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Abstract. In Asiacrypt 2010, Knellwolf, Meier and Naya-Plasencia pro
posed distinguishing attacks on Grain v1 when (i) Key Scheduling pro
cess is reduced to 97 rounds using 227 chosen IVs and (ii) Key Schedul
ing process is reduced to 104 rounds using 235 chosen IVs. Using similar 
idea, Banik obtained a new distinguisher for 105 rounds. In this paper, 
we show similar approach can work for 106 rounds. We present a new 
distinguisher on Grain v1 for 106 rounds with success probability 63%. 
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1 Introduction 

The Grain v1 is a well-known hardware-efcient, synchronous and bit oriented 
stream cipher. Designed in 2005 by Hell, Johansson and Meier [17], it has been 
widely studied for nearly a decade mostly because of its simplistic structure 
and selection in the eStream hardware profile (profile 2) portfolio [13]. In order 
to prevent the correlation attacks [6] on Grain v0, the modified versions Grain 
v1 [17] was proposed after incorporating certain changes. Grain 128 and Grain 
128a are inspired from Grain v1, and use a similar structure. 

Küçük et al. [8] proposed related key-IV attack on Grain v1. They observed 
that for any (K, IV ) pair, there exist related (K 0

, IV  0) pair with probability 0.25 
that generates 1-bit shifted keystream. Bjørstad [7] showed that Grain v1 has 
a low resistance to BWS sampling. Other cryptanalytic results related to this 
cipher have been presented in [14, 15, 19, 24, 26, 27]. 

In [9], an attack on nonlinear filter generators with linear resynchronization 
and filter function with few inputs is presented. To avoid such attacks, the ini
tialization of stream ciphers should be designed carefully. The common design 
paradigm (including the Grain family) of stream ciphers is as follows. The key K 
and initialization vector IV  are loaded into the state along with some padding 
bits. Next, state update function is applied to the internal state iteratively for a 
number of rounds without producing any output (key-stream). Hence, the num
ber of rounds is important for both security and efciency of the cipher, since 
increasing the number of rounds will slow down the cipher, but at the same time 
likely to increase the security. Hence, finding the minimal number of rounds that 
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would ensure the conjectured security level is a critical task, and studying the 
ciphers in its reduced variant (i.e., treating as if the key-streams are avaiable 
just after the key & IV are loaded to the register). 

Trivium [18], another candidate in the hardware profile of eStream, has been 
cryptanlysed for reduced round by many researchers. Englund et al. [14] showed 
statistical weaknesses on Trivium for 736 rounds. Aumasson et al. [1] were able 
to build a distinguisher on Trivium after 790 round. Independently Knellwolf et 
al. [21] built a distinguisher up to 806 rounds. 

Grain v1 is studied extensively for reduced round. In [2], a non-randomness 
for 81 round has been reported. In [20], Knellwolf et al. proposed a distinguisher 
for 97 rounds and 104 rounds. However results of [20] were based on experiments 
only. Later, Banik [3] proved a theoretical result for 97 rounds. Recently a dis
tinguisher for 105 round has been proposed in [4]. These attacks on Grain v1 
are known as Conditional Di↵erential Cryptanalysis (CDC), which was first in
troduced by Ben-Aroya and Biham [5] for block cipher cryptanalysis. It studies 
the output frequency of derivatives of output bit on specifically chosen IV . 

However, in recent terminology, CDC on stream cipher can be described as 
dynamic cube attack. Cube attacks, introduced by Dinur and Shamir [11], have 
been used in cryptanalysis. Although cube attack works [10, 12] successfully on 
Grain 128, its performance on Grain v1 is not that e↵ective. Using CDC, Knell-
wolf et al., in their Asiacrypt 2010 paper [20] obtained a practical distinguisher 
on Grain 128 for 215 rounds. Higher order conditional di↵erential attacks on 
Trivium and Grain 128 have been studied in [22]. CDC has been applied suc
cessfully in [23] on Grain 128a. In this paper, we show that one can attack Grain 
v1 up to 106 rounds using CDC method. 

The paper is organized as follows. In Section 2, we describe the design of 
Grain v1. We present our experimental results in Section 3. Section 4 gives a 
new distinguisher on Grain v1 up to 106 rounds. Conclusion is presented in 
Section 5. 

2 Brief Description of Grain v1 

Grain v1 has 80 bit key K and 64 bit initialization vector IV . The structure of 
the Grain v1 is depicted in Fig. 1. The state consists an 80-bit LFSR and an 
80-bit NFSR. The update function of the LFSR is given by: yt+80 = f(Yt), where 
Yt = [yt, yt+1, . . . , yt+79 ] is an 80-bit vector that denotes the LFSR state at the 
t

th clock interval and f is a linear function on the LFSR state bits obtained 
from a primitive polynomial in GF (2) of degree 80. The NFSR state is updated 
as xt+80 = yt E g(Xt). Here, Xt = [xt, xt+1, . . . , xt+79 ] is an 80-bit vector that 
denotes the NFSR state at the tth clock interval and g is a non-linear function 
of the NFSR state bits. 

The output keystream is produced by combining the LFSR and NFSR bits 
as zt = h0(Xt, Yt) =  

L 
E h(Xt, Yt), where A is some fixed subset of a2A xt+a 

{0, 1, 2, . . . , n  - 1}. Below we present the detailed description. 



As stated, the key-stream generation of Grain v1 consists of three phases. In 
the first phase, the key & IV bits are loaded to the state register in the Key Load
ing Algorithm routine; then the state bits are updated during the Key Scheduling 
Algorithm routine; and next the Pesudo-Random Generation Algorithm routine 
produces the key-streams. These routines are described as follows. 

Key Loading Algorithm (KLA) The key (80-bits) is loaded in the NFSR and 
the IV(64-bits) is loaded in the 0th to the 63th bits of the LFSR. The remaining 
64th to 79th bits of the LFSR are loaded with 1. 

Key Scheduling Algorithm (KSA) After the KLA, for the first 160 clocks, 
the keystream produced at the output point of the function h0 is XOR-ed to both 
the LFSR and NFSR update functions. So during the first 160 clock intervals, 
the LFSR and the NFSR bits are updated as yt+80 = zt E f(Yt), xt+80 = 
yt E zt E g(Xt). 

Pseudo-Random keystream Generation Algorithm (PRGA) After the 
completion of the KSA, zt is no longer XOR-ed to the LFSR and the NFSR but 
it is used as the Pseudo-Random keystream bit. Hence in this phase, the LFSR 
and NFSR are updated as yt+80 = f(Yt), xt+80 = yt E g(Xt). 

Fig. 1. Structure of Stream Cipher in Grain Family 
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The LFSR update rule is given by yt+80 = yt+62 E yt+51 E yt+38 E yt+23 E 
yt+13 Eyt. The NFSR state is updated as xt+80 = ytEg(xt+63 , xt+62 , xt+60 , xt+52 , 
xt+45 , xt+37 , xt+33 , xt+28 , xt+21 , xt+15 , xt+14 , xt+9, xt), where, 



g(xt+63 , xt+62 , xt+60 , xt+52 , xt+45 , xt+37 , xt+33 , xt+28 , xt+21 , xt+15 , xt+14 , 

xt+9, xt) 

= xt+62 E xt+60 E xt+52 E xt+45 E xt+37 E xt+33 E xt+28 

E xt+21 E xt+14 E xt+9 E xt E xt+63 xt+60 E xt+37 xt+33 E xt+15 xt+9 

E xt+60 xt+52 xt+45 E xt+33 xt+28 xt+21 E xt+63 xt+45 xt+28 xt+9+ 

xt+60 xt+52 xt+37 xt+33 E xt+63 xt+60 xt+21 xt+15
 

E xt+63 xt+60 xt+52 xt+45 xt+37 E xt+33 xt+28 xt+21 xt+15 xt+9
 

E xt+52 xt+45 xt+37 xt+33 xt+28 xt+21 .
 

The key-stream is produced by combining the LFSR and NFSR bits as: 
M

zt = xt+a E h(yt+3, yt+25 , yt+46 , yt+64 , xt+63 ), 
a2A 

where, A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4) =  s1 Es4 Es0s3 Es2s3 E 
s3s4 E s0s1s2 E s0s2s3 E s0s2s4 E s1s2s4 E s2s3s4. 

3 Biases Beyond 105 Rounds of KSA 

Fig. 2. Growth of key-stream expression of Grain v1 
·106 
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As evident from the description, the NFSR update function used in Grain 
v1 is of degree 6. So symbolic expressions (treating the key & IV as symbolic 



variables and then doing the state update operation) of Grain v1 grow very fast. 
In Fig. 2, we show the number of monomials in key-stream expression of Grain 
v1 over some initial rounds. 

As mentioned, Knellwolf et al. [20] observed a new distinguisher on Grain 
v1. Now we briefly explain how one can interpret the idea of [20] as a dynamic 
cube attack. Recall from Section 2 that Grain v1 contains 80-bit key k0, . . . , k79 

and 64-bit IV v0, . . . , v63. Grain v1 is initially loaded with X0 = [k0, . . . , k79] and 
16 z }| {

Y0 = [v0, . . . , v63, 1, . . . , 1] (here X0 corresponds to NFSR and Y0 corresponds to 
LFSR). 

0 

0 

0 
0 = [v0, . . . , 1E 

is chosen as cube. 

Next start with NFSR X0 = [k0, . . . , k79] but di↵erent LFSR Y
16 z }| {

v37, v63, 1, . . . , 1]. That is, in cube attack terminologies, v37 

Thus two states S0 
0 00 

0, Y0 )
 
the key stream bits for S0 and
 

and S initialized by (X0, Y0) and (X are di↵erent 
and z0 i are only at one position. Suppose zi 

S

0 
0 respectively at i-th round of KSA. They observed experimentally that if 

12, z34 34, z40 

first output bit in PRGA will be same with probability more than 0.5. In ACISP 
2014, Banik [3] gave the theoretical justification for this result. 

Recently, Banik [4] showed a distinguishing attack for 105 round. Instead 
of 37-th bit of IV, he chose 61-bit of IV for the di↵erential. In his work, it is 

00 0 in KSA and KSA is reduced to 97 rounds, the = zz12 = z = z40 

0000 
15, z36 36, z39 39 and z42 42 in KSA. 

In this paper, we experiment for all single IV di↵erential. Thus we have a 
total of 64 di↵erentials. For any such di↵erential, in the initial rounds of KSA, 

considered the equality of z15 = z = z = z = z

it is highly likely that zi = z0 i is satisfied. We load symbolically with X0 = 
16 z }| {

[k0, . . . , k79] in NFSR and Y0 = [v0, . . . , v63, 1, . . . , 1] in Sage [25]. Next we run 
KSA for few rounds, and find zi as a polynomial of k0, . . . , k79, v0, . . . , v63. For 
each vj , we identify first four rounds where coefcient of vj in zi is not constant 
for 0  j  63. We identify these rounds using Algorithm 1. In step 3 of the 
algorithm, IA corresponds to the ideal generated by a set of polynomials in A. 

Input: vj , zi and an empty array A 
Output: An array A 

1 i = 0  ;  ✓ ◆ 

2 while Coe�cient cij of vj in zi is nonconstant & |A| < 4 do 

3 if ci,j /2 IA then 
4 Include ci,j in A ; 

end 
5 i = i+ 1  ;  

end 

Algorithm 1 Generating polynomial equations in KSA 



Conditions for each di↵erential are presented in Appendix A. We find the 
probability of the equality of the first output keystream bits for each KSA round 
105 to 128. Our probability is taken over 230 random key-IV. 
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Our experimental values have been presented in Fig.3 for rounds 105 to 110. 
Here x axis corresponds to the rounds of KSA, y corresponds to each di↵erential 
and z corresponds the equality of output keystream bits. From the Fig. 3, it 
is clear we may get distinguisher using the similar idea of [20] for 106 and 107 
rounds. In fact, we observe 

0 0 0 0 0
P

(
z105 = z 

  
z15 = z15 & z36 = z36 & z39 = z39 & z42 = z 

) 
= 0.500365,105 42 

0 0 0 0 0
P

(
z106 = z106

  
z16 = z16 & z34 = z34 & z37 = z37 & z40 = z40

) 
= 0.500245, 

0 0 0 0 0
P

(
z107 = z107

  
z17 = z17 & z35 = z35 & z38 = z38 & z41 = z41) =  0.500246, 

when di↵erentials are given on v61, v62 and v63 respectively. 
After 107 rounds, all curves become almost flat. Thus it seems beyond 107 

rounds, it might not be possible to attack Grain v1 using single di↵erentiable. 

4 New result on Grain v1: Distinguisher upto 106 rounds 

16 z }| {
Grain v1 is first intialised with X0 = [k0, . . . , k79] and Y0 = [v0, . . . , v63, 1, . . . , 1]. 
Here X0 corresponds to NFSR and Y0 corresponds to LFSR. 

Now choose v62 as cube. Hence start with NFSR X0 
0 = [k0, . . . , k79] but  

16 z }| {
di↵erent LFSR Y0 

0 = [v0, . . . , 1 E v62, v63, 1, . . . , 1]. 



Thus two states S0 and S0 initialized by (X0, Y0) and (X0, Y0 ) di↵erent only 
at one position. But when more and more KSA rounds are completed, more and 
more positions of the states will di↵er. The idea is to delay the di↵usion of the 
di↵erential for as many KSA rounds as possible, by imposing many algebraic 
conditions over key and IV. We find algebraic expressions using Sage [25]. The 
conditions may be classified in to two types: 

0 

– Type 1: Conditions only on IV 

0 

– Type 2: Conditions on both Key and IV. 

0 

Let zt and z0 t be the bit produced in the t-th KSA round when states are 

0, Y0 ). Recall for r-th reduced version of Grain v1, all 00loaded by (X0, Y0) and (X

i are unknown to the attacker for i < r. But giving Type 1 and Type 2 
conditions, attacker can guarantee that zi E z

0bits zi, z
0 
i = 0 for few initial rounds. The 

attack idea is as follows: 

1. For i = 0, . . . , 15, it is not difcult to show that zi 0 
i. Hence we do not 

0 
i = 0 for 0  i  15. 

is polynomial degree 2 over Key and IV. Now we set 

= z
need any condition to make zi E z

2. When i = 16, zi E z0 i 
v19 = v41 = 1, v46 = 0 and v0 = k1 E k2 E k4 E k10 E k31 E k43 E k56 E 

0 
16. Thus we have three Type  

1 conditions v19 = v41 = 1, v46 = 0 and one Type 2 condition C1 : v0 = 
k1 E k2 E k4 E k10 E k31 E k43 E k56 E v3 E v13 E v23 E v25 E v38 E v51. 

v3 E v13 E v23 E v25 E v38 E v51. Then  z16 = z

3. For i = 17, . . . , 26, zi will be always equal to z0 i. 

0 
4. When	 i = 27, z27 will be always di↵erent from z

27 = 0. 

0 
27. So by imposing any 

conditions, we can not make z27 E z

5. zi will be always equal to z0 i for i = 28, . . . , 33. 

will be an algebraic expression on Key and IV. 6. When i = 34, z34 E z0 34 
However if attacker sets 17 Type 1 conditions v2 = v15 E v18 E v25 E v31 E 
v40 Ev53 Ev56 Ev59, v63 = 0, v14 = v24 E v39 E v52, v13 = v23 Ev38 Ev51, v17 = 
v42, v43 = 0, v47 = 0, v38 = 0, v4 = 0, v1 = 0, v5 = 0, v20 = 0, v21 = 0, v26 = 
0, v27 = 0, v37 = 0, v48 = 0 and one Type 2 condition 

C2 : v59 = f1(K), 

where f1(K) is a polynomial over Key of degree 16 and 9108 monomials, 
0= zz34 34. 

0 

0 
i for i = 35, 36. 

8. When i = 37, again z37 E z

7. We have zi = z

37 will be an algebraic expression on Key and IV. 
Now attacker sets 7 Type 1 conditions v15 = v18 E v25 E v31 E v53 E v55 E 
v56 E v59, v16 = v54, v49 = 1, v28 = 0, v6 = 0, v50 = 0, v23 = v45 

and two Type 2 conditions 

C3 : v3 = k4 E k5 E k7 E k13 E k34 E k46 E k59 E k66 

C4 : v7 = v29 E f2(K), 



where f2(K) is a polynomial over Key of degree 15 and 1535 monomials. 
Then we have z37 = z0 37. 

9. We have zi = zi 
0 for i = 38, 39. 

10. If we set 7 Type 1 conditions v58 = v7, v57 = v44 Ev29, v51 = 0, v52 = 0, v10 = 
0, v32 = 0, v53 = 0 and 2 Type 2 conditions 

C5 : v9 = k7 E k8 E k10 E k16 E k37 E k49 E k62 E v31 

C6 : v8 = f3(K), 

where f3(K) is a polynomial over Key of degree 15 and 1572 monomials, 
0= zz40 40. 

Thus we have a total of 34 Type 1 conditions and 6 Type 2 conditions 
C1, . . . , C6. We can rewrite the Type 2 conditions as 

C1 : v0 = K1 E v3 E v13 E v23 E v25 E v38 E v51, 

C2 : v59 = K2, 

C3 : v3 = K3, 

C4 : v7 = K4 E v29, 

C5 : v9 = K5 E v31, 

C6 : v8 = K6, 

where Kis are function of Key only for 1  i  6. Hence for fixed Key, Kis 
are fixed. 

Now since attacker does not know the values K1, . . . ,K6, he has to consider 
all combinations. Let U = [K1,K2,K3,K4,K5,K6]. Then for each U 2 {0, 1}6 , 
attacker chooses such that 

⇢ 

v19 = v41 = 1, v46 = 0, v63 = 0, v14 = v24 E v39 E v52, 

v13 = v23 E v38 E v51, v17 = v42, v43 = 0, v47 = 0, v38 = 0, 

v4 = 0, v1 = 0, v5 = 0, v20 = 0, v21 = 0, v26 = 0, v27 = 0, 

v37 = 0, v48 = 0, v49 = 1, v28 = 0, v6 = 0, v50 = 0, 

v23 = v45, v51 = 0, v52 = 0, v10 = 0, v32 = 0, v53 = 0, 

v0 = K1 E v3 E v13 E v23 E v25 E v38 E v51 }
v59 = K2, v3 = K3, v7 = K4 E v29, v9 = K5 E v31, v8 = K6 

0 0 0Hence for the correct choice of K1, . . . ,K6, we have  z16 = z16, z34 = z34, z37 = z37 
and z40 = z0 40. 

Note that due to Type 1 conditions, IV space is reduced to {0, 1}64-34 = 
{0, 1}30 . Corresponding to 6 Type 2 conditions, attacker divides this space 



into 26 = 64 partitions. Here free IV variables are: v11, v12, v18, v22, v24, v25, v29, 
v30, v31, v33, v34, v35, v36, v39, v40, v42, v44, v45, v54, v55, v56, v60, v61. 

Since there are 6 expressions on the unknown key, the attacker chooses all 64 
options. Among these 64 options, one must be correct. For each option, attacker 
takes the dynamic variables v0, v59, v3, v7, v9, v8 accordingly. So for fixed key, we 

0have 64 values corresponds to the probability P (z106 = z106) for each Type 2 
condition. Since we have only 23 free IV, approach of [20] will not work here 
directly. We use the idea as follows. 

We consider only those probabilities for which P (z106 = z0 5, and 106) > 0.
we add all such probabilities. Let the sum of these probabilities be S. For the 
random case, this sum will be 

1 
Z N 

(x-µ)2 
✓ 

x 
◆

- 2
SR = 64 ⇥ p e 2: - p dx, (1) 

2⇡c Np  N 

N Nwhere N is the size of sample space, µ = 2 ,c
2 = and p = 0.5. For N = 223 ,4 

value of SR will be 0.0044. 
From our experiment with 1000 random keys, we observe that for 63% situ

ations, the sum in Equation (1) for Grain v1 is greater than 0.0044 when we are 
using all 23 free IV variables. Thus we can distinguish Grain v1 from random 
source up to 106 rounds with success probability 0.63. 

We try similar idea for 107 rounds. But the algebraic expressions for 107 
rounds are much more complicated. Hence getting constraints on Key and IV 
i.e, Type 1 and Type 2 conditions would be very difcult for this case. 

5 Conclusion 

In this paper, we have first presented experimental results for all single bit di↵er
ential on IV. From these experiments, it seems that one may find a distinguisher 
on Grain v1 for 106 and 107 rounds. Then we have presented our result Grain v1 
for 106 rounds. We have shown that it is possible to divide the search space into 
64 partitions so that for one partition of IV values the di↵erential of key stream 
bits at certain positions will be zero. Experiments show that one can distinguish 
Grain v1 for 106 rounds with 63% success probability. 

From our experiments, it seems one may attack Grain v1 up to 107 rounds. 
However, in this case the conditions are much more complicated. We leave this 
as an open problem. 
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Appendix A: Condition on key-stream for Di↵erent 
Locations 

Shaded conditions for 37 and 61 are previously explored by others [20, 4]. In this 
paper, we consider the conditions for 62. 

Ta b l e 1 . Di↵erent KSA round numbers for di↵erent IV locations. 

Location Rounds 
0 16 17 34 35 
1 17 18 35 36 
2 19 34 35 36 
3 0 20  35  36  
4 1 21  36  37  
5 2 22  37  38  
6 3 23  38  39  
7 4 24  39  40  
8 5 25  40  41  
9 6 26  41  42  
10 7 27  42  43  
11 8 28  43  44  
12 9 29  44  45  
13 10 16 30 34 
14 11 17 31 35 
15 12 32 34 35 

Location Rounds 
16 13 33 35 36 
17 14 34 36 37 
18 15 34 35 37 
19 16 35 36 38 
20 17 36 37 39 
21 18 37 38 40 
22 19 38 39 41 
23 16 20 34 39 
24 17 21 35 40 
25 0 22  34  35  
26 1 23  35  36  
27 2 24  36  37  
28 3 25  37  38  
29 4 26  38  39  
30 5 27  39  40  
31 6 28  34  40  

Location Rounds 
32 7 29  35  41  
33 8 30  36  42  
34 9 31  37  43  
35 10 32 38 44 
36 11 33 39 45 
37 12 34 40 46 
38 13 16 34 35 
39 14 17 35 36 
40 15 34 35 36 
41 16 34 35 36 
42 17 35 36 37 
43 18 36 37 38 
44 19 37 38 39 
45 20 38 39 40 
46 0 21  39  40  
47 1 22  40  41  

Location Rounds 
48 2 23  41  42  
49 3 24  42  43  
50 4 25  43  44  
51 5 16  26  34  
52 6 17  27  35  
53 7 28  34  35  
54 8 29  35  36  
55 9 30  36  37  
56 10 31 34 37 
57 11 32 35 38 
58 12 33 36 39 
59 13 34 37 40 
60 14 35 38 41 
61 15 36 39 42 
62 16 34 37 40 
63 17 35 38 41 
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