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Abstract. BSPN (byte-oriented SPN ) is a general block cipher struc­
ture presented at SAC’96 by Youssef et al. It was designed as a more ef­
ficient version of the bit-oriented SPN structure published earlier in 1996 
by Heys and Tavares in the Journal of Cryptology. BSPN is a flexible 
SPN structure in which only the linear transformation layer is exactly 
specified, while s-boxes, key-scheduling details, and number of rounds 
are intentionally left unspecified. Because BSPN can be implemented 
very efficiently in hardware, several researchers have recommended the 
64-bit version as a lightweight cipher for use in wireless sensor networks 
(WSNs). Youssef et al. perform preliminary analysis on BSPN (using 
typical block sizes and numbers of rounds) and claim it is resistant to 
differential and linear cryptanalysis. However, in this paper we show that 
even if BSPN (similarly parameterized) is instantiated with strong AES-
like s-boxes, there exist high probability differentials that allow BSPN to 
be broken using differential cryptanalysis. In particular, up to 9 rounds 
of BSPN with a 64-bit block size can be attacked, and up to 18 rounds 
with a 128-bit block size can be attacked. 

Keywords: BSPN, block cipher, SPN, differential cryptanalysis, wire­
less sensor network (WSN) 

1 Introduction 

BSPN (byte-oriented SPN ) is a general block cipher structure presented at 
SAC’96 by Youssef et al. [19]. It was designed as a more efficient byte-oriented 
version of the bit-oriented SPN structure published by Heys and Tavares in the 
Journal of Cryptology [5]. BSPN is a flexible SPN structure in which only the 
linear transformation layer is exactly specified, while s-boxes, key-scheduling 
details, and number of rounds are intentionally left unspecified.1 

As an important aspect of the designers’ emphasis on efficiency, BSPN is 
structured to be involutional (self-inverting). This involutional structure has 

1 Youssef et al. did not originally use the term BSPN; this was introduced in [20]. 
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influenced designers of other involutional ciphers such as Khazad [1] and CU­
RUPIRA [2]. Several researchers have considered hardware implementations of 
64-bit BSPN, and have recommended it as a lightweight cipher [15] for use in 
wireless sensor networks (WSNs) because of its high speed, low power usage, 
and low chip area [9, 20, 21]. 

Youssef et al. perform preliminary analysis on BSPN (using typical block 
sizes and numbers of rounds) and claim it is resistant to differential cryptanaly­
sis [3] and linear cryptanalysis [12], but in this paper we show that this analysis 
is incomplete. Even if BSPN is instantiated with strong AES-like s-boxes [4], 
there exist high probability differentials that allow BSPN to be broken using 
differential cryptanalysis. In particular, up to 9 rounds with a 64-bit block size 
can be attacked, and up to 18 rounds with a 128-bit block size can be attacked. 

The remainder of the paper is organized as follows. In Section 2 we give the 
structure of BSPN, and in Section 3 we examine the properties of the BSPN 
linear transformation. We review concepts from differential cryptanalysis in Sec­
tion 4, and in Section 5 we apply differential cryptanalysis to BSPN. In Section 6 
we conclude. 

2 BSPN Structure 

BSPN has a standard multi-round SPN structure in which each round consists 
of three layers: key mixing, substitution, and permutation. Let n denote the block 
size, where n = 8m, and m is even. In the key mixing layer, an n-bit subkey 
is bitwise XORed with the current block. In the substitution stage, the current 
block is partitioned into m bytes, each of which is input to an 8 × 8 bijective 
s-box. In the permutation stage, the s-box outputs are recombined into an n-bit 
block that is fed into an invertible linear transformation {0, 1}n → {0, 1}n (tra­
ditionally a bitwise permutation). A final n-bit whitening subkey is XORed with 
the output of the last round to form the ciphertext. It follows that BSPN with 
R rounds requires R + 1 subkeys. For the purposes of this paper, the most gen­
eral situation is assumed for key scheduling, namely that each subkey is chosen 
uniformly and independently from {0, 1}n . 

We use BSPN-n to denote BSPN with an n-bit block size. Youssef et al. do 
not specify the value of n in [19], although they analyze BSPN-64. We focus on 
n = 128 (so m = 16), the most common modern block size, and n = 64 (m = 8), 
a typical block size for lightweight ciphers. 

The BSPN linear transformation is given as follows: Let X = [x1, . . . , xm] 
be the input to the linear transformation, and let Y = [y1, . . . , ym] be the 
corresponding output, where each xi, yj is a byte. Then 

m⊕ 
yj = xi (1) 

i=1,i̸=j ⊕m
It is easy to see that this leads to efficient implementations, since if Q = i=1 xi, 
then yj = xj ⊕ Q. It is also easy to see that this linear transformation is its own 
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inverse, i.e., is an involution. It follows that if involutional 8 ×8 s-boxes are used, 
BSPN is itself an involution, i.e., decryption equals encryption with the subkeys 
applied in reverse order.2 

3 Properties of BSPN Linear Transformation 

The BSPN linear transformation L : {0, 1}n → {0, 1}n given by (1) has two 
related properties that make the cipher structure vulnerable to cryptanalysis: 

1. a large number of fixed points 
2. low diffusion 

3.1 Fixed Points 

A fixed point for L is an input X ∈ {0, 1}n for which L(X) = X. 

Theorem 1. The BSPN linear transformation L : {0, 1}n → {0, 1}n has 2n−8 

fixed points. ⊕m
Proof. Let X = [x1, . . . , xm] be an input for L, and let Q = i=1 xi. Then X is 
a fixed point for L if and only if Q = 0. Since this occurs with probability 2−8 , 
it follows that L has 2n−8 fixed points. ⊓⊔ 

Remark 1. Clearly any X containing exactly two identical nonzero bytes is a 
fixed point for L. We exploit fixed points of this form. 

Note that when n = 64, L has 256 fixed points, and when n = 128 (as in the 
AES), L has 2120 fixed points. 

3.2 Low Diffusion 

Let wtB (Z) denote the number of nonzero bytes in Z ∈ {0, 1}n . The branch 
number, B, of linear transformation L is given by3 

B = min {wtB (X) + wtB (L(X))}
X∈{0,1}n\0 

It is well known that 2 ≤ B ≤ m + 1 [4]. A low branch number indicates that a 
linear transformation has weak diffusive properties. Good diffusion in a cipher 
means that a small change in the plaintext will influence the entire block after 
a small number of rounds, and this often depends on the diffusive properties of 
the linear transformation. Poor diffusion in a cipher may create vulnerabilities 
to a number of attacks, including differential cryptanalysis. 
2	 This holds as long as the positions of distinct s-boxes do not violate the involution 
property, i.e., as long as the row of s-boxes in round r is identical to the row of 
s-boxes in round (R − r + 1), for 1 : r : R. This is trivially the case if the same 
s-box is used everywhere, as in the AES [4]. 

3 Technically this is the differential branch number. The linear branch number has 
a	 different, but closely related, definition [4]. For certain linear transformations, 
however, the two definitions become equivalent; this is the case for BSPN. 
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Theorem 2. If m ≥ 4, then B = 4 for the BSPN linear transformation. 

Proof. If X ̸ ̸= 0, then L(X) = 0, so wtB (X) ≥ 1 and wtB (L(X)) ≥ 1. It follows 
that when wtB (X) ≥ 3, we have wtB (X) + wtB (L(X)) ≥ 4, so we only need to 
consider the cases wtB (X) = 1 and wtB (X) = 2. 

If wtB (X) = 1, then X has a single nonzero byte b in some position i, so 
L(X) will contain 0 in position i and b in the remaining (m − 1) positions. 
Therefore wtB (L(X)) = (m − 1) ≥ 3. 

If wtB (X) = 2, then X contains nonzero bytes b and b ′ in positions i and 
i ′ (i ̸ i ′ ). If b = b ′ , then L(X) will contain b ′ in position i, b in position i ′ ,= ̸
and b ⊕ b ′ ̸= 0 in the remaining (m − 2) positions, so wtB (L(X)) = m ≥ 4. If 
b = b ′ , then, as noted in Remark 1, X is a fixed point, so wtB (L(X)) = 2 and 
wtB (X) + wtB (L(X)) = 4. ⊓⊔ 

For n = 128 (m = 16), the maximum possible branch number is 17, so clearly 
L has low diffusion. It is interesting that B = 5 for the AES, but the AES was 
designed using the wide-trail strategy [4], which guarantees good diffusion over 
four or more rounds. This strategy was not employed for BSPN. 

4 Differential Cryptanalysis Concepts 

Differential cryptanalysis [3] is a chosen plaintext attack that has been used 
successfully against many block ciphers. We do not describe the attack here, but 
we review some standard definitions. 

4.1 Differential Probability 

For any function f : {0, 1}d → {0, 1}d, let ∆x, ∆y, X ∈ {0, 1}d, where ∆x, ∆y 
are fixed and X is a uniformly distributed random variable. The differential 
probability DP (∆x, ∆y) is defined as 

DP(∆x, ∆y) = ProbX {f(X) ⊕ f(X ⊕ ∆x) = ∆y} (2) 

Here ∆x / ∆y are called input/output differences. It is natural to view DP 
values as entries in a 2d × 2d table. 

If f is parameterised by a key, k, we write DP(∆x, ∆y; k), and the expected 
differential probability EDP(∆x, ∆y) is EK [DP(∆x, ∆y; K)], where E[ ] de­
notes expectation and K is a random variable uniformly distributed over the 
space of keys. 

Differential cryptanalysis exploits relatively large EDP values over T ≤ R 
“core” rounds of the cipher (recall that R denotes the total number of rounds). 
Attackers often use T = (R − 1) or T = (R − 2). The data complexity of the 
attack (number of chosen plaintexts required) is given by 

c 
(3)

EDP ∗ 
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where EDP ∗ is the EDP value being used by the attacker, and c is a small 
constant (we assume c = 2). A cipher designer can claim provable security against 
differential cryptanalysis [14] if the maximum EDP value (MEDP) is sufficiently 
small (for any number of core rounds an attacker would consider) that the data 
complexity is prohibitively large (e.g., close to 2n).4 

4.2 Characteristics and Differentials 

T +1⟩,For T core rounds, a differential characteristic is a vector Ω = ⟨∆x1, . . . , ∆x
t t+1where ∆x and ∆x are input/output differences for round t (1 ≤ t ≤ T ). It 

t tfollows that ∆x and ∆y = L−1(∆xt+1) are input/output differences for the 
substitution stage of round t, yielding input/output differences for each s-box 
St t tin round t, denoted ∆x / ∆y (1 ≤ i ≤ m). (L−1 = L for BSPN, since L isi i i 
an involution.) 

For a given characteristic, Ω, an s-box with nonzero input/output differ­
ences is called active. The EDP associated with Ω is a formal product (not the 
probability of an actual event) defined as 

T m∏ ∏ 
EDP(Ω) = 

t=1 i=1 

DPSt 
i (∆x t t 

i, ∆yi ) (4) 

where DPSt 
i (·, ·) is a DP value for s-box St. In general, characteristics with larger i 

EDP values have fewer active s-boxes, since a non-active s-box always has a DP 
value equal to 1. 

The differential DIFF (∆x, ∆y) is the set of all characteristics whose first 
difference is ∆x and whose last difference is ∆y. Lai et al. [10] showed that ∑ 

EDP(∆x, ∆y) = EDP(Ω) (5) 
Ω∈DIFF (∆x,∆y) 

Remark 2. For most ciphers it is easier to calculate EDP values associated with 
characteristics than with differentials, so cipher designers will often prove that 
no high probability characteristics exist, and then claim resistance to differential 
cryptanalysis on this basis. Knudsen refers to this as practical security [8]. This 
is the approach taken by Youssef et al. in [19]. 

5 Applying Differential Cryptanalysis to BSPN 

In order to look for high probability characteristics and differentials for BSPN, 
we need at least partial information about the s-boxes. We assume the best case 
situation for the designer (worst case for the attacker) by using optimal AES-like 

4 The word “provable” is not an absolute guarantee, since there are advanced varia­
tions of differential cryptanalysis a designer should consider, e.g., [18]. Also note that 
“provable security” has other well-established meanings within cryptography [17]. 
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s-boxes. In other words, we assume they belong to the family of s-boxes based 
on inversion in the finite field GF (28): { −1x if x ≠ 0 

S(x) = (6)
0 if x = 0 

All such s-boxes are clearly involutional. The AES s-box has the same underlying 
mapping, but is further modified via an affine transformation (which, among 
other things, makes it non-involutional). S-boxes in this family were shown by 
Nyberg [13] to have maximum DP value equal to 2−6, which is the smallest 
possible maximum for an 8 × 8 s-box. Further, it is known that every nontrivial 
row and column of the 28 ×28 s-box DP table has the distribution in Table 1 [16] 
(where # denotes number of occurrences). For simplicity we will assume that all 
BSPN s-boxes are identical. 

DP 2−6 2−7 0 

# 1 126 129 

Table 1. Distribution of DP values for any row/column of an AES-like s-box 

5.1 Best Characteristics for BSPN 

From Remark 1 and the proof of Theorem 2 it is clear that multi-round dif­
ferential characteristics with the smallest possible number of active s-boxes will 
involve exactly two active s-boxes per round, and the same two s-boxes will be 
active in each round. In other words, the best (highest probability) characteris­
tics for BSPN will have the form in Table 2, where each zt ∈ {0, 1}8 \ 0. (For 
the sake of computing probabilities, we assume, without loss of generality, that 
the first two s-boxes in each round are active. In an actual attack the location 
of the active s-boxes would be varied to allow different bytes of the outermost 
subkeys to be targeted.) We refer to characteristics of this form as 2A-restricted 
characteristics. 

To form best characteristics over T core rounds, the (nonzero) value of z1 

can be chosen arbitrarily, and subsequent values of zt must be selected so that 
each active s-box DP value is 2−6 . The EDP of the resulting characteristic is (( )2)T 

2−6 = 2−12T . When T = 5, this gives an EDP of 2−60, which means that 

if T = R − 2, then BSPN-64 with R = 7 rounds can be attacked, since the data 
complexity is 261 (see (3)). On the other hand, when R ≥ 8 the data complexity 
is ≥ 273, so the characteristic-based approach fails, i.e., BSPN-64 with R ≥ 8 is 
practically secure against differential cryptanalysis. 

In contrast, BSPN-128 with R = 12 can be attacked, since if T = R −2 = 10, 
we can construct characteristics with EDP = 2−120, corresponding to a data 
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t ∆x t 

1 z1 z1 0 0 0 0 0 . . . 

2 z2 z2 0 0 0 0 0 . . . 

3 z3 z3 0 0 0 0 0 . . . 

. . . . . . 

Table 2. Structure of 2A-restricted characteristics 

complexity of 2121 . This compares poorly with the AES, which has a 128-bit 
block size, for which high probability characteristics can only be found over 
T ≤ 3 rounds [4]. 

5.2 High Probability Differentials for BSPN 

We focus on differentials DIFF (∆x, ∆y) over T core rounds consisting exclu­
sively of 2A-restricted characteristics. (Technically, these are sub-differentials.) 
Therefore ∆x = ⟨a, a, 0, 0, 0, . . .⟩ and ∆y = ⟨b, b, 0, 0, 0, . . .⟩, for some (nonzero) 
a, b ∈ {0, 1}8. Our goal is to sum the probabilities of these constituent charac­
teristics, thereby obtaining a lower bound on EDP(∆x, ∆y). It is not hard to 
see that for T ≥ 2, the number of 2A-restricted characteristics in a differential 
over T rounds is 28(T −2), which is exponential in T . However, we can compute 
the desired lower bounds very efficiently. First we introduce some notation: 

–	 Let DPS (α, β ) be the differential probability for the BSPN s-box with input 
difference α and output difference β (simplification of notation in Section 4.2) 

–	 Let F [0 . . . TMAX][0 . . . 255][0 . . . 255] be a 3D array, where TMAX is the max­
imum number of core rounds of interest to us; our goal is that F [T ][a][b] 
be assigned the sum of the EDP values of all 2A-restricted characteristics 
over T core rounds with initial difference ∆x = ⟨a, a, 0, 0, 0, . . .⟩ and final 
difference ∆y = ⟨b, b, 0, 0, 0, . . .⟩ 

Now consider the algorithm in Fig. 1. 

Theorem 3. If F [·][·][·] is filled using the algorithm given in Fig. 1, then for 1 ≤ 
T ≤ TMAX and a, b ∈ {0, 1}8 , F [T ][a][b] contains the sum of the probabilities of 
all 2A-restricted characteristics over T core rounds with initial difference ∆x = 
⟨a, a, 0, 0, 0, . . .⟩ and final difference ∆y = ⟨b, b, 0, 0, 0, . . .⟩. 

Proof. The correctness of the algorithm is an immediate consequence of the 
following relationship, for T ≥ 2 and ∆x, ∆y ∈ {0, 1}n: ∑ 
EDP [1...T ]	 EDP [1...(T −1)](∆x, ∆y) =	 (∆x, ∆z) · EDPT (∆z, ∆y) (7) 

∆z∈{0,1}n 



8 

- initialize all entries of F [·][·][·] to 0 

- set F [0][x][x] = 1 for x = 0, . . . , 255 

for T = 1, . . . , TMAX 

for ∆x = 1, . . . , 255 
for ∆y = 1, . . . , 255 

for z = 1, . . . , 255 
F [T ][∆x][∆y] += F [T − 1][∆x][z] × (DPS (z, ∆y))2 

Fig. 1. Algorithm for computing lower bound on EDP values of differentials 

where EDP [i...j] is an EDP value over rounds i . . . j (inclusive), and EDPT is a 
1-round EDP value for round T . In turn, (7) follows directly from (4) and (5). 

2
The squared term (DPS (z, ∆y)) is a consequence of activating two neighboring 
s-boxes in each round, assigning them identical input and output differences. ⊓⊔ 

224Remark 3. The innermost assignment statement in Fig. 1 is executed TMAX · 
times, which is negligible on a standard computer for any reasonable value of 
TMAX. 

5.3 Computational Results 

We ran the algorithm in Fig. 1 for 1 ≤ T ≤ 18 using: 

–	 an involutional s-box defined by inversion in GF (28), as in (6) — there are 30 
irreducible degree-8 polynomials over GF(2) (see [11]), and all 30 resulting 
s-boxes yielded identical lower bounds 

–	 the AES s-box — this non-involutional s-box was used for comparison pur­
poses, since it is considered something of a “gold standard” 

The computational results are given in Table 3. For each value of T , we list the 
largest entry in F [T ][·][·] for each of the two s-box choices. Note that the only 
differences resulting from the s-box selection occur when T = 2 and T = 3. 

If we assume that R = T + 2, then BSPN-64 can be attacked using differential 
cryptanalysis for R ≤ 9, since EDP ≥ 2−56.84 for T = 7, corresponding to a data 
complexity of approximately 258. This contradicts the claim in [19] that 9-round 
BSPN-64 is secure against differential cryptanalysis.5 Furthermore, BSPN-128 
can be attacked for R ≤ 18, since EDP ≥ 2−119.64 for T = 16, corresponding 
to a data complexity of approximately 2121 . This is significantly weaker than 
the AES, for which all EDP values over T ≥ 4 rounds are upper bounded by 
1.14 × 2−111 [7]. 

5	 Technically the authors assert resistance to differential cryptanalysis for R = 8 and 
T = R − 1, but this extends to R = 9 when T = R − 2. 

http:2�119.64
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T GF (28) inversion s-box AES s-box 

1 2−12 2−12 

2 2−20.85 2−21.51 

3 2−28.85 2−28.90 

4 2−35.90 2−35.90 

5 2−42.88 2−42.88 

6 2−49.86 2−49.86 

7 2−56.84 2−56.84 

8 2−63.82 2−63.82 

9 2−70.79 2−70.79 

10 2−77.77 2−77.77 

11 2−84.75 2−84.75 

12 2−91.73 2−91.73 

13 2−98.70 2−98.70 

14 2−105.68 2−105.68 

15 2−112.66 2−112.66 

16 2−119.64 2−119.64 

17 2−126.61 2−126.61 

18 2−133.59 2−133.59 

Table 3. Lower bounds on maximum EDP values over T core BSPN rounds 

6 Conclusion 

By considering properties of the BSPN linear transformation, we find high prob­
ability differentials over relatively large numbers of rounds, demonstrating that 
this lightweight cipher structure has significant vulnerabilities to differential 
cryptanalysis. 
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