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Abstract. In the first part of this paper, we study the security of Acorn v1, an 
authenticated encryption scheme submitted to the ongoing CAESAR competi­
tion. We perceive some interesting outcomes on the key stream bits of Acorn 
v1. In fact we observe that bit wise XOR of the first key stream bits for a fixed 
Key and IV but different associated data becomes 0. 
In the second part of this paper, we provide slid pairs of modified Trivia-SC. For 
the original Trivia-SC, finding a slid pair is trivial as the padding is symmetric. 
Hence, it is in general assumed that finding slid pairs is difficult for asymmetric 
padding. Here we show that in this case also, getting a slid pair is possible. 

Keywords: Acorn, Cube Attack, Cryptanalysis, SAT Solver, Stream Cipher, 
Trivia-SC. 

1 Introduction 

Acorn is a lightweight authenticated cipher which has been submitted to the 
ongoing CAESAR [9] competition. It uses a single State Register for encryption 
and authentication. It updates the state for 512 + length of associated data 
before encrypting the plain text. For encrypting each bit, the state update is 
run once each time for each character. This is used for encrypting the next bit 
of plain text. The current state is used for generating a bit called Key stream 
Bit which is XOR ed with the bit of plain text and output as one bit of cipher 
text. 

Cube attacks, introduced by Dinur and Shamir [15], have been used exten­
sively for cryptanalysis of Block ciphers and Stream ciphers. Cube attacks are 
very efficient on stream ciphers based on low degree NFSRs. Cube attacks can 
recover a secret key through queries to a black box polynomial using IV bits. 

We experimented on Acorn using a modified cube attack by keeping the 
key and IV fixed, and changing the associated data. While analysing the values 
of the state which is later used for generation of the key stream at various 
point of the algorithm, we unearthed that for small length associated data, 
bitwise xor of the key stream bits remains 0 for almost every key and IV. We 
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further noticed that for any random key, IV, the length of associated data plays 
a compelling role. We ventured with all possible values of assoiated data and 
found that if key stream Bit is XORed for all possible assoiated data, then it 
yields 0 as the value; which signifies that we have even number of 1’s as key 
stream Bit. Our motive in this paper is to recommend that State Update in the 
processing part should be run length of associated data + 1024 times instead 
of length of associated data + 512 so that XORed value gives purely random 
values instead of homogeneous 0’s. 

Algebraic attack [10, 11] on a cipher relies on the solving of a system of 
multivariate polynomials. As an important result in this area, the block cipher 
Keeloq has been craked in real time using the algebraic attack [21, 3]. There 
are several methods to solve multivariate polynomials. There are several ap­
proaches using Gröbner basis such as Buchberger [8], F4 [18] etc. When the 
underlying field of the cipher is GF (2), SAT solver is another elegant method 
in this direction that tries to solve the famous satisfiability (SAT) problem. 
The Boolean formula is given in the Conjunctive Normal Form (CNF). Mas­
sacci [24] introduced the idea of using SAT solvers towards cryptanalysis. The 
stream cipher Bivium was attacked using SAT solver [17] too. A slide-algebraic 
attack on Keeloq has been presented in [12] using the SAT solver. 

The stream cipher Trivium [13] is in the hardware profile of the eStream 
portfolio [16] that has been designed by De Cannière and Preneel. It is a syn­
chronous bit oriented cipher. The cipher is allowed to generate up to 264 key 
stream bits from an 80 bit secret key and an 80 bit public IV. The design of 
Trivium is simple as well as sumptuous and it has been designed so as to require 
low hardware complexity. This cipher has the state size of 288 bits, consisting 
of three interconnected non-linear (degree 2) feedback shift registers of length 
93, 84 and 111 bits respectively. 

A Differential Fault Attack on Trivium has been presented in [25] that 
exploits SAT solvers. Biryukov and Wagner first introduced slide attack [6]. 
One alluring property of the slide attack is that its complexity is independent 
of the number of rounds of the cipher. Slide attacks on the block cipher GOST 
were presented in [7, 5]. The slide attack on stream cipher is to study how given 
a Key-IV, one can efficiently obtain another Key-IV such that the generated 
output key streams in Pseudo Random Generator Algorithm (PRGA) are exact 
shifts of each other throughout the key stream generation. These Key-IV pairs 
are referred as “slid pairs” following [23, Section 3.2]. That is, in this model, the 
attacker needs to provide two different key-IV pairs (K1, I V1) and (K2, I V2), 
such that they can generate same key streams with c many bit shifts. These 
pairs are denoted as [(K1, I V1), (K2, I V2), c] in [23] while analysing Trivium. 
The work of [23] could achieve slid pairs up to 115 shifts. Later it was improved 
up to 212 shifts in [1]. Slide attacks on the stream ciphers Grain v1 and Grain 
128 were proposed in [14, 22]. Recently slide attack is mounted on Grain 128a 
in [4]. For Trivia-SC, mounting slid attack is very easy as proposed in [20]. This 
is because padding in Trivia-SC is symmetric. Hence attacker proposed to use 
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asymmetric padding in Trivia-SC. In this paper, we have presented slid pair 
for this modified version of Trivia-SC up to 280 shifts. 

2 Acorn 

� 
� � 

� � 
� � 

� � 
� � 

� � 

fi 

mi 

0 23 60 61 66 106 107 111 153 154 160 192 193 196 229 230 235 288 289 292 

Fig. 1. The concatenation of 6 LFSRs in ACORN. fi indicates the overall feedback bit for 
the ith step; mi indicates the message bit for the i-th step.

       array 
index 

0 to 127 128 to 255 256 257 to 1535 

m k IV 1 0 
a 1 1 1 1 
b 1 1 1 1 

Table 1. Initialization

       array 
index 0 to 

length(ad)-1 length(ad) 
length(ad)+1 to 
length(ad)+255 

length(ad)+256 to 
length(ad)+511 

m ad 1 0 0 
a 1 1 1 0 
b 1 1 1 1 

Table 2. Processing 

2.1 Description of the Cipher 

Notations: 

– d : data of 1536 bits 
– k : the key used of 128 bits 
– I V : I V used of 128 bits 
– Si : Current State of 293 bits 
– S(i+1): Next State of 293 bits 
– a : control bit of 1536 bits 
– b : control bit of 1536 bits 
– p : plain text 
– ad : associated data 
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Algorithm 1 Pseudo Code
 

function Update(Si,mi,ai,bi) 
Si,289 ← Si,289 ⊕ Si,235 ⊕ Si,230 

Si,230 ← Si,230 ⊕ Si,196 ⊕ Si,193 

Si,193 ← Si,193 ⊕ Si,160 ⊕ Si,154 

Si,154 ← Si,154 ⊕ Si,111 ⊕ Si,107 

Si,107 ← Si,107 ⊕ Si,66 ⊕ Si,61 

Si,61 ← Si,61 ⊕ Si,23 ⊕ Si,0
 

fi ← Feedback(Si, ai, bi)
 
for j:=0 to 291 do 

Si+1,j ← Si,j+1 

Si+1,292 ← fi ⊕ mi 

function Feedback(Si,ai,bi) 
ksi ← key stream(Si) 
return fi ← Si,0 ⊕ (∼ Si,107) ⊕ (Si,244&Si,23) ⊕ (Si,244&Si,160) ⊕ (Si,23 

&Si,160) ⊕ (Si,230&Si,111) ⊕ ((∼ Si,230)&Si,66) ⊕ (ai&Si,196) ⊕ (bi&ksi) 

function key stream(Si) 
return ksi ← Si,12⊕Si,154⊕(Si,235&Si,61)⊕(Si,235&Si,193)⊕(Si,61&Si,193) 

function Initialization 
S0 ← 0
 
for i:=0 to 127 do
 

mi ← ki 
for i:=0 to 127 do 

mi+128 ← I Vi 

m256 ← 1
 
for i:=1 to 1279 do
 

m256+i ← 0
 

for i:=1 to 1535 do
 
a ← 1
 
b ← 1
 

for i:=0 to 1535 do
 
Si+1 ← Update(Si, mi, ai, bi) 

function Processing 
for i:=0 to length(ad)-1 do 

mi ← adi 
mlength(ad) ← 1 
for i:=1 to 511 do 

mi+length(ad) ← 0 

for i:=0 to 511+length(ad) do
 
bi ← 1
 

for i:=0 to 255+length(ad) do
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ai ← 1
 
for i:=255 to 511 do
 

ai+length(ad) ← 0 

for i:=0 to 511 + length(ad) do 
Si+1 ← Update(Si, mi, ai, bi) 

function Encryption 
for i:=0 to length(p)-1 do 

mi+length(ad)+512 ← pi 

mlength(p)+length(ad)+512 ← 1 
for i:=0 to 511 do 

mi+length(p)+length(ad)+512 ← 0 

for i:=length(ad)+512 to length(ad)+length(p)+767 do 
ai ← 1 

for i:=length(p)+length(ad)+768 to length(ad)+length(p)+1023 do 
ai ← 0 

for i:=length(ad)+512 to length(ad)+length(p)+1023 do 
bi ← 0 

for i:=length(ad)+512 to length(ad)+length(p)+1023 do 
Si+1 ← Update(Si, mi, ai, bi) 
ci = pi ⊕ key stream(Si) 

return c 
function Main(p,ad,key,IV) 

Initialization 
Processing 
Encryption 
P rint(c) 

Here, we are ommitting the part where authentication tag is generated as 
our analysis is regarding the cipher text only. 

2.2 Our Analysis on Acorn 

The cube attack is a method of cryptanalysis applicable to a wide variety of 
symmetric-key algorithms, published by Itai Dinur and Adi Shamir. It have 
been used extensively for cryptanalysis of Block ciphers and Stream ciphers. 
Cube attacks are very efficient on stream ciphers based on low degree NFSRs. 
Cube attacks can recover a secret key through queries to a black box polynomial 
using IV bits. In our analysis, we have tweaked the cube attack by keeping the 
key and IV persistent and went ahead with altering the associated data. While 
examining the values of the State at different points of the program before the 
encryption, we noticed that we have equal number of 0’s and 1’s returned by 
Key stream function during Encryption. We XOR ed each value obtained and 
found that at the end of 64000 random keys and plain text and all possible 
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associated data of given length, the value obtained is 0. Say the length of 
associated data is n, then with all 2n possible associated data, the XOR ed 
value is 0 till some specific bit corresponding to n. We bunched together 64 
keys together for single place in an unsigned long long integer in C by left 
shifting 64 randomly generated bits and then operated on it normally as it is 
described in the algorithm. We also bunched 64 IVs together for single place in 
an unsigned long long integer in C. This will help in finding the experimental 
results at least 32 times faster and won’t hamper the normal result as we will 
experiment with randomly generated keys and IVs. 

2.2.1 Experimental Results We have executed the code on Ubuntu 14.04 
64-bit with hardware specifications of Intel Core i5-3210M dual-core CPU @ 
2.50GHz × 4 threads, 8 GB RAM. We used multi-threading to find out the bit 
index till which the XOR ed value is 0 for different length of associated data. 

Length x of Associated Data Bit y till which XOR ed value is 0 

10 341 
12 349 
14 358 
16 371 
18 379 

Table 3. Experimental results for different Associated Data length on Acorn. 

y
 →

 

Linear Regression 
Exponential Regression 
Quadratic Regression 

x → 

Fig. 2. Extrapolation with different methods. 

2.2.2 Extrapolation We used different extrapolation to find out the length
 
of Associated Data for which the first 512 bits will be 0. Here y is the number
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of bits and x is the length of Associated Data. Different regression formulae 
have been obtained from [29]. 

Linear Regression. Our formula is in this case y = 4.9 × x + 291. Thus 
when x = 45, y becomes 512. 

1.363091448×10−2xExponential Regression. Formula y = 296.9076103 × e . 
So y = 512 ⇔ x ≈ 40 

Quadratic Regression. Formula y = 7.142857143 × 10−2x2 + 2.9x + 
304.4285714 gives y = 512 ⇔ x ≈ 37 

2.3 Inference 

From the above extrapolation, we say that if the length of Associated Data 
is roughly about 45 bits or more, then updating for 512 rounds and XOR­
ing the obtained key stream bit over all possible data will yield 0. Hence it is 
conspicuous that a mere 512 rounds of updating the State in the processing 
part may not be sufficient for proper mixing. Hence if we have the State Update 
for 1024 rounds instead of 512, then for Linear Regression, y = 1024 ⇔ x ≈ 
150; for Exponential Regression, y = 1024 ⇔ x ≈ 91; and for Quadratic 
Regression, y = 1024 ⇔ x ≈ 82. According to the model of Acorn, 0 ≤ 
length of Associated Data ≤ 264 . So 1024 rounds of State Updation will be a 
fortress to prevent an attack from the cipher text. 

3 TriviA-ck 

TriviA-ck-v1 [2] is an AEAD (Authenticated Encryption with Associated Data) 
scheme, designed by Chakraborti and Nandi, and it is submitted to the ongoing 
“CAESAR - the Competition for Authenticated Encryption: Security, Applica­
bility, and Robustness.” It uses the stream cipher Trivia-SC (sometimes referred 
to as SCTrivia or SC-Trivia, e.g., in [2, page 18]) and an efficient universal hash 
function VPV-Hash. Trivia-SC is inspired from Trivium, but with a larger state 
and key size. 

3.1 Description of the Cipher 

Before proceeding further, let us describe the structures of Trivia-SC. Table 4 
gives an brief overview. 

Table 4. Overview of Trivia-SC 

Cipher Key size IV size State size 
Initialization 

rounds 
# Bits involved 
in key stream 

# Operations 
in key stream 

Trivia-SC 128 128 384 1152 (= 3 × 384) 8 6 ⊕, 1 ∧ 

We use the convention of numbering for both key and IV bits as 1, 2, 3, . . .. 
Accordingly, we use k1, k2, k3, . . . and v1, v2, v3, . . . to represent the key and IV 
bits, respectively. We explain Trivia-SC with three arrays A, B, C . 
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Algorithm 2 Trivia-SC: KLA
 
1: (A1, A2, . . . , A132) = (k1, k2, . . . , k128, 1, 1, 1, 1) 
2: (C1, C2, . . . , C147) = (v1, v2, . . . , v128, 1, . . . , 1) 
3: (B1, B2, . . . , B105) = (1, 1, . . . , 1) 

Algorithm 3 Trivia-SC: KSA & PRGA
 
1: for i = 1 to N do 
2: t1 ← A66 ⊕ A132 ⊕ (A130 ∧ A131) ⊕ B96 

3: t2 ← B69 ⊕ B105 ⊕ (B103 ∧ B104) ⊕ C120 

4: t3 ← C66 ⊕ C147 ⊕ (C145 ∧ C146) ⊕ A75 

5: (A1, A2, . . . , A132) ← (t3, A1, . . . , A131) 
6: (B1, B2, . . . , B105) ← (t1, B1, . . . , B104) 
7: (C1, C2, . . . , C147) ← (t2, C1, . . . , C146) 
8: zi ← A66 ⊕ A132 ⊕ B69 ⊕ B105 ⊕ C66 ⊕ C147 ⊕ (A102 ∧ B66) 

Let us now describe the stream cipher Trivia-SC. Trivia-SC consists of 3 
NFSRs: A, B and C of size 132, 105 and 147 bits; whose bits are represented as 
A1, A2, . . . , A132, B1, B2, . . . , B105 and C1, C2, . . . , C147 respectively. We repre­
sent the internal state register (384 bits) by S and denote its bits by S1, S2, . . . , 
S384, where A ≡ (S1, S2, . . . , S132), B ≡ (S133, S134, . . . , S237) and C ≡ (S238, 
S239, . . . , S384). The KLA routine is described in algorithm 2 which is followed 
by the KSA. The evolution is done for 1152 rounds without producing any key 
stream bit, which is followed by PRGA, which are given in algorithm 3. 

3.2 Attack using SAT Solver 

3.2.1 Description of the attack using SAT solver In Trivia-SC, we 
have 128-bit secret key and 128-bit IV. We consider a total of 128+128=256 
variables which corresponds to respective Key and IV. After c rounds of KSA, 
the internal state S(c) will be a function of key and IV for any non-negative 
integer c. Now if S(c) satisfies 384 − 256 = 128 fixed locations of the starting 
state S(0), then S(c) would also be a starting state of a different key and IV. 
The situation is presented pictorially in Figure 3. 
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KLA KSA KSA 
c rounds (1152 − c) rounds 

KLA KSA 

(K1, I V1) S(0) S(c) 

S'(0)(K2, I V2) 
1152 rounds 

Fig. 3. Slid attack on Trivia-SC 

In [20], it has been shown that slid pairs in Trivia-SC is not difficult. 
The idea is as follows: In Trivia-SC, the initial state S = (A, B, C ) is loaded 

as 
A = (k1, . . . , k128, 1, 1, 1, 1) 

105    
B = ( 1, . . . , 1) 

19    
C = (v1, . . . , v128, 1, . . . , 1). 
After clocking the registers once, the state becomes S' = (A', B ', C '), where 
A' = (t3, k1, . . . , k128, 1, 1, 1), B' = (t1, 1, . . . , 1) and 
C ' = (t2, v1, . . . , v128, 1, . . . , 1). 
Thus if k128 = v128 = t1 = 1, state S' is also a valid initial state, generated 

by the key (t3, k1, . . . , k127) and IV (t2, v1, . . . , v127). So S and S' generate 1-bit 
shifted key streams. To overcome this attack, it has been suggested in [20] to 
take first bit of B register as 0. 

Thus to find slid pairs in this modified version, we have 128 equations 
over 256 variables. We used SAT solver to obtain the solutions. Note that 
some locations of the state S(c) would be complicated if we write the complete 
expressions in the CNF form as c increases. To overcome this bottleneck, at each 
round of KSA, we introduce three new variables xi, yi and zi and replace t1, t2 

and t3 by xi, yi and zi respectively. Thus, at each round, we introduce three new 
variables and three equations. So after c rounds, we have 128 + 3c equations 
(128 many fixed values in a starting state) over 256 + 3c variables. Since we 
have more variables than constraints, it is expected to find a solution to such 
a system of equations. To solve these, we use the SAT solver Cryptominisat­
2.9.5 [27] installed in SAGE [28]. 

3.2.2 Example We have implemented the code in SAGE 5.12 on a Linux 
Mint 17.1 Cinnamon 64-bit. The hardware platform is a laptop with a Intel 
Core i5-4200U @ 1.6 Ghz × 2 and 4 GB RAM. Below, we present one slid pair 
in hexadecimal form. 
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Shift c Solution time in seconds 
270 1.23 
272 2.24 
274 6.12 
276 15.82 
278 29.74 
280 407.11 

Table 5. Experimental results for different shifts on modified Trivia-SC. 

In example 1, we obtain (K1, I V1) and (K2, I V2) in 407.11 seconds, and 
these Key-IV pairs produce 280 bit shifted key streams. 

Example 1. K1 : 09c2e824283614f6034c2fee86e2e9b6 

I V1 : e6cf0aac80f27ea07436c1c05137582b. 

key streams: b3425795e81caa3a6d5e934a464427c7251748080a7e50 

bdb3a0de00196662eff03370 484d089cebca7e28e90cfe0 

K2 : 2c41a48c695055f80c6b23d4c5c9db96 

I V2 : cf7040af7c63795f0d254746d25c778b 

key streams: 484d089cebca7e28e90cfe085926d614a476dca7c1424 

4 Conclusion 

From the experiments we conducted on Acorn v1, our analysis concludes that 
it is might not be totally secure with length of associated data + 512 rounds of 
State Update in the processing of associated data. 1024 + length of associated 
data rounds of State Update will be safer than the proposed approach. 

In the second part of the paper, we study a modified version of TriviA-ck, 
where padding is asymmetric. For symmetric padding, getting slid pair is very 
easy. We have shown that it is possible to obtain slid pairs even in the case of 
asymmetric padding. 
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