
Some observations on ACORN v1 and Trivia-SC

Rebhu Johymalyo Josh1 and Santanu Sarkar2

1 Chennai Mathematical Institute,
SIPCOT IT Park, Siruseri,
Chennai- 603103, India
rebhu.webs@gmail.com

2 Department of Mathematics,

Indian Institute of Technology Madras,

Chennai - 600036, India.

sarkar.santanu.bir@gmail.com

Abstract. In the first part of this paper, we study the security of Acorn v1, an
authenticated encryption scheme submitted to the ongoing CAESAR competi­
tion. We perceive some interesting outcomes on the key stream bits of Acorn
v1. In fact we observe that bit wise XOR of the first key stream bits for a fixed
Key and IV but different associated data becomes 0.
In the second part of this paper, we provide slid pairs of modified Trivia-SC. For
the original Trivia-SC, finding a slid pair is trivial as the padding is symmetric.
Hence, it is in general assumed that finding slid pairs is difficult for asymmetric
padding. Here we show that in this case also, getting a slid pair is possible.

Keywords: Acorn, Cube Attack, Cryptanalysis, SAT Solver, Stream Cipher,
Trivia-SC.

1 Introduction

Acorn is a lightweight authenticated cipher which has been submitted to the
ongoing CAESAR [9] competition. It uses a single State Register for encryption
and authentication. It updates the state for 512 + length of associated data
before encrypting the plain text. For encrypting each bit, the state update is
run once each time for each character. This is used for encrypting the next bit
of plain text. The current state is used for generating a bit called Key stream
Bit which is XOR ed with the bit of plain text and output as one bit of cipher
text.

Cube attacks, introduced by Dinur and Shamir [15], have been used exten­
sively for cryptanalysis of Block ciphers and Stream ciphers. Cube attacks are
very efficient on stream ciphers based on low degree NFSRs. Cube attacks can
recover a secret key through queries to a black box polynomial using IV bits.

We experimented on Acorn using a modified cube attack by keeping the
key and IV fixed, and changing the associated data. While analysing the values
of the state which is later used for generation of the key stream at various
point of the algorithm, we unearthed that for small length associated data,
bitwise xor of the key stream bits remains 0 for almost every key and IV. We

mailto:sarkar.santanu.bir@gmail.com
mailto:rebhu.webs@gmail.com

further noticed that for any random key, IV, the length of associated data plays
a compelling role. We ventured with all possible values of assoiated data and
found that if key stream Bit is XORed for all possible assoiated data, then it
yields 0 as the value; which signifies that we have even number of 1’s as key
stream Bit. Our motive in this paper is to recommend that State Update in the
processing part should be run length of associated data + 1024 times instead
of length of associated data + 512 so that XORed value gives purely random
values instead of homogeneous 0’s.

Algebraic attack [10, 11] on a cipher relies on the solving of a system of
multivariate polynomials. As an important result in this area, the block cipher
Keeloq has been craked in real time using the algebraic attack [21, 3]. There
are several methods to solve multivariate polynomials. There are several ap­
proaches using Gröbner basis such as Buchberger [8], F4 [18] etc. When the
underlying field of the cipher is GF (2), SAT solver is another elegant method
in this direction that tries to solve the famous satisfiability (SAT) problem.
The Boolean formula is given in the Conjunctive Normal Form (CNF). Mas­
sacci [24] introduced the idea of using SAT solvers towards cryptanalysis. The
stream cipher Bivium was attacked using SAT solver [17] too. A slide-algebraic
attack on Keeloq has been presented in [12] using the SAT solver.

The stream cipher Trivium [13] is in the hardware profile of the eStream
portfolio [16] that has been designed by De Cannière and Preneel. It is a syn­
chronous bit oriented cipher. The cipher is allowed to generate up to 264 key
stream bits from an 80 bit secret key and an 80 bit public IV. The design of
Trivium is simple as well as sumptuous and it has been designed so as to require
low hardware complexity. This cipher has the state size of 288 bits, consisting
of three interconnected non-linear (degree 2) feedback shift registers of length
93, 84 and 111 bits respectively.

A Differential Fault Attack on Trivium has been presented in [25] that
exploits SAT solvers. Biryukov and Wagner first introduced slide attack [6].
One alluring property of the slide attack is that its complexity is independent
of the number of rounds of the cipher. Slide attacks on the block cipher GOST
were presented in [7, 5]. The slide attack on stream cipher is to study how given
a Key-IV, one can efficiently obtain another Key-IV such that the generated
output key streams in Pseudo Random Generator Algorithm (PRGA) are exact
shifts of each other throughout the key stream generation. These Key-IV pairs
are referred as “slid pairs” following [23, Section 3.2]. That is, in this model, the
attacker needs to provide two different key-IV pairs (K1, I V1) and (K2, I V2),
such that they can generate same key streams with c many bit shifts. These
pairs are denoted as [(K1, I V1), (K2, I V2), c] in [23] while analysing Trivium.
The work of [23] could achieve slid pairs up to 115 shifts. Later it was improved
up to 212 shifts in [1]. Slide attacks on the stream ciphers Grain v1 and Grain
128 were proposed in [14, 22]. Recently slide attack is mounted on Grain 128a
in [4]. For Trivia-SC, mounting slid attack is very easy as proposed in [20]. This
is because padding in Trivia-SC is symmetric. Hence attacker proposed to use

2

asymmetric padding in Trivia-SC. In this paper, we have presented slid pair
for this modified version of Trivia-SC up to 280 shifts.

2 Acorn

�
� �

� �
� �

� �
� �

� �

fi

mi

0 23 60 61 66 106 107 111 153 154 160 192 193 196 229 230 235 288 289 292

Fig. 1. The concatenation of 6 LFSRs in ACORN. fi indicates the overall feedback bit for
the ith step; mi indicates the message bit for the i-th step.

 array
index

0 to 127 128 to 255 256 257 to 1535

m k IV 1 0
a 1 1 1 1
b 1 1 1 1

Table 1. Initialization

 array
index 0 to

length(ad)-1 length(ad)
length(ad)+1 to
length(ad)+255

length(ad)+256 to
length(ad)+511

m ad 1 0 0
a 1 1 1 0
b 1 1 1 1

Table 2. Processing

2.1 Description of the Cipher

Notations:

– d : data of 1536 bits
– k : the key used of 128 bits
– I V : I V used of 128 bits
– Si : Current State of 293 bits
– S(i+1): Next State of 293 bits
– a : control bit of 1536 bits
– b : control bit of 1536 bits
– p : plain text
– ad : associated data

3

Algorithm 1 Pseudo Code

function Update(Si,mi,ai,bi)
Si,289 ← Si,289 ⊕ Si,235 ⊕ Si,230

Si,230 ← Si,230 ⊕ Si,196 ⊕ Si,193

Si,193 ← Si,193 ⊕ Si,160 ⊕ Si,154

Si,154 ← Si,154 ⊕ Si,111 ⊕ Si,107

Si,107 ← Si,107 ⊕ Si,66 ⊕ Si,61

Si,61 ← Si,61 ⊕ Si,23 ⊕ Si,0

fi ← Feedback(Si, ai, bi)

for j:=0 to 291 do

Si+1,j ← Si,j+1

Si+1,292 ← fi ⊕ mi

function Feedback(Si,ai,bi)
ksi ← key stream(Si)
return fi ← Si,0 ⊕ (∼ Si,107) ⊕ (Si,244&Si,23) ⊕ (Si,244&Si,160) ⊕ (Si,23

&Si,160) ⊕ (Si,230&Si,111) ⊕ ((∼ Si,230)&Si,66) ⊕ (ai&Si,196) ⊕ (bi&ksi)

function key stream(Si)
return ksi ← Si,12⊕Si,154⊕(Si,235&Si,61)⊕(Si,235&Si,193)⊕(Si,61&Si,193)

function Initialization
S0 ← 0

for i:=0 to 127 do

mi ← ki
for i:=0 to 127 do

mi+128 ← I Vi

m256 ← 1

for i:=1 to 1279 do

m256+i ← 0

for i:=1 to 1535 do

a ← 1

b ← 1

for i:=0 to 1535 do

Si+1 ← Update(Si, mi, ai, bi)

function Processing
for i:=0 to length(ad)-1 do

mi ← adi
mlength(ad) ← 1
for i:=1 to 511 do

mi+length(ad) ← 0

for i:=0 to 511+length(ad) do

bi ← 1

for i:=0 to 255+length(ad) do

4

ai ← 1

for i:=255 to 511 do

ai+length(ad) ← 0

for i:=0 to 511 + length(ad) do
Si+1 ← Update(Si, mi, ai, bi)

function Encryption
for i:=0 to length(p)-1 do

mi+length(ad)+512 ← pi

mlength(p)+length(ad)+512 ← 1
for i:=0 to 511 do

mi+length(p)+length(ad)+512 ← 0

for i:=length(ad)+512 to length(ad)+length(p)+767 do
ai ← 1

for i:=length(p)+length(ad)+768 to length(ad)+length(p)+1023 do
ai ← 0

for i:=length(ad)+512 to length(ad)+length(p)+1023 do
bi ← 0

for i:=length(ad)+512 to length(ad)+length(p)+1023 do
Si+1 ← Update(Si, mi, ai, bi)
ci = pi ⊕ key stream(Si)

return c
function Main(p,ad,key,IV)

Initialization
Processing
Encryption
P rint(c)

Here, we are ommitting the part where authentication tag is generated as
our analysis is regarding the cipher text only.

2.2 Our Analysis on Acorn

The cube attack is a method of cryptanalysis applicable to a wide variety of
symmetric-key algorithms, published by Itai Dinur and Adi Shamir. It have
been used extensively for cryptanalysis of Block ciphers and Stream ciphers.
Cube attacks are very efficient on stream ciphers based on low degree NFSRs.
Cube attacks can recover a secret key through queries to a black box polynomial
using IV bits. In our analysis, we have tweaked the cube attack by keeping the
key and IV persistent and went ahead with altering the associated data. While
examining the values of the State at different points of the program before the
encryption, we noticed that we have equal number of 0’s and 1’s returned by
Key stream function during Encryption. We XOR ed each value obtained and
found that at the end of 64000 random keys and plain text and all possible

5

associated data of given length, the value obtained is 0. Say the length of
associated data is n, then with all 2n possible associated data, the XOR ed
value is 0 till some specific bit corresponding to n. We bunched together 64
keys together for single place in an unsigned long long integer in C by left
shifting 64 randomly generated bits and then operated on it normally as it is
described in the algorithm. We also bunched 64 IVs together for single place in
an unsigned long long integer in C. This will help in finding the experimental
results at least 32 times faster and won’t hamper the normal result as we will
experiment with randomly generated keys and IVs.

2.2.1 Experimental Results We have executed the code on Ubuntu 14.04
64-bit with hardware specifications of Intel Core i5-3210M dual-core CPU @
2.50GHz × 4 threads, 8 GB RAM. We used multi-threading to find out the bit
index till which the XOR ed value is 0 for different length of associated data.

Length x of Associated Data Bit y till which XOR ed value is 0

10 341
12 349
14 358
16 371
18 379

Table 3. Experimental results for different Associated Data length on Acorn.

y
 →

Linear Regression
Exponential Regression
Quadratic Regression

x →

Fig. 2. Extrapolation with different methods.

2.2.2 Extrapolation We used different extrapolation to find out the length

of Associated Data for which the first 512 bits will be 0. Here y is the number

6

of bits and x is the length of Associated Data. Different regression formulae
have been obtained from [29].

Linear Regression. Our formula is in this case y = 4.9 × x + 291. Thus
when x = 45, y becomes 512.

1.363091448×10−2xExponential Regression. Formula y = 296.9076103 × e .
So y = 512 ⇔ x ≈ 40

Quadratic Regression. Formula y = 7.142857143 × 10−2x2 + 2.9x +
304.4285714 gives y = 512 ⇔ x ≈ 37

2.3 Inference

From the above extrapolation, we say that if the length of Associated Data
is roughly about 45 bits or more, then updating for 512 rounds and XOR­
ing the obtained key stream bit over all possible data will yield 0. Hence it is
conspicuous that a mere 512 rounds of updating the State in the processing
part may not be sufficient for proper mixing. Hence if we have the State Update
for 1024 rounds instead of 512, then for Linear Regression, y = 1024 ⇔ x ≈
150; for Exponential Regression, y = 1024 ⇔ x ≈ 91; and for Quadratic
Regression, y = 1024 ⇔ x ≈ 82. According to the model of Acorn, 0 ≤
length of Associated Data ≤ 264 . So 1024 rounds of State Updation will be a
fortress to prevent an attack from the cipher text.

3 TriviA-ck

TriviA-ck-v1 [2] is an AEAD (Authenticated Encryption with Associated Data)
scheme, designed by Chakraborti and Nandi, and it is submitted to the ongoing
“CAESAR - the Competition for Authenticated Encryption: Security, Applica­
bility, and Robustness.” It uses the stream cipher Trivia-SC (sometimes referred
to as SCTrivia or SC-Trivia, e.g., in [2, page 18]) and an efficient universal hash
function VPV-Hash. Trivia-SC is inspired from Trivium, but with a larger state
and key size.

3.1 Description of the Cipher

Before proceeding further, let us describe the structures of Trivia-SC. Table 4
gives an brief overview.

Table 4. Overview of Trivia-SC

Cipher Key size IV size State size
Initialization

rounds
Bits involved
in key stream

Operations
in key stream

Trivia-SC 128 128 384 1152 (= 3 × 384) 8 6 ⊕, 1 ∧

We use the convention of numbering for both key and IV bits as 1, 2, 3,
Accordingly, we use k1, k2, k3, . . . and v1, v2, v3, . . . to represent the key and IV
bits, respectively. We explain Trivia-SC with three arrays A, B, C .

7

Algorithm 2 Trivia-SC: KLA

1: (A1, A2, . . . , A132) = (k1, k2, . . . , k128, 1, 1, 1, 1)
2: (C1, C2, . . . , C147) = (v1, v2, . . . , v128, 1, . . . , 1)
3: (B1, B2, . . . , B105) = (1, 1, . . . , 1)

Algorithm 3 Trivia-SC: KSA & PRGA

1: for i = 1 to N do
2: t1 ← A66 ⊕ A132 ⊕ (A130 ∧ A131) ⊕ B96

3: t2 ← B69 ⊕ B105 ⊕ (B103 ∧ B104) ⊕ C120

4: t3 ← C66 ⊕ C147 ⊕ (C145 ∧ C146) ⊕ A75

5: (A1, A2, . . . , A132) ← (t3, A1, . . . , A131)
6: (B1, B2, . . . , B105) ← (t1, B1, . . . , B104)
7: (C1, C2, . . . , C147) ← (t2, C1, . . . , C146)
8: zi ← A66 ⊕ A132 ⊕ B69 ⊕ B105 ⊕ C66 ⊕ C147 ⊕ (A102 ∧ B66)

Let us now describe the stream cipher Trivia-SC. Trivia-SC consists of 3
NFSRs: A, B and C of size 132, 105 and 147 bits; whose bits are represented as
A1, A2, . . . , A132, B1, B2, . . . , B105 and C1, C2, . . . , C147 respectively. We repre­
sent the internal state register (384 bits) by S and denote its bits by S1, S2, . . . ,
S384, where A ≡ (S1, S2, . . . , S132), B ≡ (S133, S134, . . . , S237) and C ≡ (S238,
S239, . . . , S384). The KLA routine is described in algorithm 2 which is followed
by the KSA. The evolution is done for 1152 rounds without producing any key
stream bit, which is followed by PRGA, which are given in algorithm 3.

3.2 Attack using SAT Solver

3.2.1 Description of the attack using SAT solver In Trivia-SC, we
have 128-bit secret key and 128-bit IV. We consider a total of 128+128=256
variables which corresponds to respective Key and IV. After c rounds of KSA,
the internal state S(c) will be a function of key and IV for any non-negative
integer c. Now if S(c) satisfies 384 − 256 = 128 fixed locations of the starting
state S(0), then S(c) would also be a starting state of a different key and IV.
The situation is presented pictorially in Figure 3.

8

�
�

KLA KSA KSA
c rounds (1152 − c) rounds

KLA KSA

(K1, I V1) S(0) S(c)

S'(0)(K2, I V2)
1152 rounds

Fig. 3. Slid attack on Trivia-SC

In [20], it has been shown that slid pairs in Trivia-SC is not difficult.
The idea is as follows: In Trivia-SC, the initial state S = (A, B, C) is loaded

as
A = (k1, . . . , k128, 1, 1, 1, 1)

105
B = (1, . . . , 1)

19
C = (v1, . . . , v128, 1, . . . , 1).
After clocking the registers once, the state becomes S' = (A', B ', C '), where
A' = (t3, k1, . . . , k128, 1, 1, 1), B' = (t1, 1, . . . , 1) and
C ' = (t2, v1, . . . , v128, 1, . . . , 1).
Thus if k128 = v128 = t1 = 1, state S' is also a valid initial state, generated

by the key (t3, k1, . . . , k127) and IV (t2, v1, . . . , v127). So S and S' generate 1-bit
shifted key streams. To overcome this attack, it has been suggested in [20] to
take first bit of B register as 0.

Thus to find slid pairs in this modified version, we have 128 equations
over 256 variables. We used SAT solver to obtain the solutions. Note that
some locations of the state S(c) would be complicated if we write the complete
expressions in the CNF form as c increases. To overcome this bottleneck, at each
round of KSA, we introduce three new variables xi, yi and zi and replace t1, t2

and t3 by xi, yi and zi respectively. Thus, at each round, we introduce three new
variables and three equations. So after c rounds, we have 128 + 3c equations
(128 many fixed values in a starting state) over 256 + 3c variables. Since we
have more variables than constraints, it is expected to find a solution to such
a system of equations. To solve these, we use the SAT solver Cryptominisat­
2.9.5 [27] installed in SAGE [28].

3.2.2 Example We have implemented the code in SAGE 5.12 on a Linux
Mint 17.1 Cinnamon 64-bit. The hardware platform is a laptop with a Intel
Core i5-4200U @ 1.6 Ghz × 2 and 4 GB RAM. Below, we present one slid pair
in hexadecimal form.

9

�

Shift c Solution time in seconds
270 1.23
272 2.24
274 6.12
276 15.82
278 29.74
280 407.11

Table 5. Experimental results for different shifts on modified Trivia-SC.

In example 1, we obtain (K1, I V1) and (K2, I V2) in 407.11 seconds, and
these Key-IV pairs produce 280 bit shifted key streams.

Example 1. K1 : 09c2e824283614f6034c2fee86e2e9b6

I V1 : e6cf0aac80f27ea07436c1c05137582b.

key streams: b3425795e81caa3a6d5e934a464427c7251748080a7e50

bdb3a0de00196662eff03370 484d089cebca7e28e90cfe0

K2 : 2c41a48c695055f80c6b23d4c5c9db96

I V2 : cf7040af7c63795f0d254746d25c778b

key streams: 484d089cebca7e28e90cfe085926d614a476dca7c1424

4 Conclusion

From the experiments we conducted on Acorn v1, our analysis concludes that
it is might not be totally secure with length of associated data + 512 rounds of
State Update in the processing of associated data. 1024 + length of associated
data rounds of State Update will be safer than the proposed approach.

In the second part of the paper, we study a modified version of TriviA-ck,
where padding is asymmetric. For symmetric padding, getting slid pair is very
easy. We have shown that it is possible to obtain slid pairs even in the case of
asymmetric padding.

References

1.	 A. Baksi, S. Maitra and S. Sarkar. An Improved Slide Attack on Trivium. IPSI Transaction
on Internet Research. Published in January, 2015

2.	 A. Abortion and M. Nani. TriviA-ck-v1. Available at http://competitions.cr.yp.to/
round1/triviackv1.pdf.

10

http:http://competitions.cr.yp.to

3.	 W. Aerts, E. Biham, D. De Moitie, E. De Mulder, O. Dunkelman, S. Indesteege, N. Keller,
B. Preneel,G. A. E. Vandenbosch and I. Verbauwhede. A Practical Attack on KeeLoq. J.
Cryptology, 25(1):136–157, 2012.

4.	 S. Banik, S. Maitra, S. Sarkar and M. S. Turan. A Chosen IV Related Key Attack on
Grain-128a. In ACISP 2013, LNCS, Vol. 7959, pp. 13–26, 2008.

5.	 E. Biham, O. Dunkelman and N. Keller. Improved Slide Attacks. In FSE 2007, LNCS,
Vol. 4593, pp. 153–166, 2007.

6.	 A. Biryukov and D. Wagner. Slide Attacks. In FSE 1999, LNCS, Vol. 1636, pp. 245–259,
1999.

7.	 A. Biryukov and D. Wagner. Advanced Slide Attacks. In EUROCRYPT 2000, LNCS, Vol.
1807, pp. 589–606, 2000.

8.	 B. Buchberger. An Algorithm for Finding the Basis Elements of the Residue Class Ring
of a Zero Dimensional Polynomial Ideal. PhD thesis, Johannes Kepler University of Linz
(JKU), 1965.

9.	 Caesar: Competition for authenticated encryption: Security, applicability, and robustness.
http://competitions.cr.yp.to/caesar.html.

10.	 N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Over-defined Systems
of Equations. In ASIACRYPT 2002, LNCS, Vol. 2501, pp. 267–287, 2002.

11.	 N. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In
CRYPTO 2003, LNCS, Vol. 2729, pp. 176–194, 2003.

12.	 N. Courtois, G. V. Bard and D. Wagner. Algebraic and Slide Attacks on KeeLoq. In FSE
2008, LNCS, Vol. 5086, pp. 97–115, 2008.

13. C. De Cannière and B. Preneel. TRIVIUM - a stream cipher construction inspired by
block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project.

¨
 14.	 C. De Cannière, O. Küçük and B. Preneel. Analysis of Grain’s Initialization Algorithm.
In AFRICACRYPT 2008, LNCS, Vol. 5023, pp. 276–289, 2008.

15.	 I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In EURO­
CRYPT 2009, LNCS, Vol. 5479, pp. 278-299, 2009.

16.	 The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers. Revised
on September 8, 2008.

17.	 T. Eibach, E. Pilz and G. Völkel. Attacking Bivium Using SAT Solvers. In SAT 2008,
LNCS, Vol. 4996, pp. 63–76, 2008.

18.	 J. C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of
Pure and Applied Algebra, 139(1):6188, 1999.

19.	 P. A. Fouque and T. Vannet. Improving Key Recovery to 784 and 799 rounds of Trivium
using Optimized Cube Attacks. To appear in FSE 2013.

20.	 Available at https://groups.google.com/forum/#!searchin/crypto-competitions/
trivia/crypto-competitions/Uzgt-2t3knM/kjv5kWKJ3nAJ

21.	 S. Indesteege, N. Keller, O. Dunkelman, E. Biham and B. Preneel. A Practical Attack
on KeeLoq. In EUROCRYPT 2008, LNCS, Vol. 4965, pp. 1–18, 2008.

22.	 Y. Lee, K. Jeong, J. Sung and S. Hong. Related-Key Chosen IV Attacks on Grain-v1 and
Grain-128. In ACISP 2008, LNCS, Vol. 5107, pp. 321–335, 2008.

23.	 D. Priemuth-Schmid and A. Biryukov. Slid Pairs in Salsa20 and Trivium. In IN­
DOCRYPT 2008, LNCS, Vol. 5365, pp. 1–14, 2008.

24.	 F. Massacci. Using Walk-SAT and Rel-Sat for Cryptographic Key Search. In IJCAI 1999,
pp. 290–295 1999.

25.	 M. S. E. Mohamed, S. Bulygin and J. Buchmann. Improved Differential Fault Analysis
of Trivium. In COSADE 2011, Darmstadt, Germany, February 24–25, 2011.

26.	 H. Raddum. Cryptanalytic results on trivium. eSTREAM, ECRYPT Stream Cipher
Project, Report 2006/039.

27. M. Soos. CryptoMiniSat-2.9.5. http://www.msoos.org/cryptominisat2/.
28.	 W. Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009. Available at

http://www.sagemath.org. (Open source project initiated by W. Stein and contributed
by many).

29. www.xuru.org.

11

http:www.xuru.org
http:http://www.sagemath.org
http://www.msoos.org/cryptominisat2
https://groups.google.com/forum/#!searchin/crypto-competitions
http://competitions.cr.yp.to/caesar.html

