX (Addition,
Rotation and XOR) operations based cipher.

The main building element in the operations of encryption/authentication
and decryption/verification is a new construction related to the duplex sponge,
called triplex component. It uses the permutation function m twice, it injects
a counter into the internal state and digests an input string. The triplex com-
ponent always outputs a tag. Optionally after the first call of the permutation
function it can output a string (that can be a ciphertext block or a message
block).

The encryption/authentication operation of w16-Cipher can be described in
five phases. Here we give a short description of each of the phases, more detailed
explanation can be found in the official documentation for the 7-Cipher [5].



1. Padding The padding rule for w16-Cipher is the classical one, first a ”1”
is appended to the message M and associated data AD, followed by ”0”
bits until the end of the block. Than the resulting padded message is split
into m blocks each of which 64 bits, M = M;||Ms]|...||My,. The same is
done also for the associated data, where the number of splitted blocks is
a, AD = AD\||ADs||. .. [|AD,.

2. Initialization The internal state .S is initialized with the secret key K,
and public part of the nonce (public message number) PM N, then it
is updated by applying the permutation function 7. Because, m-Cipher
works in parallel mode, it has an initial value for the state for all of the
parallel parts. We call it Common Internal State (CIS). The next part
of this phase is initializing the counter ctr. Since it is a 64-bit counter we
initialize it from the capacity part of the C'IS.

3. Processing the associated data The associated data is processed block
by block in parallel using e-triplex components. To every block AD; we
associate a unique counter calculated as a sum of the initial counter ctr
and the ordinal number of the processed block ¢ and output the block tag.
At the end we calculate the tag for AD as a component-wise addition of all
the block tags. The final part of this phase is to update the value of CIS.
It is done by xoring CIS with the tag T’ and applying the m permutation
function.

4. Processing the secret message number (SMN) This phase is omitted
if the length of the secret message number SMN is 0 (it is the empty
string). If SMN is not the empty string, it should be a full block (in
this case 64-bits). The first step in this phase is a call to the e-triplex
component. The second step of this phase is updating the CIS (for free)
which becomes the value of the current internal state after the processing
of SMN.

5. Processing the message The message M = M||...||M;]||...||M,, is
processed block by block in parallel by e-triplex components. To every
block M; we associate a unique block counter. The input to every e
triplex component is the C'IS, block ctr and M}, and the output is a pair
(Cj,t;). The final tag T is obtained as a HHg sum of all block tags t; and
the previously obtained tag.

The decryption/verification procedure is defined correspondingly. The only
difference is in the last two phases. The decryption of the SM N is performed
by the use of a d-triplex component. For the decryption of the rest of the
ciphertext we continue to use a d-triplex component. The output is now a
decrypted message block and a tag value. At the end, the supplied tag value T'
is compared to the one computed by the algorithm. Only if the tag is correct,
the decrypted message is returned.



2.2 The permutation function m-function

m-Cipher has ARX based permutation function which we denote as 7 function.
It uses similar operations as the operations used in the hash function Edon-R [7]
but instead of using 8-tuples here we use 4-tuples. The permutation operates
on a b = 256 bits state and updates the internal state through a sequence of 2
successive transformations - rounds. The state I.S can be represented as a list
of four 4-tuples, each of length 16-bits, where b = 4 x 4 x 16.

The general permutation function 7-function consists of three main trans-
formations p, v, o : Zgw — Zgw, where Zgis is the set of all integers between
0 and 2'¢ — 1. These transformations do the work of diffusion and nonlinear
mixing of the input. In all of these transformations the main operation is the
ARX operation .

An algorithmic definition of the * operation over two 4-dimensional vectors
X and Y for 16-bit word sizes is given in Table [T}

More details about the w-Cipher can be found in the paper [6] and official
documentation [5].

3 Security assumptions

The following requirements should be satisfied in order to use w-Cipher securely:

1. The key should be secret and generated uniformly at random:;

2. A nonce in the 7-Cipher can be only PMN, or (PMN, SMN) pair;

If the legitimate key holder uses the same nonce to encrypt two differ-
ent pairs of (plaintext, associated data) (M;y, AD) and (Ms, AD) with
the same secret key K then the confidentiality and the integrity of the
plaintexts are not preserved in m—Cipher. This can be achieved under the
assumption that PM N is always different for any two pairs of messages
with the same key.

Additionally, m-Cipher offers an intermediate level of robustness when a
legitimate key holder uses the same secret key K, the same associated data
AD, the same public message number PM N but different secret message
numbers SMN; and SM Ns for encrypting two different plaintexts M;
and Ms. In that case confidentiality and integrity of the plaintexts are
preserved. However, in that case the confidentiality of SM N; and SM Ny
is not preserved.

3. If verification fails, the decrypted message and the wrong tag should not
be given as an output;

Cipher-structure (Encrypt than MAC). First we want to point out that
it is relatively straightforward to show that the m-Cipher is an Encrypt-then-
MAC authenticated cipher. Let us recall the definition for the Encrypt-then-
MAC authenticated cipher: We say that the authenticated cipher is Encrypt-
then-MAC if a message M is encrypted under a secret key K; and then the tag



Table 1: An algorithmic description of the ARX operation * for 16-bit words.

x operation for 16—bit words

Input: X = (X07X17X27X3) and Y = (}/E),Yl,}/g7Y3)
where X; and Y; are 16-bit variables.

Output: Z = (Zy, Z1, Z2, Z3) where Z; are 16-bit variables.
Temporary 16—bit variables: Tp,...,T11.

p—transformation for X:

To <« ROTL'(0xFOE8 + X, + X1 + Xo);
1 Tn < ROTL'(0xE4E2 + Xo + Xi + Xa);
" Ty « ROTL°(0xE1D8 + Xo + Xo + X3);
Ts <« ROTL''(0xDaD2 + X; + Xo + Xz);
T, « To © Th @ T3
9 It — To @ Th @ Tb;
Ts «— T @ Ta @ T3
T «— To @ T & Ts;
v—transformation for Y:
To <« ROTL?(0xDiCC + Yo + Yo + Y3);
1 Tv < ROTL’(0xCACO + Yi + Yo + Y3);
" Ty <« ROTL"(0xC6C5 + Yo + Y1 + Ya);
T3 <« ROTL™(0xC3B8 + Y, + Yi + Ya);
s <« Th & T @ T
) Tg <« TO (‘B T2 (’D T3§
T <« To @ Ty @ T3
Tiu <« To @ Th @ T2;

Z3s <« Ty + Ty
1 Zo <« Ts5 + Ty
Zy «— Ts + Tio;
Zy <« Tr + Tig




T is calculated with another secret key Ko as M AC(Ks,C). The pair (C,T) is
the output of the authenticated encryption procedure.

If we describe the e-triplex component used in 7-Cipher in a mathematical
form we have the following. First the message M is encrypted producing the
ciphertext C' as

1S «— 7 (C1Spitrate E}—) counter |||| CIScapacity)s
C—M @ ISbit'r‘ate~

Then, the tag T is calculated as

t— 7T(C |||| IScapacity)bitTate-

Here, the value of C'ISyitrate @ counter |||| CIScapacity has the role of K in
the definition of Encrypt-then-MAC, and the value of C' ||| IScapacity has the
role of the pair (K5, C) in the M AC (K>, C) part of the definition of Encrypt-
then-MAC.

Associated Data and NONCE reuse. If we encrypt two different plain-
texts My and My with the same secret key K, associated data AD and nonce
NONCE = (PMN,SMN), then neither the confidentiality nor the integrity
of the plaintexts are preserved in the m—Cipher. However, as one measure to
reduce the risks of a complete reuse of the NONCFE we have adopted the strat-
egy of a composite NONCE = (PMN,SMN). If either PMN or SMN are
different, then both the confidentiality and integrity of plaintexts are preserved.

Plaintext corruption, associated-data corruption, message-number cor-
ruption, ciphertext corruption. We posit that the m-Cipher can straight-
forwardly be proven INT-CTXT secure under the assumption that the permu-
tation 7 is an ideal random permutation without any structural distinguishers,
by adapting the proof of the XOR-MAC scheme [I]. This is due to the close
resemblance of the tag-generation part of the m-Cipher with the XOR-MAC.

Ciphertext prediction. The best distinguishing attack that we know for the
m-Cipher is for the versions w16-Cipher096 and 716-Cipher128 with just one
round and is described in [5]. The complexity of the attack is 25° computations
of the operation #, and the space is 26% x 16 = 269 bytes.

Replay and reordering. For the m-Cipher, the standard defense against
both replay and reordering is for the sender to use strictly increasing public
message numbers PM Ns, and for the receiver to refuse any message whose
message number is no larger than the largest number of any verified message.
This requires both the sender and receiver to keep state.



Sabotage. The 7-Cipher puts the encryption of the SM N value as the first
block of the ciphertext C. Thus, in protocols that use the w-Cipher, the receiver
can make an early reject of invalid messages by decrypting the first block (con-
taining the SMN) and comparing it to its expected value. Only if this check
passes the receiver continues with the rest of the decryption and tag computa-
tion. Note however, that this requires the protocol to not return error messages
to the sender, in order to avoid timing attacks. AES-GCM does not have this

property.

Plaintext espionage. Since the attacker’s goal here is to figure out the user’s
secret message, the only feasible attack can happen when the size of the se-
cret message is small by building a table of encrypted secret messages. To
defend against this attack the w-Cipher requires the nonce pair NONCE =
(PMN,SMN) to have a unique value for every encryption.

Message-number espionage. In the m-Cipher there is a dedicated phase
for encrypting the secret message number SM N, and figuring out the value of
SMN is equivalent to breaking the whole cipher which is infeasible under the
assumptions that the permutation 7() is random.

4 Hardware evaluation

4.1 ARX Custom Processor

In this paper, we introduce three different custom hardware implementations of
m-Cipher. First of all we are going to present how the main operation = from
the 7m-function is built. Here it is called the ARX Custom processor.

4.1.1 Single Width

As shown in Fig. [T} the basic ARX architecture consists of two memories, ten
16-bit adders, two Rotators, and two Xoring banks, distributed in two groups.
One part is used to calculate the 4-dimensional vector X, and the other part is
used to calculate the 4-dimensional vector Y. Each direction is controlled by a
controller, to organize the data flow from the input ports to the output ports.

4.1.2 Memory

The ARX Processor is presented in three different versions based on the data
width size. For the 16 bit version, each memory block consists of three 8-
byte random-access memories and one 8-byte read-only memory to hold the
intermediate values as shown in Fig. 2l Each memory controller is simply a
finite state machine controlling two different counters. The first counter is used
as a write address to get the input for both directions and located in the memory.
Once the data are located, the read counter is used to move the data from the



Output flag

Figure 1: The ARX Processor (Single-Width Core)

memory to the parallel adders to process the intermediate values based on the
adder-controller finite state machines.

16 bits  Imput l

Figure 2: Memory Architecture(16 bit version)



4.1.3 ALU (Single-Width Core)

Once the reading process starts, the adders between the memory and rotators
calculates the first intermediate values controlled by the ADDER controller. In
the 16-bit version, the controller would move in one cycle per each equation;
then rotator starts to calculate the other phase of the equation and hold it in
the Xoring bank. The operation will continue until all four equations have been
calculated (see Sec. 2) . Then the Xoring bank starts to calculate final values
of X and Y in one cycle. The X and Y directions are running in parallel. The
output of them are going to be summed by four 16-bit adders to produce the
output. The final controller is responsible to receive a control signal from both
Xoring blocks in each direction and generate the output flag, which is used to
trigger the further blocks.

4.1.4 Rotator (Single Width)

As shown in Fig. [1] the rotator is receiving data from the adders and sending
data to the Xoring bank, based on the ROL controller. Simply, the rotator
left-rotates the data coming from the adders (see Sec. 2).

sng-tx
sng-ey
sng-ex

(c) Adding Bank

(a) X-direction (b) Y-direction
Figure 3: Xoring & Adding Banks for both directions

The Xoring bank recieves the data from the Rotator and buffers them one
by one, until the four equations have finished their work in the adder section.
Once the four values are ready in the Xoring bank, the Xoring operation starts,
controlled by the Xoring controller as shown in Fig. 3| to produce the final
result of each direction. Once the data has been processed by the Xoring Bank
in each direction, the combination between both outputs Fig. [3c| produces the
final output of the ARX engine Zy, Z1, Zs, Z3.



4.1.5 Final Controller (Single Width)

The final controller, once it has received the xor_flag from the Xoring controller,
will generate the output flag, which is used in further blocks in the 7-Cipher.
4.2 Double-Width Core

Instead of using three adders and one rotator in each direction to compute
the equations as in the single core, we use six adders and two rotators in each
direction. This decreases execution cycles for a given amount of work. However,
this increases memory output ports to 8 instead of 4 ports.

4.3 Quad-Width Core

T Bus

Xoring Bank

Rotator (g {26-bit)
Left [16-bit) g H-direction
N-direction 2

Noring Bank
{15-bith
¥-direction

Rotator
Left {16-bit}
¥-direction

ARX Load

Figure 4: ARX Processor (Quad-Core Width) 16-bit Version

10



Instead of using six adders and two rotators in each direction to compute
the equations as in the double core, we use twelve adders and four rotators in
each direction. This increases memory output ports to 16 instead of 8 ports. As
shown in Fig. @] the ARX consists of dual core processors running in parallel,
each core processor has 8-byte buffer, it receives the data from 16-bit input port.

The buffer has sixteen reading ports, each port is controlled by 2-bit address
bits.The total width of the address port is 32 bits that are coming from the
control unit as shown in Fig. [l Once the data are written on the reading ports,
there are four 16-bit ripple carry adders that are going to process these data
to produce the summation results controlled by XA0C, XA1C, XA2C, XA3C,
YAOC, YA1C, YA2C, and YA3C signals, which come from the control unit. The
result of the adders are going to be process by the 16-bit rotator unit through
Txo, Txy, Txs, Txs, Tyo, Ty, Tys and Tys 16-bit buses.

The data is going to be written on the Txg, Tx1,Txo, Txs, Tyo, Ty1, Ty
and T'ys 16-bit buses once the rotators finish their work, controlled by XRC
and YRC control signals, which come from the control unit. The dual core
processors results are going to be xor-ed to each other by using Xoring Bank,
which are controlled by control signals XXC and XYC. Once the output of the
xoring operation data are written on Xy, X1, Xo, X3, Y, Y7,Y5, and Y3 16-bit
buses, the four 16-bit ripple carry adders start to add the received data and
send it to the FIFO through the Zy, Z1, Z5, Z3 16-bit buses.

The four adders operation are controlled by the control unit XXC and XYC
signals. The 8-byte FIFO is controlled by FIFOC signal and is used to store the
data are operated by the adders. Once the Z buses data are stored in the FIFO,
the control unit is going to set the arx_flag high. This means the ARX engine
processed the data and ready to receive a new data from the input ports.

4.3.1 Buffers

Each processor has eight byte memory, consist of one port for writing and 16
ports for reading. Each port is 16-bit width and each of the reading ports is
controlled by 2-bit address port, which comes from the control unit.

4.3.2 Adder

The 16-bit ARX engine relies on using 8, four 16-bit input ports adders to
process the data comes out of the buffers as shown in Fig. [d] In reality, each
four input port 16-bit adders consists of 3 16-bit ripple carry adders. The first
two adders are used to add the buffer results and the last adder is used to sum
the both results from the previous adders. The all adders in the engine are
controlled by several control bits come from the control unit.

4.3.3 Rotator

The rotator component is responsible on rotating the adders output by different
rotation values based on the mathematical model of the 7-Cipher[5].

11



4.3.4 Xoring Bank

As iti is shown in Fig. [3] the xoring Bank does the same functionality as the
single-core width in Section 4.1.4.

4.4 FPGA Implementation of the Custom ARX Engines

The area, clock rate, and throughput of the custom ARX processing units are
summarized in Tables 2 and Bl

Table 2: The ARX engine

Single Width Double Width Quad Width
Frequency(MHz) | Area(Slices) | Frequency(MHz) [ Area(Slices) | Frequency(MHz) | Area(Slices)
716-Cipher096 371 \ 132 324 \ 154 347 \ 266
Table 3: The ARX Performance (716-Cipher)
Single Width | Double Width | Quad Width
Throughput 3.57 Gbps 3.68 Gpbs 4.34 Gpbs
Area(Slices) 132 154 266
Throughput/Area (Mbps/slices) 27.69 24.47 16.71

5 Conclusion

In this paper, we describe the lightweight variant of the CAESAR candidate
m-Cipher, denoted as w16-Cipher, which provides working with word sizes of
16-bits and security level of 96 bits or 128 bits. We provide an optimized low
area implementation for 16-bit version of the m-function. In the future we plan
to extend this work on the whole cipher and to compare our results with already
published hardware implementations of AEAD ciphers.

Also we are planning to produce the smallest as can be a software imple-
mentation for 7w16-Cipher.
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