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Abstract 

The U.S. National Security Agency (NSA) 
developed the Simon and Speck families of 
lightweight block ciphers as an aid for securing 
applications in very constrained environments 
where AES may not be suitable. This paper sum­
marizes the algorithms, their design rationale, 
along with current cryptanalysis and implemen­
tation results. 

1 Introduction 

Biologists make a distinction between specialist 
species, which occupy narrow ecological niches, and 
generalists, which can survive in a broader variety of 
environmental conditions. Specialists include Kirt­
land’s warbler, a bird that only nests in 5–20 year-old 
jack pine forests, and the koala, which feeds (almost) 
exclusively on eucalyptus leaves. Generalists such as 
the American crow and the coyote are able to adapt to 
a variety of different environments. In a stable world, 
it’s a good strategy to specialize, but when conditions 
change rapidly, specialists don’t always fare so well. 
The new age of pervasive computing is nothing 

if not rapidly changing. And yet, in the world of 
lightweight cryptography, specialists abound. Of 
course there are important research challenges as­
sociated with optimizing performance on particular 
platforms, and the direction taken by many in the 
field has been to take on such challenges, generally 
quite successfully. This can involve optimizing with 
respect to the instruction set for a certain microcon­
troller, or designing algorithms for a particular ASIC 

∗This paper was accepted for the NIST Lightweight Cryptog­
raphy Workshop, 20-21 July 2015. 

application (e.g., with hard-wired key or for IC print­
ing), or designing specifically for low-latency appli­
cations, and so on. 

We would argue that what’s needed in the Internet 
of Things (IoT) era is not more Kirtland’s warblers 
and koalas, as wonderful as such animals may be, 
but crows and coyotes. An animal that eats only eu­
calyptus leaves, even if it outcompetes the koala, will 
never become widely distributed. Similarly, a block 
cipher highly optimized for performance on a partic­
ular microcontroller will likely be outcompeted on 
other platforms, and could be of very limited utility 
in 15 years when its target platform is obsolete. 

Of course it’s hard to get a handle on block cipher 
performance on devices that don’t yet exist. But what 
we can do is strive for simplicity, by designing algo­
rithms around very basic operations that are certain 
to be supported by any future device capable of com­
putation. Simon and Speck aim to be the sort of gener­
alist block ciphers that we think will be required for 
future applications in the IoT era. 
It would be unsatisfactory if we had to defer any 

discussion of performance because we’re waiting for 
the arrival of future devices. But we can measure per­
formance on current platforms, and in this paper we 
demonstrate the sort of performance that is achieved 
by Simon and Speck on a broad range of existing soft­
ware and hardware platforms. We emphasize, how­
ever, that the main point is not the performance of 
Simon and Speck with respect to other algorithms on 
any particular platform. Rather, it’s that by limiting 
the operations we rely on to a small list that works 
well in hardware and software, we obtain algorithms 
that are likely to perform well just about anywhere. 
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2 AES and Lightweight Cryptography 

Before focusing our discussion on Simon and Speck, 
we’d like to better establish the state of play. In par­
ticular, we note that quite a lot of effort has gone into 
reshaping the current go-to block cipher, AES, into a 
solution for lightweight applications. Indeed, great 
strides have been made in this direction in the past 15 
years or so. ASIC implementations of AES-128 have 
been developed with an area of just 2400 gate equiv­
alents (GE) [41] and fast software implementations 
are available for 8-bit [44] and 16-bit [21] microcon­
trollers. 

However, there are limits as to how far these types 
of adaptations can be pushed. They tend to fall short 
of what is required for today’s most constrained envi­
ronments, and surely won’t meet tomorrow’s needs. 
For example, the consensus has long been that a bud­
get of 2000 GE is all the chip area that might reason­
ably be allocated for security on the most constrained 
RFID tags [36], and this is well out of reach for AES 
implementations. On microcontrollers, AES imple­
mentations can be very fast but they also tend to be 
large and complex. Implementations that decrease 
size or complexity certainly exist, but small imple­
mentations tend to be complex (and slow), while sim­
ple implementations tend to be large (and slow). 

One further point about AES: not every application 
requires the same high level of security that AES is 
designed to provide. When resources are scarce, it 
doesn’t always make sense to lavish them on an algo­
rithm providing 128 (or 192 or 256) bits of security 
when 96 might suffice. In addition, the AES block size 
of 128 bits is not always optimal. An RFID authen­
tication protocol may only ask that 64-bit quantities 
be encrypted, and demanding 128 bits of state when 
only 64 are necessary can amount to a significant 
waste of chip area. 

These are the principal reasons for the develop­
ment of new lightweight block ciphers, and many 
new algorithms have been proposed. Since the limi­
tations of AES are more apparent in hardware than 
in software, most of the best efforts to date have fo­
cused on this aspect of the problem. This work has 
produced designs including PRESENT [17], KATAN 
[22], and Piccolo [52], each of which has a very small 
hardware footprint. But none was meant to provide 
high performance on constrained software-based de­
vices, e.g., 8- and 16-bit microcontrollers. The design­
ers of LED [35] and TWINE [57] are more intent on 

supporting software implementations, but these algo­
rithms retain a bias toward hardware performance. 
We believe a lightweight block cipher should be 

“light” on a wide range of hardware- and software-
based devices, including ASICs, FPGAs, and 4-, 8-, 
16-, and 32-bit microcontrollers. Moreover, as noted 
in [11], many of these devices will interact with a 
backend server, so a lightweight block cipher should 
also perform well on 64-bit processors. 
It seems clear to us that there is a need for flexible 

secure block ciphers, i.e., ones which can perform 
well on all of these platforms. Our aim, with the 
design of Simon and Speck, is to make this sort of 
block cipher available for future use. 

3 The Simon and Speck Block Ciphers 

In 2011, prompted by potential U.S. government re­
quirements for lightweight ciphers (e.g., SCADA and 
logistics applications) and the concerns with existing 
cryptographic solutions which we’ve noted above, 
we began work on the Simon and Speck block cipher 
families on behalf of the Research Directorate of the 
U.S. National Security Agency (NSA). 
Because our customers will rely on commercial 

devices, we determined that the only realistic way to 
make the algorithms available would be to put them 
in the public domain. Furthermore, because cost will 
be such an important driver in this area—a fraction of 
a penny per device may make the difference between 
whether a cryptographic solution is viable or not—we 
were motivated to make Simon and Speck as simple, 
flexible, and lightweight as we could. Our hope was 
that their availability would make it possible to raise 
the security bar for future IoT devices. 

The development process culminated in the publi­
cation of the algorithm specifics in June 2013 [9]. Prior 
to this, Simon and Speck were analyzed by NSA crypt-
analysts and found to have security commensurate 
with their key lengths; i.e., no weaknesses were found. 
Perhaps more importantly, the algorithms have been 
pretty heavily scrutinized by the international cryp­
tographic community for the last two years (see, e.g., 
[2], [3], [5], [4], [1], [6], [15], [16], [20], [27], [29], [37], 
[47], [51], [53], [56], [59], [62], [60], [30], [7], [25], [42], 
[24]). Table 1 summarizes the cryptanalytic results as 
of this writing that attack the most rounds of Simon 
and Speck. (We note that the recent paper [7] pur­
ports to attack 24 rounds of Simon 32/64. The author 
informs us that this paper is currently under revision, 
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size alg rounds ref 
total attacked 

32/64 Simon 
Speck 

32 
22 

23 (72%) 
14 (64%) 

[24] 
[29] 

48/72 

48/96 

Simon 
Speck 
Simon 
Speck 

36 
22 
36 
23 

24 (67%) 
14 (64%) 
25 (69%) 
15 (65%) 

[24] 
[29] 
[24] 
[29] 

64/96 

64/128 

Simon 
Speck 
Simon 
Speck 

42 
26 
44 
27 

30 (71%) 
18 (69%) 
31 (70%) 
19 (70%) 

[24] 
[29] 
[24] 
[29] 

96/96 

96/144 

Simon 
Speck 
Simon 
Speck 

52 
28 
54 
29 

37 (71%) 
16 (57%) 
38 (70%) 
17 (59%) 

[61, 24] 
[29] 
[24] 
[29] 

128/128 

128/192 

128/256 

Simon 
Speck 
Simon 
Speck 
Simon 
Speck 

68 
32 
69 
33 
72 
34 

49 (72%) 
17 (53%) 
51 (74%) 
18 (55%) 
53 (74%) 
19 (56%) 

[61, 24] 
[29] 
[24] 

[3, 29] 
[24] 
[29] 

Table 1: Security of Simon and Speck. 

and we have therefore not included those results in 
Table 1. For more, see the comments regarding this 
work in [24].) The content of the table is simple: there 
are no attacks on any member of the Simon or Speck 
families, and each block cipher maintains a healthy 
security margin. 

As we see in the table, Simon and Speck are not sim­
ply block ciphers, but are block cipher families, each 
family comprising ten distinct block ciphers with dif­
fering block and key sizes to closely fit application 
requirements. 
We will write Simon 2n/m n to mean the Simon 

block cipher with a 2n-bit block and m-word (m n-bit) 
key. We will sometimes suppress mention of the key 
and just write Simon 128, for example, to refer to a 
version of Simon with a 128-bit block. The analogous 
notation is used for Speck. 
The block and key sizes we support are shown in 

Table 2. The range here goes from tiny to large: a 32­
bit block with a 64-bit key at the low end, to a 128-bit 
block with a 256-bit key at the high end. 
We note that key lengths below 80 bits or so do 

not provide an especially high level of security, but 

they may still be useful for certain highly constrained 
applications where nothing better is possible. 

block size key sizes 
32 64
 
48 72, 96
 
64 96, 128
 
96 96, 144
 
128 128, 192, 256 

Table 2: Simon and Speck parameters. 

The desire for flexibility through simplicity moti­
vated us to limit the operations used within Simon 
and Speck to the following short list: 

• modular addition and subtraction, + and −, 
• bitwise XOR, ⊕, 
• bitwise AND, &, 
• left circular shift, Sj , by j bits, and 
• right circular shift, S− j , by j bits. 

Speck gets its nonlinearity from the modular addi­
tion operation, which slightly favors software perfor­
mance over hardware. Simon’s nonlinear function is 
a bitwise AND operation, which tends to favor hard­
ware over software. But modular addition can be 
computed efficiently in hardware, and similarly, bit-
wise AND is easy and natural in software. 

The round functions for Simon 2n and Speck 2n 
each take as input an n-bit round key k, together with 
two n-bit intermediate ciphertext words. For Simon, the 
round function is the 2-stage Feistel map 

Rk (x , y) = (y ⊕ f (x) ⊕ k , x), 

where f (x) = (S x & S8x) ⊕ S2x and k is the round 
key. For Speck, the round function is the (Feistel­
based) map 

Rk (x , y) = ( (S−α x + y) ⊕ k , Sβ y ⊕ (S−α x + y) ⊕ k), 

with rotation amounts α = 7 and β = 2 if n = 16 
(block size = 32) and α = 8 and β = 3 otherwise. 

The round functions are composed some number 
of times which depends on the block and key size. 
See Table 1. 

Each algorithm also requires a key schedule to turn 
a key into a sequence of round keys. We briefly de­
scribe the key schedules, but refer the reader to [9] 
for complete details. 
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For Simon, if we let the key value be k0 , . . . , km−1 
(m ∈ {2, 3, 4} is the number of key words), the se­
quence of round keys is k0 , k1 , k2 , . . . , where 

ki+2 = ki ⊕ (I ⊕ S−1)S−3ki+1 ⊕ Ci , 

ki+3 = ki ⊕ (I ⊕ S−1)S−3ki+2 ⊕ Di , 

ki+4 = ki ⊕ (I ⊕ S−1) (S−3ki+3 ⊕ ki+1) ⊕ Ei , 

depending on whether m is 2, 3, or 4, respectively. 
The values Ci , Di , and Ei are round constants which 
serve to eliminate slide properties; we omit discus­
sion of them here. I is the n × n identity matrix. 

Like Simon, Speck has 2-, 3-, and 4-word key sched­
ules. Speck’s key schedules are based on its round 
function, as follows. We let m be the number of words 
of key, and we write the key as (em−2 , . . . , e0 , k0). We 
then generate two sequences ki and ei by 

ei+m−1 = (ki + S−α ei ) ⊕ i and 
ki+1 = Sβ ki ⊕ ei+m−1. 

The value ki is the ith round key, for i ≥ 0. Note the 
round counter i here which serves to eliminate slide 
properties. 

4 Design Notes 

Efficiency and security are competing goals in crypto­
graphic design, and understanding how to strike the 
right balance is the primary challenge faced by a de­
signer. If security is not important, efficiency is easy: 
do nothing! Conversely, if efficiency doesn’t matter, 
then it makes sense to build a round function using 
the most secure cryptographic components available, 
and then iterate an absurdly large number of times. 
But in the real world both of these things matter, and 
we’d like to design algorithms that are maximally 
efficient, while still providing the advertised level of 
security, as determined by the key size. 
There is an important intellectual challenge asso­

ciated with understanding optimally secure crypto­
graphic components such as 8-bit S-boxes. However, 
we would argue that the way to design efficient cryp­
tography, particularly cryptography for constrained 
platforms, is to forgo them in favor of very sim­
ple components, iterating an appropriate number of 
times to obtain a secure algorithm. Such simple com­
ponents are by their nature cryptographically weak, 
making them unappealing to some designers. But 

simplicity enables compact implementations, and de­
ciding on appropriate numbers of rounds is possible 
with analysis. 

The question is whether there is something inher­
ently wrong with this approach. It seems clear to us 
that there isn’t: After all, a complex round function 
can always be factored into a composition of simple 
functions (transpositions, even), and so every block ci­
pher is a composition of simple functions. It’s just that 
in general the decomposition into simple functions 
is not useful to an implementer, because the factors 
tend to be unrelated, and so there is no associated 
efficient implementation of the algorithm. Viewed 
this way, we could imagine that Simon and Speck are 
based on complex round functions—a “round” in this 
sense may in fact mean eight of the usual rounds— 
but we’ve worked to make those complex round func­
tions factor into identical functions, at least up to the 
translations by round key. 
We now discuss in a bit more detail the thinking 

that went into the design of Simon and Speck. 

Nonlinear and Linear Components 

Most designers of lightweight block ciphers employ S-
boxes to provide nonlinearity; a notable feature of Si­
mon and Speck is their lack of dependence on S-boxes. 
The appeal of S-boxes is that, when used as a part 
of a substitution-permutation network (SPN), they 
allow for relatively easy security arguments, at least 
with respect to standard attacks. But for efficiency 
on constrained platforms, we believe that these sorts 
of designs are not optimal. We prefer to increase the 
one-time work necessary to do the cryptanalysis, in 
order to reduce the every-time work of encryption 
and decryption. 
Lightweight block ciphers often use bit permuta­

tions as part of an SPN. The role of these bit per­
mutations is to spread bits around in some optimal 
manner, and therefore allow SPN-style security argu­
ments. If the target platform is an ASIC this is a per­
fectly reasonable thing to do, as such permutations 
are essentially free. But if we care about software 
implementations at all, then extreme care must be 
taken to ensure that the bit permutation can be done 
efficiently on a microprocessor. The bit permutations 
we use are all circular shifts, which are easy to effect 
on just about any platform. While we lose something 
in diffusion rates as compared with more general 
bit permutations, we are able to achieve significant 
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improvements in software performance, even when 
increased round numbers are factored in. 
One might argue that arbitrary bit permutations 

are fine in software, because efficient bit-sliced im­
plementations are possible. However, it doesn’t 
seem wise to rely on these, as they have drawbacks— 
including relatively expensive data transpose oper­
ations on the plaintext and ciphertext, and the in­
ability to efficiently encrypt single plaintext blocks 
(and single encryptions will be necessary for many 
lightweight communication and authentication pro­
tocols). In addition, the code size and the RAM re­
quirements tend to be quite large, making such im­
plementations unsuitable for some lightweight appli­
cations. 

Parameters 

Both Simon and Speck are equipped with a single 
set of rotation parameters for all variants (with the 
exception of the smallest version of Speck, which has 
its own set of parameters). Besides allowing a suc­
cinct description of the family, this uniformity helps re­
duce the risk of coding errors whereby a programmer 
might mistakenly use the Simon 64/128 parameters, 
say, for Simon 128/128. 

Many microcontrollers only support shifts by a 
single bit; the result is that a rotation by two bits 
is twice as expensive as a rotation by one bit. On 
the other hand, 8-bit rotations tend to be easy on 8­
bit microcontrollers, as they correspond to simple 
relabelings of registers, and well supported through 
byte-swap or byte-shuffle operations on machines 
with larger word sizes. So for efficiency on a variety of 
software platforms, it’s best to keep rotation amounts 
as close to multiples of eight as possible. 
The Simon and Speck rotation amounts were care­

fully chosen with this consideration in mind. Both 
algorithms employ 8-bit rotations, and the other rota­
tions used are as close to multiples of 8 as we could 
make them, without sacrificing security. 

In-place Operations in Software 

Speck’s superior performance in software is due in 
part to the fact that it’s possible to implement it en­
tirely with in-place operations, and so moves are un­
necessary. This can be seen in the following pseu­
docode for a round of Speck: 

x = RCS ( x , α ) 
x = x + y 
x = x ⊕ k 
y = LCS ( y , β ) 
y = y ⊕ x 

Simon requires some moves, because multiple op­
erations are done on a single word of intermediate 
ciphertext, and copies need to be made. This fact 
(combined with the fact that Simon uses a weaker 
nonlinear function than Speck, and so more rounds 
are required), makes Speck outperform Simon in soft­
ware. 

Encrypt/Decrypt Symmetry 

To enable compact joint implementations of the en­
cryption and decryption algorithms, it’s best to make 
encryption look like decryption. Simon decryption 
can be accomplished by swapping ciphertext words, 
reading round keys in reverse order, and then swap­
ping the resulting plaintext words. 
We note that Simon beats Speck in this regard 

(Speck decryption requires modular subtraction, and 
the rotations are reversed), because its Feistel step­
ping performs all operations on one word, which is 
precisely why its software implementations required 
moves. 

Key Schedule Considerations 

Speck’s reuse of the round function for key schedul­
ing allows for reductions in code size and improves 
performance for software implementations requiring 
on-the-fly round key generation. 

Because Simon was optimized for hardware, it does 
not take advantage of this software-oriented opti­
mization. Instead, it uses a key schedule which was 
designed to be a little lighter than the round function. 

Of course it is possible to have key schedules even 
simpler than the ones we have used for Simon and 
Speck; for example, one can produce round keys sim­
ply by cycling through key words. This leads to the 
possibility of “hard-wiring” the key in an ASIC im­
plementation, thereby saving considerably on area 
by eliminating any flip-flops needed for holding the 
key. But such an approach, when used together with 
very simple round functions, can lead to related-key 
issues, and we therefore avoided it. 
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We believe the ability to use hard-wired key is of 
limited utility, and it runs counter to our flexibility 
goal by optimizing for a particular sort of use, per­
haps to the detriment of other uses in the form of 
increased numbers of rounds or cryptanalytic weak­
nesses. Our key schedules do the minimal mixing 
that we thought would eliminate the threat of related-
key attacks. 

Both block ciphers include round constants, which 
serve to eliminate slide issues. Speck, where design 
choices were made to favor software over hardware, 
uses one-up counters. Simon achieves a small savings 
in hardware (at a small cost in software) by using a 
sequence of 1-bit constants generated by a 5-bit linear 
register. 
As a final point, we omit plaintext and ciphertext 

key whitening operations, as such operations would 
increase circuit and code sizes. This means that the 
first and last rounds of the algorithms do nothing 
cryptographically, beyond introducing the first and 
last round keys. 

We conclude this section by pointing to some work 
that we think helps to validate our approach to the 
design of Simon and Speck. Designing an algorithm 
to perform well on a particular platform is a straight­
forward proposition; we believe the real test is per­
formance on unintended platforms, in particular plat­
forms which may not even exist today. 

As we’ve noted, it’s hard to get a handle on an issue 
like this, but we have one data point that’s interest­
ing: Because of its simplicity (more precisely, its low 
multiplicative depth), Simon has been picked up by 
more than one team [38], [23] for use in the decidedly 
non-lightweight world of homomorphic encryption. 

5	 Implementations on Constrained 
Platforms 

In this section, we quickly summarize implementa­
tion results for Simon and Speck on constrained plat­
forms, beginning with ASICs and FPGAs, and then 
moving on to microcontrollers. 

ASICs 

Until recently, designers of lightweight cryptography 
primarily took aim at ASIC performance. As a re­
sult there are a number of excellent ASIC designs 
(see Table 3), all of which can be implemented with 
substantially less area than the 2400 GE required by 

AES. Much of this improvement is possible because 
of the hardware complexity of AES components, in 
particular its S-box. But a significant gain comes from 
the recognition that a 128-bit block size is not always 
required for constrained applications, and there is a 
considerable area savings to be had by reducing to a 
64-bit block. 
As we’ve noted, care must be taken with an ASIC 

design, or else software performance can suffer. Soft­
ware performance is indeed a weakness of a num­
ber of existing algorithms. Simon and Speck have 
improved on the state of the art for hardware im­
plementation, while also offering leading software 
performance. 

Simon has ASIC implementations with the smallest 
areas achieved to date, when compared with block 
ciphers with the same block and key size and with 
flexible key. This is because the logic required for a 
bit-serial implementation (meaning that only one bit 
of the round function is computed per clock cycle) 
is minimal: computing a bit of the round function 
requires just one AND and three XORs, and so there 
isn’t much room for further improvement. There is 
of course additional logic required for control (which 
we’ve also worked to minimize), and a few XORs are 
needed in the key schedule, etc., but for the smallest 
implementations, almost all the area is used by the 
flip-flops required to store the state. 
Because the logic required to compute a bit of the 

round function is so small, implementations of Simon 
scale nicely: two bits or more can be updated in one 
clock cycle with minimal impact on area. 

Speck is not far behind Simon with respect to small 
ASIC implementations. The primary differences are 
that Simon’s AND gets replaced with a full adder, and 
some additional multiplexing is required because of 
how the state updates. Its area also scales well, but 
not quite as well as Simon’s. 

In the remainder of this section, we provide area 
and throughput data to illustrate the ASIC perfor­
mance of Simon and Speck. 
Our ASIC implementations were done in VHDL 

and synthesized using Synopsys Design Compiler 
11.09-SP4 to target the ARM SAGE-X v2.0 standard 
cell library for IBM’s 8RF 130 nm (CMR8SF-LPVT) 
process. Worst-case operating conditions were as­
sumed. We did not proceed to place and route: in 
an actual chip there will be interconnect delays that 
haven’t been accounted for, and these delays will 
likely significantly affect clock speeds. But we note 
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that most work in this field—in particular the work 
cited in this paper—uses this approach, similarly ig­
noring interconnect delays, so this shouldn’t bias our 
comparisons. 
The smallest flip-flop available to us had an area 

of 4.25 GE. For a block cipher with a 64-bit block and 
128-bit key, this means at least 4.25 · 192 = 816 GE 
are required for flip-flops. Our bit-serial implemen­
tations of Simon 64/128 and Speck 64/128 have ar­
eas of 958 GE and 996 GE, respectively. This means 
that they require (at most) 958 − 816 = 142 GE and 
996 − 816 = 180 GE, respectively, for all the logic 
required to compute the round function, key sched­
ule, and do the control, which includes loading the 
plaintext and reading out ciphertext. And of the 
142 GE not devoted to storing the cipher and key 
for Simon 64/128, 11 · 4.25 = 46.75 GE, or about a 
third, are flip-flops needed to count rounds in order 
to signal the end of encryption. 

Table 3 compares size-optimized ASIC implemen­
tations of Simon, Speck, and some other prominent 
block ciphers, listing the area and throughput at a 
fixed 100 kHz clock rate. Note that we show our ab­
solute smallest implementations of Simon and Speck, 
with correspondingly low throughputs. Through­
puts can be doubled, quadrupled, etc., for small area 
increases. See [9] for data regarding additional imple­
mentations. For example, quadrupling the through­
put for Simon 128/128 and Speck 128/128 increases 
the area by just 29 GE and 116 GE, respectively. 
An important caveat is that these comparisons 

consider implementations done by different authors, 
with perhaps different levels of effort, and using dif­
ferent cell libraries, so it’s hard to make really mean­
ingful inferences regarding small differences in the 
table. 

Large differences, on the other hand, are meaning­
ful, and comparing Simon and Speck with AES shows 
the dramatic savings possible with a lightweight 
block cipher. At the same security level, Simon and 
Speck nearly halve AES’s 2400 GE area to 1234 and 
1280 GE, respectively. Keeping the same 128-bit key 
size and reducing the block size to 64 bits further 
drops the areas to 958 and 996 GE. Using smaller 
block or key sizes results in even greater area reduc­
tions. 
Some applications won’t require areas to be min­

imized; rather it may be important to maximize ef­
ficiency (throughput divided by area, in kbps/GE). 
The implementations in Table 3 have low efficiency, 

size algorithm area tput ref 
(GE) (kbps) 

48/96 Simon 
Speck 

739 
794 

5.0 
4.0 

[9] 
[9] 

64/80 TWINE 
PRESENT 
Piccolo 
Katan 
KLEIN 

1011 
1030 
1043 
1054 
1478 

16.2 
12.4 
14.8 
25.1 
23.6 

[57] 
[65] 
[52] 
[22] 
[33] 

64/96	 Simon 809 4.4 [9] 
Speck 860 3.6 [9] 
KLEIN 1528 19.1 [33] 

64/128	 Simon 958 4.2 [9] 
Speck 996 3.6 [9] 
Piccolo 1334 12.1 [52] 
PRESENT 1339 12.1 [65] 

96/96 Simon 955 3.7 [9] 
Speck 1012 3.4 [9] 

128/128	 Simon 1234 2.9 [9] 
Speck 1280 3.0 [9] 
AES 2400 56.6 [41] 

Table 3: ASIC performance comparisons at a 100 kHz 
clock speed optimized for size. 

but efficiency can easily be raised by doing additional 
computation during each clock cycle, in effect to be­
gin to amortize away the fixed cost of storing the 
state. The flexibility of Simon and Speck mean that 
many sorts of implementations are possible. See Sec­
tion 6 for data regarding efficient implementations; 
in particular implementations which compute a full 
round per clock cycle, and implementations which 
fully unroll the algorithms. 

We conclude this section by discussing latency, i.e., 
the time required to encrypt one plaintext block. Low-
latency implementations of block ciphers have re­
cently been much discussed; the leading voices have 
been the authors of [19]. The algorithm they propose, 
PRINCE, is a clever design which can encrypt in one 
clock cycle at the impressively small area of 8679 GE 
[19]. (We note that registers were not counted in this 
total, and a real system would probably need to regis­
ter the data, thus increasing the area by about 10% to 
around 9500 GE.). The recent paper [39] increases the 
area to 9522 GE (about 10500 GE counting registers), 
but achieves a record latency of 22.9 ns. 
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algorithm area latency clock 
(GE) (ns) (MHz) 

PRINCE 9522 22.9 43.7 
Simon 64/128 9516 22.88 437.1 

5072 31.90 344.9 
Speck 64/128 6377 52.36 191.0 

Table 4: Low-latency encrypt-only implementations 
of PRINCE, Simon, and Speck at 130 nm. The Simon 
and Speck implementations count 64 + 128 flip flops; 
the PRINCE implementation doesn’t. 

It would appear that Simon and Speck are not low-
latency designs, because they require many rounds. 
However, because of their simplicity, it’s possible to 
compute multiple rounds per clock cycle, while main­
taining reasonably good clock speeds. Indeed for Si­
mon 64/128, we’ve found an implementation (at the 
same 130 nm feature size used in [39]) that almost 
exactly matches PRINCE’s latency and area; it im­
plements the combinational logic for 5 rounds, and 
encrypts in L 44 = 9 cycles. In spite of its need to com­5 J 
pute carry chains, Speck can get within a factor of 2.5 
of PRINCE’s latency, at a much smaller area. (Three 
rounds are computed per clock cycle, for a total of
27 
3 + 1 = 10 cycles—our current Speck implementation 
requires a load cycle, which it should be possible to 
eliminate with a little more work.) Of course these 
are not single-cycle implementations, but we don’t 
see a compelling case that such implementations are 
necessary, particularly at what seem to be artificially-
constrained clock speeds, and on the sort of devices 
considered in [39] where clocks are easy to gener­
ate. See Table 4, where one Speck and two Simon im­
plementations are shown; many other latency/area 
trade-offs are possible but are omitted here. 

FPGAs 

We’ve shown that it’s possible to realize considerable 
reductions in ASIC area by using Simon or Speck 
instead of an algorithm such as AES. The advantages 
of Simon and Speck become even more pronounced 
on FPGA platforms. 

In this section we briefly discuss implementations 
of the algorithms on the Spartan-3, a low-end FPGA 
which is often used by cryptographers for compar­
isons. Table 5 presents some of these results for AES 
and PRESENT, alongside results for our algorithms. 

size algorithm area 
(slices) 

tput 
(Mbit/s) 

ref 

64/128 Simon 
Simon 

24 
138 

9.6 
512 

† 
† 

Speck 
Speck 
PRESENT 
PRESENT 

34 
153 
117 
202 

7.0 
416 
28.4 
508 

† 
† 

[64] 
[46] 

128/128 Simon 
Simon 
Simon (DPA) 
Simon 

28 
36 
87 
197 

5.7 
3.6 
3.0 
567 

† 
[8] 

[49] 
† 

Simon 375 867 † 
Speck 
Speck 
Speck 
AES 

36 
232 
401 
184 

5.0 
455 
920 
36.5 

† 
† 
† 

[26] 

Table 5: FPGA performance comparisons on low-cost 
Xilinx Spartan FPGAs. All implementations are on 
the Spartan-3. Results marked with a † are our work. 
The Simon implementation labeled (DPA) is resistant 
to first-order DPA. 

On this platform, the smallest reported implemen­
tation of AES-128 requires 184 slices [26]. Remarkably, 
Simon 128/128 can be implemented in just 28 slices 
(15% of the size of AES), and Speck 128/128 can be 
done in 36 slices (20% of AES’s size). Comparisons 
with PRESENT also show dramatic area reductions: 
PRESENT-128 requires 117 slices; the comparable Si­
mon 64/128 and Speck 64/128 algorithms require 24 
and 34 slices—21% and 30% of the area—respectively. 

If higher throughputs are required, area reductions 
are still possible, as can be seen in Table 5. 
Other authors have reported Simon implementa­

tion results [13, 8, 34, 49] which are in line with our 
results, and extend them. In [34], it is shown that a 
joint implementation of all 10 versions of Simon can 
be done using 90 slices on the Spartan-3, which is 
about half the size of a single AES-128 implementa­
tion. The 87-slice implementation of Simon 128/128 
described in [49] provides resistance to first-order 
differential power analysis, again at about half the 
area of an unprotected AES-128 implementation. 

Microcontrollers 

We turn now to software implementations on 8-bit, 
16-bit, and low-end 32-bit microcontrollers. Table 6 
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AVR MSP430 
size algorithm ROM 

(bytes) 
RAM 

(bytes) 
cost 

(cyc/byte) 
ROM 

(bytes) 
RAM 

(bytes) 
cost 

(cyc/byte) 
efficient implementations 

64/80 
64/128 

128/128 

PRESENT [31] 
Speck 
Simon 
TWINE [40] 
Speck 
AES-128 [10] 
Simon 

936 
218 
290 
1208 
460 
970 
760 

0 
0 
0 
23 
0 
18 
0 

1340 
154 
253 
326 
171 
146 
379 

-
204 
280 

-
438 

-
754 

-
0 
0 
-
0 
-
0 

-
98 
177 

-
105 

-
389 

fast implementations 
64/128 

128/128 

Speck 
Simon 
AES-128 [43, 21] 
Speck 
Simon 

628 
436 
1912 
452 
510 

108 
176 
432 
256 
544 

122 
221 
125 
143 
337 

556 
324 
3147 
602 
1108 

0 
0 

176 
0 
0 

89 
153 
132 
101 
379 

Table 6: Assembly implementations on the 8-bit AVR ATmega128 and 16-bit MSP430 microcontrollers. 

shows ROM and RAM usage and encryption cost (in 
cycles/byte) for assembly implementations of Simon, 
Speck, and a few other algorithms [43, 44]. The first 
half of the table shows implementations optimized 
for efficiency1 and the second half implementations 
optimized for speed. 
The data for PRESENT exemplifies the potential 

difficulty of adapting hardware-oriented algorithms 
to software; this algorithm is unable to match the 
performance of AES, and is easily beaten by Simon 
and Speck in both throughput and code size.2 
For high-speed applications on the 8-bit AVR mi­

crocontroller, AES-128 is the fastest 128-bit block ci­
pher we know of, beating Speck 128/128 by about 
17%. However, because of its low memory usage, 
Speck 128/128 has higher efficiency than AES-128. 
And as key sizes increase, Speck overtakes AES in 
throughput because of how round numbers scale. 
Moreover, Speck 64/128, which has the same key size 
as AES-128, but a smaller block, is both smaller and 
slightly faster than AES-128. 
On the 16-bit MSP430, Speck is the highest in effi­

ciency and throughput. It is 23% faster than AES, uses 

1We define efficiency to be encryption throughput in bytes per 
cycle, divided by ROM + 2 · RAM. See [10]. 

2We note that there is a faster bit-sliced implementation of 
PRESENT [45], which encrypts at 370.875 cycles per byte, plus 
about 40 cycles per byte for data transposition operations. But it’s 
much larger, requiring 3816 bytes of ROM and 256 bytes of RAM. 

no RAM and 81% less ROM. In [21] this performance 
advantage resulted in a 35% lower energy consump­
tion compared to AES. Speck 64/128 consumes even 
fewer resources for the many applications where a 
smaller block size is acceptable. 
Others’ work supports our conclusions. In [28], C 

implementations of AES, Simon 64/96, Speck 64/96, 
and ten other lightweight algorithms are com­
pared on the 8-bit AVR, 16-bit MSP430, and 32-bit 
ARM Cortex-M3 microcontrollers. Algorithms were 
ranked in two usage scenarios using a figure of merit 
balancing performance, RAM, and code size across 
the three platforms. Speck and Simon place first and 
fourth in a large data scenario and first and second 
in a scenario involving encryption of a single block. 
On the 32-bit ARM processor, the authors of this 

paper find Speck and Simon to be simultaneously the 
smallest and fastest block ciphers for both of the sce­
narios they consider. We point out, however, that 
their C implementations of AES are faster than those 
of Speck on the 8-bit and 16-bit platforms by about 
a factor of two, presumably due to the GNU C com­
piler’s poor handling of rotations. Implementing the 
rotations in assembly should lead to greatly improved 
performance for our rotation-dependent designs. 

It is our opinion that for lightweight applications 
on microcontrollers, if high performance is important, 
then Simon and Speck should be coded in assembly: 
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size algorithm area 
(GE) 

throughput 
(Mbps) 

efficiency 
(kbps/GE) 

clock 
(MHz) 

implementation 

64/128 Simon 

Speck 

1751 
44322 
35948 
2014 
48056 
39992 

870 
34243 
45070 
634 

23908 
29722 

497 
773 
1254 
315 
498 
743 

625 
535 
704 
307 
374 
464 

iterative 
key-agile pipeline 
non-key-agile pipeline 
iterative 
key-agile pipeline 
non-key-agile pipeline 

128/128 Simon 

Speck 

2342 
146287 
104790 
3290 
98003 
86976 

1145 
106961 
87798 
880 

41531 
52162 

489 
731 
838 
268 
424 
600 

626 
836 
686 
234 
324 
408 

iterative 
key-agile pipeline 
non-key-agile pipeline 
iterative 
key-agile pipeline 
non-key-agile pipeline 

128/256 Simon 

Speck 

3419 
233204 
110875 
5159 

163770 
97432 

1081 
100078 
87193 
1287 
51705 
52056 

316 
429 
786 
249 
316 
534 

625 
782 
681 
382 
404 
407 

iterative 
key-agile pipeline 
non-key-agile pipeline 
iterative 
key-agile pipeline 
non-key-agile pipeline 

Table 7: Efficient, high-throughput 130 nm ASIC implementations of Simon and Speck 

because of the simplicity of the algorithms, these 
implementations are pretty straightforward, and they 
can improve performance by up to a factor of five over 
C implementations. Details on such implementations 
on the AVR microcontroller can be found in [10]. 

6	 Implementations on Higher-end 
Platforms 

Constrained devices will need to communicate with 
other, similar devices, but will also need to com­
municate with higher-end systems. These systems 
may perform functions such as aggregating sensor 
or inventory data. To facilitate these sorts of interac­
tions, and in particular to support efficient commu­
nication with large numbers of constrained devices, 
lightweight algorithms will need to perform well on 
both lightweight and “heavyweight” platforms. 

High-throughput ASIC Implementations 

Table 7 shows a sample of higher-throughput imple­
mentations on the same 130 nm ASIC process used to 
generate the Simon and Speck data in Table 3. Decryp­
tion is not supported in these implementations, but 
for Simon, in particular, it could be added at low cost 

due to the similarity of the encryption and decryption 
algorithms. 

For each algorithm and block/key size an iterative 
and two fully-pipelined encryption implementations 
are presented. In the iterative case, a single copy of 
the round function is used to loop over the data for a 
number of cycles equal to the total number of rounds. 
In the fully-pipelined case, a number of copies of 

the round function equal to the number of rounds is 
implemented, with registers in between. This allows 
a complete block of ciphertext to be output every 
clock cycle, once the pipeline is full. One of the fully­
pipelined implementations is key-agile, meaning that 
every plaintext block to be encrypted can have its own 
associated key. The second fully-pipelined implemen­
tation is not key-agile: it saves area by requiring that 
all blocks in the pipeline use the same key, so that only 
one instance of the key schedule is necessary, rather 
than one for each level of the pipeline. Changing key 
for this second sort of implementation requires the 
new round keys to be loaded and the pipeline to be 
flushed. 

The flexibility of Simon and Speck enables all sorts 
of implementations in between these performance 
extremes (e.g., iterated versions computing multiple 
rounds per clock cycle, and pipelined implementa­
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(a) AES (without AES-NI) and Simon (b) AES, ChaCha20, and Speck 

Figure 1: Intel Xeon E5640 throughput in cycles/byte (smaller is better) for messages from 1–4096 bytes. 

tions with multiple rounds between stages), but we 
do not have the space to include those results here. 

Simon and Speck have compelling advantages for 
high-throughput ASIC applications. This seems clear, 
even in view of the difficulties inherent in comparing 
implementations using different technologies and 
libraries. As a point of comparison, we consider 
the CLEFIA block cipher.3 The designers of that 
algorithm report on a joint implementation [55] of 
the encryption and decryption algorithms4 which 
has an efficiency of 401, using a 90 nm technology 
(9339 GE, 3.74 Gbit/s at 572 MHz). This is excellent 
performance relative to other block ciphers; indeed 
CLEFIA realizes the “world’s highest hardware gate 
efficiency” [54]. 

We did ASIC implementations of Simon and Speck 
at this same 90 nm feature size. (Note that these re­
sults are not reported in Table 7, where the feature 
size is 130 nm.) Speck has a 8089 GE (encrypt-only) 
implementation, running at 1.404 GHz, for a through­
put of 10.6 Gbit/s and an efficiency of 1307. Simon 
is even better: for 8011 GE, an encrypt-only version 
runs at 3.066 GHz, for a throughput of 17.1 Gbit/s 
and an efficiency of 2130. There may be differences 
in cell libraries, etc. (and we note again that intercon­
nect delays are not considered in our work or in the 
CLEFIA work), but a factor of 2130 401 > 5 improvement 
is surely significant. 

3CLEFIA is a lightweight ISO standard which supports high-
throughput ASIC implementations.

4CLEFIA’s symmetry means that there is little overhead in 
providing decryption functionality. On the other hand, the area 
won’t go down by much for an encrypt-only version. 

x86 and ARM Implementations 

We have recently studied implementations of Simon 
and Speck as stream ciphers in counter mode on sev­
eral higher-end 32-bit and 64-bit processors. These 
processors are likely to be used in systems such as 
smartphones, tablets, and servers communicating 
with constrained devices. We considered the 32­
bit Samsung Exynos 5 Dual (which includes NEON 
SIMD instructions), based on an ARM Cortex-A15, 
and two 64-bit Intel processors: the Xeon E5640 and 
Core i7-4770, representing the Westmere and Haswell 
architectures, respectively. Performance was bench-
marked using SUPERCOP [12], making for fair com­
parison with the performance of highly-optimized 
implementations of AES and ChaCha20, in particular. 
The Simon and Speck code, all written in C, is avail­
able on GitHub [63]. Figure 1 illustrates the detailed 
data produced by SUPERCOP. 

The overall results are similar on the ARM and the 
x86 platforms. The C implementations of Simon have 
better overall performance than the C implementa­
tions of AES for 256-bit keys and slightly worse per­
formance for 128-bit keys. The C implementations of 
Speck 128/256 have better overall performance than 
the best C implementations of ChaCha20, a stream 
cipher especially noted for its speed. 
Finally, we note that extremely high-performance 

instantiations of AES are possible on certain pro­
cessors, for example using Intel’s hardware AES­
NI instructions. Despite this, Speck in software can 
come close to matching this high performance: on 
the Haswell architecture our C implementation of 
Speck 128/256 is only 33% slower than the AES-NI 
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version of AES-256. 

7 Side-Channel Mitigations 

The most secure algorithm can become vulnerable 
to attack if it is implemented in a way that leaks in­
formation because power usage or execution time 
(or something else) is correlated to secret key values. 
Understanding these sorts of side-channels and how 
to eliminate them is an important line of research, 
and it’s particularly relevant for constrained devices, 
which tend to lack physical countermeasures. 

We very briefly discuss side-channel attacks and 
mitigations, and note some work in this area involv­
ing Simon and Speck. 
One sort of side-channel attack exploits key-

dependent variations in encryption times to recover 
secret information. Algorithms which are imple­
mented using lookup tables, e.g., AES, on processors 
with cache memory can be particularly vulnerable to 
these cache-timing attacks [18]. Since Simon and Speck 
have no look-up tables, they are naturally immune to 
this type of attack. 
Perhaps the most important type of side-channel 

attack uses key-dependent power emanations. Imple­
mentations of block ciphers typically are susceptible 
to such differential power analysis (DPA) attacks unless 
countermeasures are taken. Because of Simon’s low-
degree round function, masking countermeasures are 
especially efficient; see [50, 49]. In particular, the 
second of these papers demonstrate a threshold im­
plementation of Simon 128/128 which provides re­
sistance to first-order DPA for 87 slices on a Spartan-3 
FPGA. This makes it less than half the size of the 
smallest reported unprotected Spartan-3 implemen­
tation of AES, and 25% smaller than unprotected im­
plementations of PRESENT-128. (And PRESENT-128 
is not exactly a comparable algorithm, since it has a 
block size of 64 bits, and the version of Simon they 
consider has a block size of 128 bits.) 

We are not aware of similar work to protect Speck, 
but there are other countermeasures that apply 
equally to both Simon and Speck. One such mea­
sure aims to confound DPA by partially unrolling an 
algorithm [14]. We’ve done such implementations of 
Simon and Speck, but don’t have the space in this pa­
per to discuss them. Briefly, for the 64-bit block and 
128-bit key size, there is an ASIC implementation of 
Simon that computes four full rounds per clock cycle 
and requires 3290 GE. A similar implementation of 

Speck computes three rounds per clock cycle and has 
an area of 3120 GE. We have not done side channel 
analysis for these implementations. 
Another mitigation uses frequent key updating 

[58]. The tiny hardware implementations of Simon 
and Speck in Tables 3 and 5 are key agile, meaning the 
key can be changed with each run without incurring 
a significant performance penalty, and so they would 
be good candidates for use with this strategy. 

8 Conclusion 

We have sought in this paper to demonstrate the sort 
of performance that Simon and Speck can achieve. 
Most importantly, Simon and Speck have an edge 
over other algorithms not in terms of head-to-head 
comparisons on particular platforms (although it ap­
pears that on most platforms one of Simon or Speck 
is the best existing algorithm, and the other is not 
far behind), but by virtue of their flexibility. This 
flexibility is a consequence of the simplicity of the 
designs, and means the algorithms admit small ASIC, 
FPGA, microcontroller, and microprocessor imple­
mentations, but can also achieve very high through­
put on all of these platforms. Their flexibility makes 
Simon and Speck ideal for use with heterogeneous 
networks, where algorithms optimized for particular 
platforms or usages will not be appropriate. 
The simplicity of Simon and Speck has additional 

benefits. First, they are very easy to implement, and 
efficient implementations can be had for minimal 
work; this is in marked contrast to the situation for 
algorithms such as AES, where a decade of research 
was required to find near-optimal implementations. 
Coding errors are much easier to avoid for simple 
algorithms. In addition, simplicity enables relatively 
cheap side-channel mitigations, and makes the al­
gorithms attractive for unanticipated uses (such as 
homomorphic encryption). Last, but not least, sim­
plicity makes the algorithms attractive targets for 
cryptanalysis. Complexity in this regard presents a 
barrier to entry, and this tends to limit the amount of 
scrutiny that an algorithm receives. Because of their 
simplicity (and perhaps because of their source!), Si­
mon and Speck have been quite thoroughly vetted by 
the cryptographic community in the two years since 
their publication. 

Simon and Speck are also unique among existing 
lightweight block ciphers in their support for a broad 
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range of block and key sizes, allowing the cryptogra­
phy to be precisely tuned to a particular application. 
We are hopeful that the approach we have taken 

to the design of Simon and Speck means they will 
continue to offer high performance on tomorrow’s 
IoT devices. 
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